WRF-Chem Simulation for Modeling Seasonal Variations and Distributions of Aerosol Pollutants over the Middle East
Abstract
:1. Introduction
2. Modelling Setup
2.1. Observations
2.2. Emissions
2.3. Numerical Simulations
3. Results and Discussions
3.1. Evaluation of Meteorological Parameters
3.2. Evaluation of Aerosol Optical Depth (AOD)
4. Seasonal Aerosol Variations
5. Seasonal Ozone Variations
6. Urban Air Pollution
7. Summary and Conclusions
- The simulated AOD obtained from the high-resolution WRF-Chem model is reasonably consistent over the study sites across observational datasets, including AERONET and MODIS. The simulated seasonal variations and magnitudes of AOD is also consistent with the MODIS measurements.
- The model successfully reproduced the general features of the Middle East meteorology such as the seasonal changes in wind patterns along with the seasonal cycle of temperature. The errors in model-simulated meteorological parameters are within the proposed benchmark values.
- Meteorological parameters are predicted well by the model, and the correlation coefficient is 0.92, 0.93, 0.98 and 0.89 for January, April, July, and October respectively. The meridional component of wind shows the bias of seasonal dependency, negative in winter, and positive in summer.
- The RMSE of 2 m temperature ranges from 1.25 °C in January to 1.40 °C in July. RMSE of wind vector components takes values of 0.82 m/s in April to 1.29 m/s in July.
- Sulfate aerosol shows maximum concentrations over Kuwait, Bahrain, Qatar, UAE during July, and October. Simulated concentrations nitrate is generally lower than those sulfate in the northeastern ME region.
- The analysis shows that the aerosol concentrations are highest over urban regions, and monthly average sulfate, nitrate, ammonium, and dust aerosols are highest over Bahrain, Kuwait, Qatar, and the United Arab Emirates and Jeddah, Makkah Region in the Kingdom of Saudi Arabia.
- The aerosol-to-dust ratio over Makkah city was quantified for January, April, July, and October 2012. Aerosol’s contributions in Makkah accounting for about 5–10% and 10–20% during January and April, respectively. Aerosols have the largest contributions in Makkah during July and October accounting for about 10–25%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chin, M.; Remer, L.A.; DeCola, D.; Feingold, G.; Halthore, R.; Kahn, R.A.; Quinn, P.K.; Rind, D.; Schwartz, S.E.; Streets, D.G.; et al. Atmospheric Aerosol Properties and Climate Impacts; U.S. Climate Change Science Program Synthesis and Assessment Product 2.3; US Climate Change Science Program: Washington, DC, USA, 2009. [Google Scholar]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change; John Wiley, A Wiley-Interscience Publication Press: Hoboken, NJ, USA, 2006; Volume 2. [Google Scholar]
- Lohmann, U.; Feichter, J. Global indirect aerosol effects: A review. Atmos. Chem. Phys. 2005, 5, 715–737. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- WHO. Health Risk of Particulate Matter from Long Range of Transboundary Air Pollution. 2013. Available online: https://www.euro.who.int/__data/assets/pdf_file/0006/189051/Health-effects-of-particulate-matter-final-Eng.pdf (accessed on 25 March 2016).
- Ukhov, A.; Mostamandi, S.; Krotkov, N.; Flemming, J.; da Silva, A.; Li, C.; Fioletov, V.; McLinden, C.; Anisimov, A.; Alshehri, Y.M.; et al. Study of SO Pollution in the Middle East Using MERRA-2, CAMS Data Assimilation Products, and High-Resolution WRF-Chem Simulations. J. Geophys. Res. Atmos. 2020, 125, e2019JD031993. [Google Scholar] [CrossRef]
- Roshan, D.R.; Koc, M.; Isaifan, R.; Shahid, M.Z.; Fountoukis, C. Aerosol Optical Thickness over Large Urban Environments of the Arabian Peninsula—Speciation, Variability, and Distributions. Atmosphere 2019, 10, 228. [Google Scholar] [CrossRef] [Green Version]
- Anisimov, A.; Tao, W.; Stenchikov, G.; Kalenderski, S.; Prakash, P.J.; Yang, Z.-L.; Shi, M. Quantifying local-scale dust emission from the Arabian Red Sea coastal plain. Atmos. Chem. Phys. 2017, 17, 993–1015. [Google Scholar] [CrossRef] [Green Version]
- Cahill, B.; Toumi, R.; Stenchikov, G.; Sergey, O.; Helen, B. Evaluation of thermal and dynamic impacts of summer dust aerosols on the Red Sea. J. Geophys. Res. Ocean. 2017, 122, 1325–1346. [Google Scholar] [CrossRef] [Green Version]
- Banks, J.R.; Brindley, H.E.; Stenchikov, G.; Schepanski, K. Satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf (2005–2015). Atmos. Chem. Phys. 2017, 17, 3987–4003. [Google Scholar] [CrossRef] [Green Version]
- Prakash, P.J.; Stenchikov, G.; Tao, W.; Yapici, T.; Warsama, B.; Engelbrecht, J. Arabian Red Sea coastal soils as potential mineral dust sources. Atmos. Chem. Phys. 2016, 16, 11991–12004. [Google Scholar] [CrossRef] [Green Version]
- Kalenderski, S.; Stenchikov, G. High-resolution regional modeling of summertime transport and impact of African dust over the Red Sea and Arabian Peninsula. J. Geophys. Res. Atmos. 2016, 121, 6435–6458. [Google Scholar] [CrossRef] [Green Version]
- Alghamdi, M.A.; Almazroui, M.; Shamy, M.; Redal, M.A.; Alkhalaf, A.K.; Hussein, M.A.; Khoder, M. Characterization and Elemental Composition of Atmospheric Aerosol Loads during Springtime Dust Storm in Western Saudi Arabia. Aerosol Air Qual. Res. 2015, 15, 440–453. [Google Scholar] [CrossRef] [Green Version]
- Munir, S.; Habeebullah, T.M.; Seroji, A.R.; Morsy, E.A.; Mohammed, A.M.F.; Saud, W.A.; Esawee, A.L.; Awad, A.H. Modeling Particulate Matter Concentrations in Makkah, Applying a Statistical Modeling Approach. Aerosol Air Qual. Res. 2013, 13, 901–910. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.V. Satellite remote sensing of surface air quality. Atmos. Environ. 2008, 42, 7823–7843. [Google Scholar] [CrossRef]
- Duncan, B.N.; Prados, A.I.; Lamsal, L.N.; Liu, Y.; Streets, D.G.; Gupta, P.; Hilsenrath, E.; Kahn, R.A.; Nielsen, J.E.; Beyersdorf, A.; et al. Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmos. Environ. 2014, 94, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Streets, D.G.; Canty, T.; Carmichael, G.R.; de Foy, B.; Dickerson, R.R.; Duncan, B.N.; Edwards, D.P.; Haynes, J.A.; Henze, D.K. Emissions estimation from satellite retrievals: A review of current capability. Atmos. Environ. 2013, 77, 1011–1042. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.Z.; Shahid, I.; Chishtie, I.; Shahzad, M.I.; Bulbul, G. Analysis of a dense haze event over North-eastern Pakistan using WRF-Chem model and remote sensing. J. Atmos. Sol. Terr. Phys. 2019, 182, 229–241. [Google Scholar] [CrossRef]
- Shahid, M.Z.; Liao, H.; Li, J.; Shahid, I.; Lodhi, A.; Mansha, M. Seasonal Variations of Aerosols in Pakistan: Contributions of Domestic Anthropogenic Emissions and Transboundary Transport. Aerosol Air Qual. Res. 2015, 15, 1580–1600. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.Z.; Hong, L.I.A.O.; Yu-Lu, Q.I.U.; Shahid, I. Source sector contributions to aerosol levels in Pakistan. Atmos. Ocean. Sci. Lett. 2015, 8, 308–313. [Google Scholar]
- Shahid, M.Z.; Shahid, I.; Zahid, M. Inter-annual variability and distribution of aerosols during winters and aerosol optical thickness over Northeastern Pakistan. Int. J. Environ. Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Shahid, I.; Alvi, M.U.; Shahid, M.Z.; Alam, K.; Chishtie, F. Source Apportionment of PM10 at an Urban Site of a South Asian Mega City. Aerosol Air Qual. Res. 2018, 18, 2498–2509. [Google Scholar] [CrossRef]
- Adhikary, B.; Carmichael, G.R.; Tang, Y.; Leung, L.R.; Qian, Y.; Schauer, J.J.; Stone, E.A.; Ramanathan, V.; Ramana, M.V. Characterization of the seasonal cycle of south Asian aerosols: A regional-scale modeling analysis. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Pye, H.; Liao, H.; Wu, S.; Mickley, L.J.; Jacob, D.J.; Henze, D.K.; Seinfeld, J.H. Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Yang, Y.; Liao, H.; Li, J. Impacts of the East Asian summer monsoon on interannual variations of summertime surface-layer ozone concentrations over China. Atmos. Chem. Phys. 2014, 14, 6867–6879. [Google Scholar] [CrossRef] [Green Version]
- Turnock, S.T.; Spracklen, D.V.; Carslaw, K.S.; Mann, G.W.; Woodhouse, M.T.; Forster, P.M.; Haywood, J.; Johnson, C.E.; Dalvi, M.; Bellouin, N.; et al. Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009. Atmos. Chem. Phys. 2015, 15, 9477–9500. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Rosenfeld, D.; Yang, Y.; Zhao, C.; Leung, L.R.; Li, Z. Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China. Geophys. Res. Lett. 2015, 42, 6066–6075. [Google Scholar] [CrossRef]
- Crawford, J.; Chambers, S.; Cohen, D.D.; Griffiths, A.; Williams, A.; Stelcer, E. Using Radon-222 as an Indicator of Atmospheric Mixing Depth in ME-2 for PM2.5 Source Apportionment. Aerosol Air Qual. Res. 2015, 15, 611–624. [Google Scholar] [CrossRef] [Green Version]
- Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A.; Hansen, J.E.; Hofmann, D.J. Climate Forcing by Anthropogenic Aerosols. Science 1992, 255, 423. [Google Scholar] [CrossRef]
- Chuang, C.C.; Penner, J.E.; Taylor, K.E.; Grossmann, A.S.; Walton, J.J. An assessment of the radiative effects of anthropogenic sulfate. J. Geophys. Res. Atmos. 1997, 102, 3761–3778. [Google Scholar] [CrossRef]
- Ramanathan, V.; Ramana, M.V. Persistent, Widespread, and Strongly Absorbing Haze Over the Himalayan Foothills and the Indo-Gangetic Plains. Pure Appl. Geophys. 2005, 162, 1609–1626. [Google Scholar] [CrossRef]
- Middleton, P.; Kiang, C.S.; Mohnen, V.A. Theoretical estimates of the relative importance of various urban sulfate aerosol production mechanisms. Atmos. Environ. 1980, 14, 463–472. [Google Scholar] [CrossRef]
- Saxena, P.; Seigneur, C. The Extent of Nonlinearity in the Atmospheric Chemistry of Sulfate Formation. J. Air Pollut. Control Assoc. 1986, 36, 1151–1154. [Google Scholar] [CrossRef]
- Seigneur, C.; Saxena, P. A theoretical investigation of sulfate formation in clouds. Atmos. Environ. 1988, 22, 101–115. [Google Scholar] [CrossRef]
- Hess, P.G.; Zbinden, R. Stratospheric impact on tropospheric ozone variability and trends: 1990–2009. Atmos. Chem. Phys. 2013, 13, 649–674. [Google Scholar] [CrossRef] [Green Version]
- Voulgarakis, A.; Hadjinicolaou, P.; Pyle, J.A. Increases in global tropospheric ozone following an El Niño event: Examining stratospheric ozone variability as a potential driver. Atmos. Sci. Lett. 2011, 12, 228–232. [Google Scholar] [CrossRef]
- Stenchikov, G.; Dickerson, R.; Pickering, K.; Ellis, W., Jr.; Doddridge, B.; Kondragunta, S.; Poulida, O.; Scala, J.; Tao, W.-K. Stratosphere-troposphere exchange in a midlatitude mesoscale convective complex: 2. Numerical simulations. J. Geophys. Res. Atmos. 1996, 101, 6837–6851. [Google Scholar] [CrossRef]
- Fu, Y.; Liao, H. Simulation of the interannual variations of biogenic emissions of volatile organic compounds in China: Impacts on tropospheric ozone and secondary organic aerosol. Atmos. Environ. 2012, 59, 170–185. [Google Scholar] [CrossRef]
- Camalier, L.; Cox, W.; Dolwick, P. The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmos. Environ. 2007, 41, 7127–7137. [Google Scholar] [CrossRef]
- Ramsey, N.R.; Klein, P.M.; Moore, B. The impact of meteorological parameters on urban air quality. Atmos. Environ. 2014, 86, 58–67. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk Parameterization of the Snow Field in a Cloud Model. J. Appl. Meteorol. Climatol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef] [Green Version]
- Faiz, A.; Sturm, P.J. Chapter 7 New directions: Air pollution and road traffic in developing countries. In Developments in Environmental Science; Austin, J., Brimblecombe, P., Sturges, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2002; pp. 241–243. [Google Scholar]
- Parekh, P.P.; Khwaja, H.A.; Khan, A.R.; Naqvi, R.R.; Malik, A.S.; Sajjad, A.K.; Khaid, H.G. Ambient air quality of two metropolitan cities of Pakistan and its health implications. Atmos. Environ. 2001, 35, 5971–5978. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Gong, S.L.; Zhao, T.L.; Arimoto, R.; Wang, Y.Q.; Zhou, Z.J. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Prakash, P.J.; Stenchikov, G.; Kalenderski, S.; Osipov, S.; Bangalath, H. The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmos. Chem. Phys. 2015, 15, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Kalenderski, S.; Stenchikov, G.; Zhao, C. Modeling a typical winter-time dust event over the Arabian Peninsula and the Red Sea. Atmos. Chem. Phys. 2013, 13, 1999–2014. [Google Scholar] [CrossRef] [Green Version]
- Notaro, M.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Trajectory analysis of Saudi Arabian dust storms. J. Geophys. Res. Atmos. 2013, 118, 6028–6043. [Google Scholar] [CrossRef]
- Reid, J.S.; Piketh, S.J.; Walker, A.L.; Burger, R.P.; Ross, K.E.; Westphal, D.L.; Bruintjes, R.T.; Holben, B.N.; Hsu, C.; Jensen, T.L.; et al. An overview of UAE2 flight operations: Observations of summertime atmospheric thermodynamic and aerosol profiles of the southern Arabian Gulf. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Mohalfi, S.; Bedi, H.S.; Krishnamurti, T.N.; Cocke, S.D. Impact of Shortwave Radiative Effects of Dust Aerosols on the Summer Season Heat Low over Saudi Arabia. Mon. Weather Rev. 1998, 126, 3153–3168. [Google Scholar] [CrossRef]
- Alam, K.; Ahmad, M. Contrasting variation in aerosol optical properties during dust episodes in the Middle East and Southwest Asia: Model results and ground measurement. E3S Web Conf. 2019, 99, 04006. [Google Scholar] [CrossRef]
- Yousefi, R.; Wang, F.; Ge, Q.; Leliveld, J.; Shaheen, A. Aerosol Trends during the Dusty Season over Iran. Remote Sens. 2021, 13, 1045. [Google Scholar] [CrossRef]
- Várnai, T.; Marshak, A. Analysis of Near-Cloud Changes in Atmospheric Aerosols Using Satellite Observations and Global Model Simulations. Remote Sens. 2021, 13, 1151. [Google Scholar] [CrossRef]
- Khan, R.; Kumar, K.R.; Zhao, T.; Ullah, W.; de Leeuw, G. Interdecadal Changes in Aerosol Optical Depth over Pakistan Based on the MERRA-2 Reanalysis Data during 1980–2018. Remote Sens. 2021, 13, 822. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitzc, R.; McKeenb, S.A.; Frostb, G.; Skamarockd, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Zaveri, R.A.; Peters, L.K. A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res. Atmos. 1999, 104, 30387–30415. [Google Scholar] [CrossRef]
- Wild, O.; Zhu, X.; Prather, M.J. Fast-J: Accurate Simulation of In- and Below-Cloud Photolysis in Tropospheric Chemical Models. J. Atmos. Chem. 2000, 37, 245–282. [Google Scholar] [CrossRef]
- Zaveri, R.A.; Easter, R.C.; Fast, J.D.; Peters, L.K. Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Emmons, L.K.; Walters, S.; Hess, P.G.; Lamarque, J.F.; Pfister, G.G.; Fillmore, D.; Granier, C.; Kinnison, D.; Laepple, T.; Orlando, J.; et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 2010, 3, 43–67. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.D.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Cherian, R.; Venkataraman, C.; Ramachandran, S.; Quaas, J.; Kedia, S. Examination of aerosol distributions and radiative effects over the Bay of Bengal and the Arabian Sea region during ICARB using satellite data and a general circulation model. Atmos. Chem. Phys. 2012, 12, 1287–1305. [Google Scholar] [CrossRef] [Green Version]
- Nair, V.S.; Solmon, F.; Giorgi, F.; Mariotti, L.; Babu, S.S.; Moorthy, K.K. Simulation of South Asian aerosols for regional climate studies: Simulation of South Asian aerosols. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Chaibou, A.Z.; Ma, X.; Kumar, R.K.; Jia, H.; Tong, Y.; Sha, T. Evaluation of dust extinction and vertical profiles simulated by WRF-Chem with CALIPSO and AERONET over North Africa. J. Atmos. Sol. Terr. Phys. 2020, 199, 105213. [Google Scholar] [CrossRef]
- Ukhov, A.; Mostamandi, S.; da Silva, A.; Flemming, J.; Alshehri, Y.; Shevchenko, I.; Stenchikov, G. Assessment of naturaland anthropogenic aerosol air pollution in the Middle East using MERRA-2, CAMS data assimilation products, and high-resolution WRF-Chem model simulations. Atmos. Chem. Phys. Discuss. 2020, 1–42. [Google Scholar] [CrossRef]
- Su, L.; Fung, J.C.H. Sensitivities of WRF-Chem to dust emission schemes and land surface properties in simulating dust cycles during springtime over East Asia. J. Geophys. Res. Atmos. 2015, 120, 11215–11230. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Barth, M.C.; Pfister, G.G.; Naja, M.; Brasseur, G.P. WRF-Chem simulations of a typical pre-monsoon dust storm in northern India: Influences on aerosol optical properties and radiation budget. Atmos. Chem. Phys. 2014, 14, 2431–2446. [Google Scholar] [CrossRef] [Green Version]
- Parajuli, S.P.; Stenchikov, G.L.; Ukhov, A.; Shevchenko, I.; Dubovik, O.; Lopatin, A. Aerosol vertical distribution and interactions with land/sea breezes over the eastern coast of the Red Sea from lidar data and high-resolution WRF-Chem simulations. Atmos. Chem. Phys. 2020, 20, 16089–16116. [Google Scholar] [CrossRef]
- Crippa, P.; Sullivan, R.C.; Thota, A.; Pryor, S.C. Evaluating the skill of high-resolution WRF-Chem simulations in describing drivers of aerosol direct climate forcing on the regional scale. Atmos. Chem. Phys. 2016, 16, 397–416. [Google Scholar] [CrossRef] [Green Version]
- Kleeman, M.J. A preliminary assessment of the sensitivity of air quality in California to global change. Clim. Chang. 2008, 87, 273–292. [Google Scholar] [CrossRef]
- Dawson, J.P.; Adams, P.J.; Pandis, S.N. Sensitivity of PM2.5 to climate in the Eastern US: A modeling case study. Atmos. Chem. Phys. 2007, 7, 4295–4309. [Google Scholar] [CrossRef] [Green Version]
- Davison, J.; Bernhard, Y.; Kleefeld, J.B.; Farren, N.J.; Hausberger, S.; Tate, J.E.; Vaughan, A.R.; Carslaw, D.C. Distance-based emission factors from vehicle emission remote sensing measurements. Sci. Total. Environ. 2020, 739, 139688. [Google Scholar] [CrossRef]
- Nabavi, S.O.; Haimberger, L.; Samimi, C. Sensitivity of WRF-chem predictions to dust source function specification in West Asia. Aeolian Res. 2017, 24, 115–131. [Google Scholar] [CrossRef]
- Rizza, U.; Migiletta, M.M.; Mangia, C.; Ielpo, P.; Morichetti, M.; Lachini, C.; Virgili, S.; Passerini, G. Sensitivity of WRF-Chem model to land surface schemes: Assessment in a severe dust outbreak episode in the Central Mediterranean (Apulia region). Atmos. Res. 2018, 201, 168–180. [Google Scholar] [CrossRef]
- ElTahan, M.; Shokr, M.; Sherif, A.O. Tuning dust schemes in weather research forecast for simulating severe events over Egypt. In EGU General Assembly Conference Abstracts; European Geoscience Union: Munich, Germany, 2017; p. 6115. [Google Scholar]
- Cremades, P.G.; Fernández, R.P.; Allende, D.G.; Mulena, G.C.; Puliafito, S.E. High resolution satellite derived erodibility factors for WRF/Chem windblown dust simulations in Argentina. Atmósfera 2017, 30, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Colarco, P.; da Silva, A.; Chin, M.; Diehl, T. Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res. Atmos. 2010, 115, D14207. [Google Scholar] [CrossRef] [Green Version]
- Curci, G.; Hogrefe, C.; Bianconi, R.; Im, U.; Balzarini, A.; Baró, R.; Brunner, D.; Forkel, R.; Giordano, L.; Hirtl, M.; et al. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: An AQMEII-2 perspective. Atmos. Environ. 2014, 115, 541–552. [Google Scholar] [CrossRef]
- Karagulian, F.; Temimi, M.; Ghebreyesus, D.; Weston, M.; Kondapalli, N.K.; Valappi, V.K.; Aldababesh, A.; Lypustin, A.; Chaouch, N.; Hammadi, F.A.; et al. Analysis of a severe dust storm and its impact on air quality conditions using WRF-Chem modeling, satellite imagery, and ground observations. Air Qual. Atmos. Health 2019, 12, 453–470. [Google Scholar] [CrossRef] [Green Version]
Months | T2M | U10M | V10M | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BIAS | MAE | RMSE | CORR | BIAS | MAE | RMSE | CORR | BIAS | MAE | RMSE | CORR | |
January | −0.27 | 0.89 | 1.25 | 0.99 | −0.18 | 0.65 | 0.91 | 0.93 | −0.05 | 0.75 | 0.97 | 0.92 |
April | −0.33 | 0.94 | 1.31 | 0.97 | −0.25 | 0.66 | 0.86 | 0.89 | 0.09 | 0.62 | 0.82 | 0.93 |
July | −0.25 | 0.99 | 1.40 | 0.96 | −0.08 | 1.02 | 1.29 | 0.90 | 0.17 | 0.95 | 1.28 | 0.98 |
October | −0.48 | 0.91 | 1.29 | 0.97 | −0.07 | 0.73 | 0.95 | 0.80 | −0.04 | 0.61 | 0.83 | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahid, M.Z.; Chishtie, F.; Bilal, M.; Shahid, I. WRF-Chem Simulation for Modeling Seasonal Variations and Distributions of Aerosol Pollutants over the Middle East. Remote Sens. 2021, 13, 2112. https://doi.org/10.3390/rs13112112
Shahid MZ, Chishtie F, Bilal M, Shahid I. WRF-Chem Simulation for Modeling Seasonal Variations and Distributions of Aerosol Pollutants over the Middle East. Remote Sensing. 2021; 13(11):2112. https://doi.org/10.3390/rs13112112
Chicago/Turabian StyleShahid, Muhammad Zeeshaan, Farrukh Chishtie, Muhammad Bilal, and Imran Shahid. 2021. "WRF-Chem Simulation for Modeling Seasonal Variations and Distributions of Aerosol Pollutants over the Middle East" Remote Sensing 13, no. 11: 2112. https://doi.org/10.3390/rs13112112
APA StyleShahid, M. Z., Chishtie, F., Bilal, M., & Shahid, I. (2021). WRF-Chem Simulation for Modeling Seasonal Variations and Distributions of Aerosol Pollutants over the Middle East. Remote Sensing, 13(11), 2112. https://doi.org/10.3390/rs13112112