A Deep Vector Quantization Clustering Method for Polarimetric SAR Images
Abstract
:1. Introduction
1.1. Related Work
1.2. The Problems of the Previous PolSAR Image Classification
1.3. The Proposed Method
2. Materials and Methods
2.1. Dataset
2.2. Polarimetric SAR Data Preprocessing
2.3. Convolutional Autoencoder (CAE)
2.4. Unsupervised Classification Model: Vector Quantization Clustering with Convolutional Autoencoder (VQC-CAE)
2.5. Evaluation Index of Classification Accuracy in Polarimetric SAR Images
3. Results
3.1. Experimental Model Parameters and Comparison Method
3.1.1. Model Parameters
3.1.2. Comparison Method
3.2. Experiment Results
3.2.1. RadarSat2 Dataset Experiment Results
3.2.2. E-SAR Dataset Experiment Results
3.2.3. AIRSAR Dataset Experiment Results
3.2.4. Analysis of Classification Maps with Post-Processing
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cloude, S. Polarisation: Applications in Remote Sensing; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Van Zyl, J.J. Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Trans. Geosci. Remote Sens. 1989, 27, 36–45. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Lee, J.S.; Grunes, M.R.; Ainsworth, T.L.; Du, L.; Schuler, D.L.; Cloude, S.R. Unsupervised classification using polarimetric decomposition and complex Wishart classifier. In Proceedings of the IGARSS ’98, Sensing and Managing the Environment 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings (Cat. No.98CH36174), Seattle, WA, USA, 6–10 July 1998. [Google Scholar]
- Goodman, N.R. Statistical Analysis Based on a Certain Multivariate Complex Gaussian Distribution (an Introduction). Ann. Math. Stat. 1963, 34, 152–177. [Google Scholar] [CrossRef]
- Lee, J.S.; Grunes, M.R.; Pottier, E.; Ferro-Famil, L. Unsupervised terrain classification preserving polarimetric scattering characteristics. IEEE Trans. Geosci. Remote Sens. 2004, 42, 722–731. [Google Scholar]
- Guo, S.; Tian, Y.; Yang, L.; Chen, S.; Wen, H. Unsupervised classification based on H/alpha decomposition and Wishart classifier for compact polarimetric SAR. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015. [Google Scholar]
- Shi, Y.; Lei, M.; Ma, R.; Niu, L. Learning Robust Auto-Encoders with Regularizer for Linearity and Sparsity. IEEE Access 2019, 7, 17195–17206. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 640–651. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets and fully connected crfs. Comput. Sci. 2014, 357–361. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Ding, A.; Zhou, X. Land-Use Classification with Remote Sensing Image Based on Stacked Autoencoder. In Proceedings of the International Conference on Industrial Informatics-Computing Technology, Wuhan, China, 3–4 December 2016. [Google Scholar]
- Sun, Z.; Li, J.; Liu, P.; Cao, W.; Gu, X. Sar image classification using greedy hierarchical learning with unsupervised stacked caes. IEEE Trans. Geosci. Remote Sens. 2020, 1–19. [Google Scholar] [CrossRef]
- Masci, J.; Meier, U.; Dan, C.; Schmidhuber, J. Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction. In Proceedings of the International Conference on Artificial Neural Networks, Espoo, Finland, 14–17 June 2011; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Xu, C.; Sui, H.; Liu, J.; Sun, K.; Hua, L. Unsupervised Classification of High-Resolution SAR Images Using Multilayer Level Set Method. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar]
- Ferro-Famil, L.; Pottier, E.; Lee, J.S. Unsupervised classification of multifrequency and fully polarimetric sar images based on the h/a/alpha-wishart classifier. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2332–2342. [Google Scholar] [CrossRef]
- Nogueira, F.; Marques, R.; Medeiros, F. Sar image segmentation based on unsupervised classification of log-cumulants estimates. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1287–1289. [Google Scholar] [CrossRef]
- Yu, P. Unsupervised polarimetric sar image segmentation and classification using region growing with edge penalty. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1302–1317. [Google Scholar] [CrossRef]
- Kayabol, K.; Gunsel, B. Unsupervised classification of sar images using normalized gamma process mixtures. Digit. Signal Process. 2013, 23, 1344–1352. [Google Scholar] [CrossRef]
- Liu, X.; Jiao, L.; Tang, X.; Sun, Q.; Zhang, D. Polarimetric convolutional network for polsar image classification. IEEE Trans. Geosci. Remote. Sens. 2019, 57, 3040–3054. [Google Scholar] [CrossRef] [Green Version]
- He, C.; He, B.; Tu, M.; Wang, Y.; Qu, T.; Wang, D. Fully convolutional networks and a manifold graph embedding-based algorithm for polsar image classification. Remote Sens. 2020, 12, 1467. [Google Scholar] [CrossRef]
- Wang, L.; Xu, X.; Hao, D.; Rong, G.; Pu, F. Multi-pixel simultaneous classification of polsar image using convolutional neural networks. Sensors 2018, 18, 769. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Saha, J.; Mukherjee, J.; Aikat, S.; Misra, A. Unsupervised land cover classification of hybrid and dual-polarized images using deep convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2021, 18, 969–973. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Xu, F.; Jin, Y.Q. Polarimetric SAR Image Classification Using Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2017, 13, 1935–1939. [Google Scholar] [CrossRef]
- Ahishali, M.; Kiranyaz, S.; Ince, T.; Gabbouj, M. Multifrequency Polsar Image Classification Using Dual-Band 1D Convolutional Neural Networks. In Proceedings of the 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Tunis, Tunisia, 9–11 March 2020. [Google Scholar]
- Zhang, Z.; Wang, H.; Xu, F.; Jin, Y.Q. Complex-Valued Convolutional Neural Network and Its Application in Polarimetric SAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [Google Scholar] [CrossRef]
- Chen, S.W.; Tao, C.S. PolSAR Image Classification Using Polarimetric-Feature-Driven Deep Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 627–631. [Google Scholar] [CrossRef]
- Łańcucki, A.; Chorowski, J.; Sanchez, G.; Marxer, R.; Chen, N.; Dolfing, H.J.G.A.; Khurana, S.; Alumäe, T. Antoine Laurent Robust Training of Vector Quantized Bottleneck Models. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020. [Google Scholar]
- Geng, J.; Jiang, W.; Deng, X. Multi-scale deep feature learning network with bilateral filtering for sar image classification-sciencedirect. ISPRS J. Photogramm. Remote Sens. 2020, 167, 201–213. [Google Scholar] [CrossRef]
- Fernndez-Michelli, J. Unsupervised classification algorithm based on em method for polarimetric sar images. ISPRS J. Photogramm. Remote Sens. 2016, 117, 56–65. [Google Scholar] [CrossRef]
Parameter | RadarSat2 | E-SAR | AIRSAR |
---|---|---|---|
Platform | Spaceborne | Airborne | Airborne |
Polarization mode | Quad | Quad | Quad |
Data product | SLC | Coherence matrix | Coherence matrix |
Range resolution | 3 m | 2 m | 6.6 m |
SAR Band | C band | L band | L band |
Region | San Francisco | Oberpfaffenhofen | Flevoland |
Image size |
Method | Water | VEG | HDU | LDU | DEV | |||
---|---|---|---|---|---|---|---|---|
H/alpha-Wishart (Basic) | 0.9995 | 0.8183 | 0.6825 | 0.7262 | 0.6851 | 0.8501 | 0.7823 | 0.7859 |
Basic + Mean Filter | 0.9997 | 0.8730 | 0.7565 | 0.8449 | 0.8910 | 0.9010 | 0.8730 | 0.8584 |
Proposed Method | 0.9970 | 0.9276 | 0.7747 | 0.8866 | 0.8774 | 0.9187 | 0.8927 | 0.8828 |
Method | Build | Wood | Open | |||
---|---|---|---|---|---|---|
H/alpha-Wishart (Basic) | 0.5963 | 0.7034 | 0.8350 | 0.7740 | 0.7116 | 0.5958 |
Basic + Mean Filter | 0.6019 | 0.6219 | 0.8560 | 0.7707 | 0.6932 | 0.5934 |
Proposed Method | 0.6305 | 0.8100 | 0.9571 | 0.8358 | 0.7992 | 0.7269 |
Method | Peas | Lucerne | Beet | Potatoes | Soil | Wheat | OA | AA | Kappa |
---|---|---|---|---|---|---|---|---|---|
H/alpha-Wishart (Basic) | 0.0000 | 0.7509 | 0.4459 | 0.8838 | 1.0000 | 0.9901 | 0.8179 | 0.6784 | 0.7616 |
Basic + Mean Filter | 0.0000 | 0.8330 | 0.4444 | 0.9274 | 0.9981 | 0.9951 | 0.8302 | 0.6997 | 0.7772 |
Proposed Method | 0.9820 | 0.9837 | 0.8266 | 0.9864 | 1.0000 | 0.9980 | 0.9693 | 0.9628 | 0.9595 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, Y.; Guo, J.; Zhang, Y.; Lei, B.; Hu, Y.; Wang, M. A Deep Vector Quantization Clustering Method for Polarimetric SAR Images. Remote Sens. 2021, 13, 2127. https://doi.org/10.3390/rs13112127
Zuo Y, Guo J, Zhang Y, Lei B, Hu Y, Wang M. A Deep Vector Quantization Clustering Method for Polarimetric SAR Images. Remote Sensing. 2021; 13(11):2127. https://doi.org/10.3390/rs13112127
Chicago/Turabian StyleZuo, Yixin, Jiayi Guo, Yueting Zhang, Bin Lei, Yuxin Hu, and Mingzhi Wang. 2021. "A Deep Vector Quantization Clustering Method for Polarimetric SAR Images" Remote Sensing 13, no. 11: 2127. https://doi.org/10.3390/rs13112127
APA StyleZuo, Y., Guo, J., Zhang, Y., Lei, B., Hu, Y., & Wang, M. (2021). A Deep Vector Quantization Clustering Method for Polarimetric SAR Images. Remote Sensing, 13(11), 2127. https://doi.org/10.3390/rs13112127