Delay in Arctic Sea Ice Freeze-Up Linked to Early Summer Sea Ice Loss: Evidence from Satellite Observations
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Correlations between Arctic Melt Timing and Sea Ice Cover
3.2. Changes in Arctic Sea Ice, Albedo, and Radiation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- NSIDC Sea Ice Index Arctic- and Antarctic-Wide Changes in Sea Ice. Available online: https://nsidc.org/data/seaice_index (accessed on 25 June 2020).
- Grunseich, G.; Wang, B. Predictability of arctic annual minimum sea ice patterns. J. Clim. 2016, 29, 7065–7088. [Google Scholar] [CrossRef]
- Winton, M. Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophys. Res. Lett. 2006, 33, L03701. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Spreen, G.; Pang, S. Arctic sea ice circulation and drift speed: Decadal trends and ocean currents. J. Geophys. Res. Ocean. 2013, 118, 2408–2425. [Google Scholar] [CrossRef]
- Spreen, G.; Kwok, R.; Menemenlis, D. Trends in Arctic sea ice drift and role of wind forcing: 1992–2009. Geophys. Res. Lett. 2011, 38, L19501. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett. 2018, 13, 105005. [Google Scholar] [CrossRef]
- Maslanik, J.A.; Fowler, C.; Stroeve, J.; Drobot, S.; Zwally, J.; Yi, D.; Emery, W. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophys. Res. Lett. 2007, 34, L24501. [Google Scholar] [CrossRef] [Green Version]
- AMAP. Snow Ice and Permafrost in the Arctic (SWIPA); Arctic Monitoring and Assessment Programme: Oslo, Norway, 2017. [Google Scholar]
- Parkinson, C.L. Spatially mapped reductions in the length of the Arctic sea ice season. Geophys. Res. Lett. 2014, 41, 4316–4322. [Google Scholar] [CrossRef] [Green Version]
- Stroeve, J.; Markus, T.; Boisvert, L.; Miller, J.; Barrett, A. Changes in Arctic melt season and implifications for sea ice loss. Geophys. Res. Lett. 2014, 41, 1216–1225. [Google Scholar] [CrossRef]
- Peng, G.; Steele, M.; Bliss, A.; Meier, W.; Dickinson, S. Temporal Means and Variability of Arctic Sea Ice Melt and Freeze Season Climate Indicators Using a Satellite Climate Data Record. Remote Sens. 2018, 10, 1328. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Jahn, A. Definition differences and internal variability affect the simulated Arctic sea ice melt season. Cryosphere 2019, 13, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Barrett, A.P.; Stroeve, J.C.; Kindig, D.N.; Holland, M.M. The emergence of surface-based Arctic amplification. Cryosphere 2009, 3, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Stroeve, J.; Markus, T.; Meier, W.N.; Miller, J. Recent changes in the Arctic melt season. Ann. Glaciol. 2006, 44, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Lei, R.; Tian-Kunze, X.; Lepparanta, M.; Wang, J.; Kaleschke, L.; Zhang, Z. Changes in summer sea ice, albedo, and portioning of surface solar radiation in the Pacific sector of Arctic Ocean during 1982–2009. J. Geophys. Res. Ocean. 2016, 121, 5470–5486. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Kattsov, V.; Barrett, A.; Serreze, M.; Pavlova, T.; Holland, M.; Meier, W.N. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 2012, 39, L16502. [Google Scholar] [CrossRef] [Green Version]
- Stroeve, J.; Hamilton, L.C.; Bitz, C.M.; Blanchard-Wrigglesworth, E. Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008–2013. Geophys. Res. Lett. 2014, 41, 2411–2418. [Google Scholar] [CrossRef] [Green Version]
- Blanchard-Wrigglesworth, E.; Cullather, R.I.; Wang, W.; Zhang, J.; Bitz, C.M. Model forecast skill and sensitivity to initial conditions in the seasonal Sea Ice Outlook. Geophys. Res. Lett. 2015, 42, 8042–8048. [Google Scholar] [CrossRef] [Green Version]
- Schröder, D.; Feltham, D.L.; Flocco, D.; Tsamados, M. September Arctic sea-ice minimum predicted by spring melt-pond fraction. Nat. Clim. Chang. 2014, 4, 353–357. [Google Scholar] [CrossRef]
- Liu, J.; Song, M.; Horton, R.M.; Hu, Y. Revisiting the potential of melt pond fraction as a predictor for the seasonal Arctic sea ice extent minimum. Environ. Res. Lett. 2015, 10, 054017. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Cheng, X.; Liu, J.; Hui, F. The potential of sea ice leads as a predictor for summer Arctic sea ice extent. Cryosphere 2018, 12, 3747–3757. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Cunningham, G.F.; Armitage, T.W.K. Relationship between specular returns in CryoSat-2 data, surface albedo, and Arctic summer minimum ice extent. Elem. Sci. Anthr. 2018, 6, 53. [Google Scholar] [CrossRef]
- Stammerjohn, S.; Massom, R.; Rind, D.; Martinson, D. Regions of rapid sea ice change: An inter-hemispheric seasonal comparison. Geophys. Res. Lett. 2012, 39, L06501. [Google Scholar] [CrossRef] [Green Version]
- Stroeve, J.C.; Crawford, A.D.; Stammerjohn, S. Using timing of ice retreat to predict timing of fall freeze-up in the Arctic. Geophys. Res. Lett. 2016, 43, 6332–6340. [Google Scholar] [CrossRef]
- Serreze, M.C.; Crawford, A.D.; Stroeve, J.C.; Barrett, A.P.; Woodgate, R.A. Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea. J. Geophys. Res. Ocean. 2016, 121, 7308–7325. [Google Scholar] [CrossRef]
- Lebrun, M.; Vancoppenolle, M.; Madec, G.; Massonnet, F. Arctic sea-ice-free season projected to extend into autumn. Cryosphere 2019, 13, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Markus, T.; Stroeve, J.C.; Miller, J. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J. Geophys. Res. 2009, 114, C12024. [Google Scholar] [CrossRef]
- Bliss, A.C.; Steele, M.; Peng, G.; Meier, W.N.; Dickinson, S. Regional variability of Arctic sea ice seasonal change climate indicators from a passive microwave climate data record. Environ. Res. Lett. 2019, 14, 045003. [Google Scholar] [CrossRef]
- Perovich, D.K.; Polashenski, C. Albedo evolution of seasonal Arctic sea ice. Geophys. Res. Lett. 2012, 39, L08501. [Google Scholar] [CrossRef]
- Steele, M.; Ermold, W.; Zhang, J. Arctic Ocean surface warming trends over the past 100 years. Geophys. Res. Lett. 2008, 35, L02614. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Li, X.; Qiu, Y. Comparison of global change at the Earth’s three poles using spaceborne Earth observation. Sci. Bull. 2020, 65, 1320–1323. [Google Scholar] [CrossRef]
- Curry, J.A.; Schramm, J.L.; Ebert, E.E. Sea-Ice Albedo Climate Feedback Mechanism. J. Clim. 1995, 8, 240–247. [Google Scholar] [CrossRef]
- Cao, Y.; Liang, S.; Chen, X.; He, T. Assessment of sea ice albedo radiative forcing and feedback over the Northern Hemisphere from 1982 to 2009 using satellite and reanalysis data. J. Clim. 2015, 28, 1248–1259. [Google Scholar] [CrossRef]
- Smith, D.M. Observation of perennial Arctic sea ice melt and freeze-up using passive microwave data. J. Geophys. Res. Ocean. 1998, 103, 27753–27769. [Google Scholar] [CrossRef]
- Drobot, S.D.; Anderson, M.R. An improved method for determining snowmelt onset dates over Arctic sea ice using scanning multichannel microwave radiometer and Special Sensor Microwave/Imager data. J. Geophys. Res. Atmos. 2001, 106, 24033–24049. [Google Scholar] [CrossRef] [Green Version]
- Marshall, S.; Scott, K.A.; Scharien, R.K. Passive microwave melt onset retrieval based on a variable threshold: Assessment in the Canadian Arctic Archipelago. Remote Sens. 2019, 11, 1304. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, M.S.; Howell, S.E.L.; Geldsetzer, T.; Yackel, J. Detection of melt onset over the northern Canadian Arctic Archipelago sea ice from RADARSAT, 1997-2014. Remote Sens. Environ. 2016, 178, 59–69. [Google Scholar] [CrossRef]
- Forster, R.R.; Long, D.G.; Jezek, K.C.; Drobot, S.D.; Anderson, M.R. The onset of Arctic sea-ice snowmelt as detected with passive- and active-microwave remote sensing. Ann. Glaciol. 2001, 33, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wolken, G.J.; Sharp, M.J.; Howell, S.E.L.; Derksen, C.; Brown, R.D.; Markus, T.; Cole, J. Integrated pan-Arctic melt onset detection from satellite active and passive microwave measurements, 2000-2009. J. Geophys. Res. Atmos. 2011, 116, D22103. [Google Scholar] [CrossRef] [Green Version]
- Mortin, J.; Schrøder, T.M.; Walløe Hansen, A.; Holt, B.; McDonald, K.C. Mapping of seasonal freeze-thaw transitions across the pan-Arctic land and sea ice domains with satellite radar. J. Geophys. Res. 2012, 117, C08004. [Google Scholar] [CrossRef] [Green Version]
- Mortin, J.; Howell, S.E.L.; Wang, L.; Derksen, C.; Svensson, G.; Graversen, R.G.; Schrøder, T.M. Extending the QuikSCAT record of seasonal melt-freeze transitions over Arctic sea ice using ASCAT. Remote Sens. Environ. 2014, 141, 214–230. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Gloersen, P.; Campbell, W.J. Determination of sea ice parameters with the Nimbus 7 SMMR. J. Geophys. Res. 1984, 89, 5355–5369. [Google Scholar] [CrossRef]
- Meier, W.N.; Stroeve, J. Comparison of sea-ice extent and ice-edge location estimates from passive microwave and enhanced-resolution scatterometer data. Ann. Glaciol. 2008, 48, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Fetterer, F.; Knowles, K.; Meier, W.N.; Savoie, M.; Windnagel, A.K. Sea Ice Index, Version 3; NSIDC (National Snow and Ice Data Center): Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Wang, X.; Key, J.R. Arctic Surface, Cloud, and Radiation Properties Based on the AVHRR Polar Pathfinder Dataset. Part II: Recent Trends. J. Clim. 2005, 18, 2575–2593. [Google Scholar] [CrossRef]
- Key, J.; Wang, X.; Liu, Y.; Dworak, R.; Letterly, A. The AVHRR Polar Pathfinder Climate Data Records. Remote Sens. 2016, 8, 167. [Google Scholar] [CrossRef] [Green Version]
- Picard, G.; Fily, M. Surface melting observations in Antarctica by microwave radiometers: Correcting 26-year time series from changes in acquisition hours. Remote Sens. Environ. 2006, 104, 325–336. [Google Scholar] [CrossRef]
- Bliss, A.; Miller, J.; Meier, W. Comparison of Passive Microwave-Derived Early Melt Onset Records on Arctic Sea Ice. Remote Sens. 2017, 9, 199. [Google Scholar] [CrossRef] [Green Version]
- Bliss, A.C.; Anderson, M.R. Snowmelt onset over Arctic sea ice from passive microwave satellite data: 1979–2012. Cryosph. 2014, 8, 2089–2100. [Google Scholar] [CrossRef] [Green Version]
- Cavalieri, D.J.; Burns, B.A.; Onstott, R.G. Investigation of the effects of summer melt on the calculation of sea ice concentration using active and passive microwave data. J. Geophys. Res. 1990, 95, 5359–5369. [Google Scholar] [CrossRef]
- Rösel, A.; Kaleschke, L.; Birnbaum, G. Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network. Cryosphere 2012, 6, 431–446. [Google Scholar] [CrossRef] [Green Version]
- Kern, S.; Rösel, A.; Toudal Pedersen, L.; Ivanova, N.; Saldo, R.; Tage Tonboe, R. The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations. Cryosphere 2016, 10, 2217–2239. [Google Scholar] [CrossRef] [Green Version]
- Istomina, L.; Heygster, G.; Huntemann, M.; Marks, H.; Melsheimer, C.; Zege, E.; Malinka, A.; Prikhach, A.; Katsev, I. Melt pond fraction and spectral sea ice albedo retrieval from MERIS data—Part 2: Case studies and trends of sea ice albedo and melt ponds in the Arctic for years 2002-2011. Cryosphere 2015, 9, 1567–1578. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, N.; Pedersen, L.T.; Tonboe, R.T.; Kern, S.; Heygster, G.; Lavergne, T.; Sørensen, A.; Saldo, R.; Dybkjær, G.; Brucker, L.; et al. Inter-comparison and evaluation of sea ice algorithms: Towards further identification of challenges and optimal approach using passive microwave observations. Cryosphere 2015, 9, 1797–1817. [Google Scholar] [CrossRef] [Green Version]
- Matthews, J.L.; Peng, G.; Meier, W.N.; Brown, O. Sensitivity of arctic sea ice extent to sea ice concentration threshold choice and its implication to ice coverage decadal trends and statistical projections. Remote Sens. 2020, 12, 807. [Google Scholar] [CrossRef] [Green Version]
- Ji, Q.; Li, F.; Pang, X.; Luo, C. Statistical analysis of SSMIS sea ice concentration threshold at the arctic sea ice edge during summer based on MODIS and ship-based observational data. Sensors 2018, 18, 1109. [Google Scholar] [CrossRef] [Green Version]
- Riihelä, A.; Manninen, T.; Laine, V. Observed changes in the albedo of the Arctic sea-ice zone for the period 1982-2009. Nat. Clim. Chang. 2013, 3, 895–898. [Google Scholar] [CrossRef]
- Wang, Y.; Bi, H.; Huang, H.; Liu, Y.; Liu, Y.; Liang, X.; Fu, M.; Zhang, Z. Satellite-observed trends in the Arctic sea ice concentration for the period 1979–2016. J. Oceanol. Limnol. 2019, 37, 18–37. [Google Scholar] [CrossRef]
- Liu, Y.; Key, J.R.; Wang, X. Influence of changes in sea ice concentration and cloud cover on recent Arctic surface temperature trends. Geophys. Res. Lett. 2009, 36, L20710. [Google Scholar] [CrossRef] [Green Version]
- Palm, S.P.; Strey, S.T.; Spinhirne, J.; Markus, T. Influence of Arctic sea ice extent on polar cloud fraction and vertical structure and implications for regional climate. J. Geophys. Res. Atmos. 2010, 115, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Ding, Q.; Dong, X.; Xi, B.; Baxter, I. Summertime low clouds mediate the impact of the large-scale circulation on Arctic sea ice. Commun. Earth Environ. 2021, 2, 38. [Google Scholar] [CrossRef]
- Perovich, D.K.; Jones, K.F.; Light, B.; Eicken, H.; Markus, T.; Stroeve, J.; Lindsay, R. Solar partitioning in a changing Arctic sea-ice cover. Ann. Glaciol. 2011, 52, 192–196. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Schweiger, A.; Webster, M.; Light, B.; Steele, M.; Ashjian, C.; Campbell, R.; Spitz, Y. Melt Pond Conditions on Declining Arctic Sea Ice Over 1979–2016: Model Development, Validation, and Results. J. Geophys. Res. Ocean. 2018, 123, 7983–8003. [Google Scholar] [CrossRef] [Green Version]
- Perovich, D.K.; Light, B.; Eicken, H.; Jones, K.F.; Runciman, K.; Nghiem, S.V. Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophys. Res. Lett. 2007, 34, L19505. [Google Scholar] [CrossRef] [Green Version]
Trend | Units | Okhotsk | Bering | Hudson | St- Lawrence | Baffin | Greenland | Barents | Kara | Laptev | East- Siberian | Chukchi | Beaufort | Canadian Archipelago | Central Arctic | The Arctic |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EMO | days year−1 | −0.09 (0.24) | −0.04 (0.30) | −0.25 (0.21) | \ | −0.46(0.33) | −0.65(0.26) | −0.86(0.36) | −0.46(0.22) | −0.18 (0.20) | −0.07 (0.15) | −0.13 (0.20) | −0.22 (0.17) | −0.12 (0.15) | −0.15 (0.13) | −0.20(0.10) |
MO | days year−1 | −0.30 (0.30) | −0.29 (0.28) | −0.31(0.20) | \ | −0.60(0.30) | −0.69(0.24) | −0.79(0.44) | −0.47(0.16) | −0.25 (0.19) | −0.04 (0.13) | −0.15(0.17) | −0.23(0.15) | −0.18 (0.14) | −0.12(0.14) | −0.23(0.09) |
EFO | days year−1 | 0.83(0.24) | 0.58(0.27) | 0.71(0.18) | \ | 0.71(0.20) | 0.56(0.31) | 1.46(0.45) | 1.06(0.27) | 0.87(0.26) | 1.17(0.28) | 1.42(0.32) | 0.84(0.29) | 0.36(0.22) | 0.27(0.14) | 0.71(0.13) |
FO | days year−1 | 0.56(0.21) | 0.47(0.30) | 0.55(0.17) | \ | 0.62(0.19) | 0.69(0.32) | 1.39(0.44) | 0.96(0.27) | 0.73(0.24) | 1.05(0.27) | 1.29(0.31) | 0.75(0.27) | 0.35(0.21) | 0.19(0.13) | 0.61(0.12) |
June SIC | % year−1 | −0.01 (0.02) | −0.01 (0.01) | −0.43 (0.20) | −0.01 (0.00) | −0.16 (0.05) | −0.08 (0.04) | −0.50 (0.13) | −0.82 (0.26) | −0.36 (0.17) | −0.15 (0.14) | −0.43 (0.15) | −0.33 (0.19) | −0.15 (0.06) | 0.82 (0.20) | −0.07 (0.04) |
July SIC | % year−1 | 0.00 (0.00) | 0.00 (0.00) | −0.27 (0.14) | 0.00 (0.00) | −0.14 (0.04) | −0.07 (0.03) | −0.18 (0.06) | −1.03 (0.26) | −0.62 (0.28) | −0.59 (0.25) | −0.75 (0.19) | −0.62 (0.29) | −0.15 (0.06) | 0.67 (0.21) | −0.12 (0.04) |
August SIC | % year−1 | 0.00 (0.00) | 0.00 (0.00) | −0.07 (0.02) | 0.00 (0.00) | −0.03 (0.02) | −0.06 (0.03) | −0.03 (0.02) | −0.60 (0.20) | −0.68 (0.28) | −1.14 (0.34) | −1.08 (0.21) | −1.15 (0.36) | −0.25 (0.14) | 0.46 (0.24) | −0.16 (0.05) |
September SIC | % year−1 | 0.00 (0.00) | 0.00 (0.00) | −0.03 (0.01) | 0.00 (0.00) | −0.01 (0.01) | −0.05 (0.04) | −0.02 (0.02) | −0.39 (0.19) | −0.80 (0.31) | −1.44 (0.36) | −1.33 (0.26) | −1.29 (0.37) | −0.25 (0.15) | 0.40 (0.26) | −0.18 (0.06) |
Summer SIC | % year−1 | 0.00 (0.00) | 0.00 (0.00) | −0.20 (0.09) | 0.00 (0.00) | −0.09 (0.03) | −0.06 (0.03) | −0.18 (0.05) | −0.71 (0.20) | −0.62 (0.24) | −0.83 (0.25) | −0.90 (0.18) | −0.85 (0.28) | −0.20 (0.09) | 0.59 (0.21) | −0.13 (0.04) |
June albedo | % year−1 | −0.01 (0.01) | −0.02 (0.02) | −0.30(0.16) | −0.00 (0.01) | −0.09(0.05) | 0.03(0.03) | −0.14(0.07) | −0.31 (0.25) | −0.44(0.22) | −0.31(0.17) | −0.36(0.16) | −0.20 (0.20) | −0.16 (0.14) | −0.22(0.08) | −0.14(0.05) |
July albedo | % year−1 | −0.01 (0.01) | −0.01 (0.02) | −0.09 (0.07) | −0.00 (0.01) | −0.07(0.03) | −0.00 (0.02) | −0.05(0.03) | −0.17(0.10) | −0.16(0.11) | −0.23(0.12) | −0.29(0.10) | −0.23 (0.18) | −0.12 (0.10) | −0.14(0.09) | −0.09(0.03) |
August albedo | % year−1 | −0.00 (0.01) | −0.01 (0.02) | 0.01(0.01) | −0.00 (0.00) | −0.03(0.01) | −0.00 (0.02) | −0.02(0.02) | −0.08(0.06) | −0.19(0.11) | −0.42(0.15) | −0.46(0.13) | −0.56(0.20) | −0.17(0.12) | −0.17(0.11) | −0.10(0.03) |
September albedo | % year−1 | −0.01 (0.01) | −0.02 (0.02) | −0.02 (0.00) | −0.01(0.01) | −0.04(0.01) | −0.04 (0.03) | −0.03 (0.03) | −0.13(0.08) | −0.34(0.16) | −0.75(0.21) | −0.71(0.15) | −0.78(0.22) | −0.19 (0.14) | −0.30(0.13) | −0.17(0.04) |
Summer albedo | % year−1 | −0.01(0.01) | −0.02(0.01) | −0.11(0.00) | −0.01 (0.00) | −0.06(0.02) | −0.01 (0.02) | −0.06(0.03) | −0.18(0.10) | −0.29(0.13) | −0.43(0.14) | −0.47(0.11) | −0.45(0.18) | −0.17(0.11) | −0.21(0.08) | −0.13(0.03) |
June long-wave | W m−2 year−1 | 0.17 (0.14) | 0.11 (0.10) | −0.05 (0.14) | 0.04 (0.13) | 0.01 (0.07) | −0.00 (0.09) | 0.02 (0.10) | −0.06 (0.11) | 0.04 (0.12) | −0.02 (0.18) | −0.11 (0.18) | 0.03 (0.23) | 0.12(0.13) | −0.00 (0.14) | 0.03 (0.05) |
July long-wave | W m−2 year−1 | 0.12 (0.11) | 0.10 (0.09) | 0.06 (0.17) | 0.03 (0.14) | 0.01 (0.09) | −0.10 (0.08) | 0.07 (0.09) | −0.02 (0.13) | 0.18(0.10) | 0.17(0.12) | 0.23(0.16) | 0.14 (0.17) | 0.02 (0.14) | −0.06 (0.12) | 0.04 (0.04) |
August long-wave | W m−2 year−1 | −0.06 (0.11) | −0.04 (0.12) | 0.18(0.14) | −0.08 (0.16) | 0.12 (0.08) | −0.02 (0.11) | 0.13 (0.11) | −0.01 (0.12) | 0.14(0.09) | 0.06 (0.11) | 0.19 (0.16) | 0.16(0.19) | 0.01 (0.13) | −0.01 (0.11) | 0.04(0.04) |
September long-wave | W m−2 year−1 | −0.04 (0.16) | −0.01 (0.15) | −0.05 (0.12) | −0.08 (0.12) | −0.03 (0.07) | −0.00 (0.11) | 0.00 (0.12) | 0.01 (0.08) | −0.00 (0.09) | −0.06 (0.09) | 0.03 (0.09) | −0.01 (0.12) | −0.10(0.11) | −0.05 (0.11) | −0.03 (0.05) |
Summer long-wave | W m−2 year−1 | 0.05 (0.07) | 0.04 (0.07) | 0.03 (0.07) | −0.03 (0.08) | 0.02 (0.05) | −0.03 (0.06) | 0.05(0.06) | −0.02 (0.07) | 0.09 (0.08) | 0.04 (0.08) | 0.09 (0.09) | 0.08 (0.11) | 0.01 (0.08) | −0.03 (0.09) | 0.02 (0.03) |
June short-wave | W m−2 year−1 | −0.37 (0.91) | −0.17 (0.66) | 1.54(1.08) | 0.05 (1.07) | 0.54(0.54) | 0.09 (0.52) | 0.25 (0.61) | 1.57(0.90) | 1.35(0.87) | 1.24(0.82) | 1.80(1.02) | 0.84 (1.24) | 0.16 (0.76) | 0.59(0.37) | 0.48 (0.29) |
July short-wave | W m−2 year−1 | −0.47 (0.74) | −0.14 (0.62) | −0.12 (1.04) | −0.08 (0.98) | 0.36 (0.62) | 0.46 (0.41) | −0.35 (0.75) | 0.61(0.71) | −0.02 (0.70) | 0.28 (0.67) | 0.37 (0.74) | 0.68 (1.00) | 0.04 (0.77) | 0.61(0.41) | 0.16 (0.31) |
August short-wave | W m−2 year−1 | −0.10 (0.64) | 0.40 (0.60) | −0.86(0.57) | 0.35 (0.80) | −0.38 (0.36) | 0.09 (0.42) | −0.62(0.43) | 0.10 (0.42) | 0.16 (0.47) | 1.03(0.55) | 0.77 (0.67) | 1.22(0.75) | 0.44 (0.66) | 0.50(0.27) | 0.13 (0.18) |
September short-wave | W m−2 year−1 | −0.05 (0.54) | −0.01 (0.44) | 0.03 (0.61) | 0.68 (0.67) | 0.14 (0.39) | −0.03 (0.37) | −0.01 (0.43) | 0.05 (0.32) | 0.29(0.34) | 0.96(0.37) | 0.97(0.36) | 0.96(0.39) | 0.25 (0.45) | 0.28(0.12) | 0.21 (0.22) |
Summer short-wave | W m−2 year−1 | −0.32 (0.42) | −0.03 (0.35) | 0.11 (0.52) | 0.19 (0.55) | 0.14 (0.36) | 0.12 (0.32) | −0.23 (0.37) | 0.58 (0.43) | 0.44(0.45) | 0.84(0.41) | 0.92(0.47) | 0.88 (0.69) | 0.20 (0.54) | 0.51(0.26) | 0.21 (0.21) |
June skin temperature | °C year−1 | 0.07(0.04) | 0.08(0.03) | 0.06(0.04) | 0.07(0.05) | 0.08(0.04) | 0.07(0.02) | 0.07(0.02) | 0.07(0.04) | 0.07(0.04) | 0.04(0.02) | 0.08(0.05) | 0.10(0.07) | 0.12(0.07) | 0.06(0.04) | 0.07(0.03) |
July skin temperature | °C year−1 | 0.08 (0.11) | 0.09(0.09) | 0.15 (0.21) | 0.16 (0.21) | 0.13(0.15) | 0.07(0.13) | 0.13 (0.13) | 0.10(0.10) | 0.03 (0.09) | 0.04 (0.08) | 0.06 (0.09) | 0.07 (0.10) | 0.12 (0.09) | 0.04 (0.05) | 0.09(0.11) |
August skin temperature | °C year−1 | 0.11(0.06) | 0.12(0.06) | 0.19(0.11) | 0.20(0.11) | 0.13(0.05) | 0.12(0.05) | 0.13(0.05) | 0.10(0.06) | 0.07 (0.05) | 0.06(0.04) | 0.07(0.05) | 0.09 (0.07) | 0.14(0.08) | 0.07(0.05) | 0.11(0.06) |
September skin temperature | °C year−1 | 0.04(0.03) | 0.07(0.02) | 0.07(0.03) | 0.08(0.04) | 0.07(0.03) | 0.07(0.03) | 0.08(0.03) | 0.11(0.05) | 0.11(0.06) | 0.14(0.06) | 0.13(0.04) | 0.12(0.04) | 0.06(0.04) | 0.08(0.05) | 0.08(0.03) |
Summer skin temperature | °C year−1 | 0.07(0.03) | 0.09(0.02) | 0.11(0.05) | 0.12(0.05) | 0.10(0.04) | 0.08(0.03) | 0.10(0.03) | 0.09(0.04) | 0.06(0.03) | 0.07(0.03) | 0.08(0.03) | 0.09(0.03) | 0.11(0.03) | 0.05(0.02) | 0.08(0.03) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Cheng, X.; Chen, Z.; Liang, Q. Delay in Arctic Sea Ice Freeze-Up Linked to Early Summer Sea Ice Loss: Evidence from Satellite Observations. Remote Sens. 2021, 13, 2162. https://doi.org/10.3390/rs13112162
Zheng L, Cheng X, Chen Z, Liang Q. Delay in Arctic Sea Ice Freeze-Up Linked to Early Summer Sea Ice Loss: Evidence from Satellite Observations. Remote Sensing. 2021; 13(11):2162. https://doi.org/10.3390/rs13112162
Chicago/Turabian StyleZheng, Lei, Xiao Cheng, Zhuoqi Chen, and Qi Liang. 2021. "Delay in Arctic Sea Ice Freeze-Up Linked to Early Summer Sea Ice Loss: Evidence from Satellite Observations" Remote Sensing 13, no. 11: 2162. https://doi.org/10.3390/rs13112162
APA StyleZheng, L., Cheng, X., Chen, Z., & Liang, Q. (2021). Delay in Arctic Sea Ice Freeze-Up Linked to Early Summer Sea Ice Loss: Evidence from Satellite Observations. Remote Sensing, 13(11), 2162. https://doi.org/10.3390/rs13112162