Space-Time Evolutions of Land Subsidence in the Choushui River Alluvial Fan (Taiwan) from Multiple-Sensor Observations
Abstract
:1. Introduction
2. Geological Background and Observation Dataset
2.1. Geological Background of the Choushui River Alluvial Fan
2.2. Observation Datasets
2.2.1. Ground Data
2.2.2. SAR Data
3. Methods
3.1. Small Baseline Subset Interferometry
- ROI_PAC software was used to process the raw SAR images data into single look complex (SLC) images. Then, the SBAS network of interferograms was generated by the Doris and SNAP software packages. In this step, the major orbital and topographic effect was removed;
- The SBAS approach, implemented by StaMPS/MTI, was used to analyze the interferometric time series and for quality checking and outlier detection. This step resulted in time series of LOS displacements;
- The LOS displacements at each measurement epoch were interpolated on a 50 m grid to calculate the linear displacement rates.
3.2. Calibrating the Initial LOS Velocities from InSAR
- Define a local reference frame based on a reference point located outside the subsiding area. In this study, the stable CGPS station LNJS (the mean velocity of vertical displacement is nearly -5 mm/yr) was chosen as the reference point for comparing InSAR measurements with other geodesy data.
- Convert the three-dimensional velocity components from CGPS into the LOS velocity (VLOS) with
- 1.
- Calculate the differences between CGPS-derived and InSAR-derived LOS velocities. The differences within a 250 m radius around the CGPS stations can be used to compute the total squared misfit:
- 2.
- Determine mA, mB, and mc by minimizing R2 (the least squares method). The initial LOS velocities were corrected for the velocities determined by the plane.
4. Results and Discussion
4.1. Vertical Velocities from the Calibrated InSAR Result
4.2. Space-Time Evolutions of Land Subsidence Values from 1993 to 2019
4.2.1. Cumulative Land Subsidence between 1993 and 2019
4.2.2. Evolutions of Land Subsidence
4.3. Analysis of Historical Land Subsidence in Dacheng Township, Changhua
4.4. Land Subsidence Analysis along the THSR in the CRAF
4.5. Distribution of the Deep Compactions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amelung, F.; Galloway, D.L.; Bell, J.W.; Zebker, H.A.; Laczniak, R.J. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 1999, 27, 483–486. [Google Scholar] [CrossRef]
- Castellazzi, P.; Garfias, J.; Martel, R.; Brouard, C.; Rivera, A. InSAR to support sustainable urbanization over compacting aquifers: The case of Toluca Valley, Mexico. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 33–44. [Google Scholar] [CrossRef]
- Herrera-García, G.; Ezquerro, P.; Tomás, R.; Béjar-Pizarro, M.; López-Vinielles, J.; Rossi, M.; Mateos, R.M.; Carreón-Freyre, D.; Lambert, J.; Teatini, P.; et al. Mapping the global threat of land subsidence. Science 2021, 371, 34–36. [Google Scholar] [CrossRef]
- Hung, W.-C.; Hwang, C.; Chang, C.-P.; Yen, J.-Y.; Liu, C.-H.; Yang, W.-H. Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan. Environ. Geol. 2010, 59, 1535–1548. [Google Scholar] [CrossRef]
- Hung, W.-C.; Hwang, C.; Chen, Y.-A.; Chang, C.-P.; Yen, J.-Y.; Hooper, A.; Yang, C.-Y. Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sens. Environ. 2011, 115, 957–967. [Google Scholar] [CrossRef]
- Lanari, R.; Lundgren, P.; Manzo, M.; Casu, F. Satellite radar interferometry time series analysis of surface deformation for Los Angeles, California. Geophys. Res. Lett. 2004, 31, 1–5. [Google Scholar] [CrossRef]
- Normand, J.C.L.; Heggy, E. InSAR assessment of surface deformations in urban coastal terrains associated with groundwater dynamics. IEEE Trans. Geosci. Remote. Sens. 2015, 53, 6356–6371. [Google Scholar] [CrossRef]
- Chen, C.-H.; Wang, C.-H.; Hsu, Y.-J.; Yu, S.-B.; Kuo, L.-C. Correlation between groundwater level and altitude variations in land subsidence area of the Choshuichi Alluvial Fan, Taiwan. Eng. Geol. 2010, 115, 122–131. [Google Scholar] [CrossRef]
- Fan, K.-L. The Coastal Environmental Characteristics of Taiwan. Chem. Ecol. 1995, 10, 157–166. [Google Scholar] [CrossRef]
- Hsu, S.-K. Plan for a groundwater monitoring network in Taiwan. Hydrogeol. J. 1998, 6, 405–415. [Google Scholar] [CrossRef]
- Liu, C.-H.; Huang, C.-T. Taiwan land subsidence caused by groundwater over drafting. J. Civ. Hydraul. Eng. 2002, 29, 47–57. [Google Scholar]
- Wang, C.H.; Peng, T.R.; Liu, T.K. The salinization of groundwater in the northern Lan-Yang Plain, Taiwan: Stable isotope evidence. J. Geol. Soc. China 1996, 39, 627–636. [Google Scholar]
- Wang, C.H.; Kuo, C.H.; Peng, T.R.; Chen, W.F.; Liu, T.K.; Chiang, C.J. Isotope characteristics of groundwaters in the Pingtung Plain, southern Taiwan. W. Pac. Earth Sci. 2003, 3, 1–8. [Google Scholar]
- Bell, J.W.; Amelung, F.; Ferretti, A.; Bianchi, M.; Novali, F. Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Castellazzi, P.; Longuevergne, L.; Martel, R.; Rivera, A.; Brouard, C.; Chaussard, E. Quantitative mapping of groundwater depletion at the water management scale using a combined GRACE/InSAR approach. Remote Sens. Environ. 2018, 205, 408–418. [Google Scholar] [CrossRef]
- Chang, C.P.; Chang, T.Y.; Wang, C.T.; Kuo, C.H.; Chen, K.S. Land-surface deformation corresponding to seasonal ground-water fluctuation, determining by SAR interferometry in the SW Taiwan. Math. Comput. Simul. 2004, 67, 351–359. [Google Scholar] [CrossRef]
- Hoffmann, J.; Zebker, H.A.; Galloway, D.L.; Amelung, F. Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resour. Res. 2001, 37, 1551–1566. [Google Scholar] [CrossRef]
- Ojha, C.; Shirzaei, M.; Werth, S.; Argus, D.F.; Farr, T.G. Sustained groundwater loss in California’s central Valley exacerbated by intense drought periods. Water Resour. Res. 2018, 54, 4449–4460. [Google Scholar] [CrossRef]
- Riel, B.; Simons, M.; Ponti, D.; Agram, P.; Jolivet, R. Quantifying ground deformation in the Los Angeles and Santa Ana coastal basins due to groundwater withdrawal. Water Resour. Res. 2018, 54, 3557–3582. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using Permanent Scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Usai, S. A least squares database approach for SAR interferometric data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 753–760. [Google Scholar] [CrossRef] [Green Version]
- Tung, H.; Hu, J.-C. Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR. Tectonophysics 2012, 578, 126–135. [Google Scholar] [CrossRef]
- Lu, C.-H.; Ni, C.-F.; Chang, C.-P.; Chen, Y.-A.; Yen, J.-Y. Geostatistical Data Fusion of Multiple Type Observations to Improve Land Subsidence Monitoring Resolution in the Choushui River Fluvial Plain, Taiwan. Terr. Atmos. Ocean. Sci. 2016, 27, 505–520. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.-J.; Hung, W.-C.; Hwang, C.-W.; Fuhrmann, T.; Chen, Y.-A.; Wei, S.-H. Surface Deformation from Sentinel-1A InSAR: Relation to Seasonal Groundwater Extraction and Rainfall in Central Taiwan. Remote Sens. 2019, 11, 2817. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.-Y.; Hu, J.-C.; Chan, Y.-C.; Su, Y.-F.; Chang, C.-H. The Relationship between Surface Displacement and Groundwater Level Change and Its Hydrogeological Implications in an Alluvial Fan: Case Study of the Choshui River, Taiwan. Remote Sens. 2020, 12, 3315. [Google Scholar] [CrossRef]
- Central Geological Survey (CGS). The Investigation of Hydrogeology in the Choushui River Alluvial Fan, Taiwan; Central Geological Survey of Taiwan: Taipei, Taiwan, 1999. (In Chinese) [Google Scholar]
- Water Conservancy Agency (WCA). Preliminary Analyses of Groundwater Hydrology in the Choshui Alluvial Fan. Groundwater Monitoring Network Program Phase I; Ministry of Economic Affairs: Taipei, Taiwan, 1997. (In Chinese) [Google Scholar]
- Liu, C.-W.; Lin, W.-S.; Shang, C.; Liu, S.-H. The effect of clay dehydration on land subsidence in the Yun-Lin coastal area, Taiwan. Environ. Geol. 2001, 40, 518–527. [Google Scholar] [CrossRef]
- Liu, C.-H.; Pan, Y.-W.; Liao, J.-J.; Huang, C.-T.; Ouyang, S. Characterization of land subsidence in the Choshui River alluvial fan, Taiwan. Environ. Geol. 2004, 45, 1154–1166. [Google Scholar] [CrossRef]
- Water Resources Agency (WRA). Report of the Monitoring, Investigating and Analyzing of Land Subsidence in Taiwan (1/4); Ministry of Economic Affairs: Taipei, Taiwan, 2001. (In Chinese) [Google Scholar]
- Water Resources Agency (WRA). Monitoring and Analyzing Land Subsidence of Changhua and Yunlin Area in 2016–2020; Ministry of Economic Affairs: Taipei, Taiwan, 2016–2020. (In Chinese) [Google Scholar]
- Wang, G.; Soler, T. Measuring land subsidence using GPS: Ellipsoid height versus orthometric height. J. Surv. Eng. 2015, 141, 05014004. [Google Scholar] [CrossRef]
- Hung, W.C.; Hwang, C.; Sneed, M.; Chen, Y.A.; Chu, C.H.; Lin, S.H. Measuring and Interpreting Multilayer Aquifer-System Compactions for a Sustainable Groundwater-System Development. Water Resour. Res. 2021, 57, 1–19. [Google Scholar] [CrossRef]
- Castellazzi, P.; Martel, R.; Galloway, D.L.; Longuevergne, L.; Rivera, A. Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations. Groundwater 2016, 54, 768–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.-P.; Yen, J.-Y.; Hooper, A.; Chou, F.-M.; Chen, Y.-A.; Hou, C.-S.; Hung, W.-C.; Lin, M.-S. Monitoring of surface deformation in Northern Taiwan using DInSAR and PSInSAR techniques. Terr. Atmos. Ocean. Sci. 2010, 21, 447–461. [Google Scholar] [CrossRef] [Green Version]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Yen, J.-Y.; Lu, C.-H.; Chang, C.-P.; Hooper, A.J.; Chang, Y.-H.; Liang, W.-T.; Chang, T.-Y.; Lin, M.-S.; Chen, K.-S. Investigating active deformation in the northern Longitudinal Valley and City of Hualien in eastern Taiwan using Persistent Scatterer and Small-Baseline SAR Interferometry. Terr. Atmos. Ocean. Sci. 2011, 22, 291–304. [Google Scholar] [CrossRef] [Green Version]
- Pathier, E. Apports de L’interferometrie Radar Differentielle a L’etude de la Tectonique Active de Taiwan. Ph.D. Thesis, Universite Marne-La-Vallee, Paris, France, 2003; 273p. [Google Scholar]
- Zebker, H.A.; Rosen, P.A.; Hensley, S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J. Geophys. Res. Solid Earth 1997, 102, 7547–7563. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Bähr, H.; Hanssen, R.F. Reliable estimation of orbit errors in spaceborne SAR interferometry. J. Geod. 2012, 86, 1147–1164. [Google Scholar] [CrossRef] [Green Version]
- Da Lio, C.; Teatini, P.; Strozzi, T.; Tosi, L. Understanding land subsidence in salt marshes of the Venice Lagoon from SAR Interferometry and ground-based investigations. Remote Sens. Environ. 2018, 205, 56–70. [Google Scholar] [CrossRef]
- Fuhrmann, T.; Garthwaite, M.C. Resolving Three-Dimensional Surface Motion with InSAR: Constraints from Multi-Geometry Data Fusion. Remote Sens. 2019, 11, 241. [Google Scholar] [CrossRef] [Green Version]
- Hanssen, R.F. Radar Interferometry Data Interpretation and Error Analysis; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar] [CrossRef] [Green Version]
- Tosi, L.; Strozzi, T.; Da Lio, C.; Teatini, P. Regional and local land subsidence at the Venice coastland by TerraSAR-X PSI. Proc. IAHS 2015, 372, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Tosi, L.; Da Lio, C.; Teatini, P.; Strozzi, T. Land Subsidence in Coastal Environments: Knowledge Advance in the Venice Coastland by TerraSAR-X PSI. Remote Sens. 2018, 10, 1191. [Google Scholar] [CrossRef] [Green Version]
- Galloway, D.L.; Hudnut, K.W.; Ingebritsen, S.E.; Phillips, S.P.; Peltzer, G.; Rogez, F.; Rosen, P.A. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope valley, Mojave Desert, California. Water Resour. Res. 1998, 34, 2573–2585. [Google Scholar] [CrossRef]
- Schmidt, D.A.; Bürgmann, R. Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. J. Geophys. Res. Solid Earth 2003, 108, 2416–2428. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.-H.; Bürgmann, R.; Hu, J.-C. Fifteen years of surface deformation in Western Taiwan: Insight from SAR interferometry. Tectonophysics 2016, 692, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Raucoules, D.; Bourgine, B.; de Michele, M.; Le Cozannet, G.; Closset, L.; Bremmer, C.; Veldkamp, H.; Tragheim, D.; Bateson, L.; Crosetto, M.; et al. Validation and intercomparison of Persistent Scatterers Interferometry: PSIC4 project results. J. Appl. Geophys. 2009, 68, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Wasowski, J.; Bovenga, F. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Eng. Geol. 2014, 174, 103–138. [Google Scholar] [CrossRef]
- Haber, J.; Zeilfelder, F.; Davydov, O.; Seidel, H.P. Smooth approximation and rendering of large scattered data sets. In Proceedings of the IEEE Visualization, San Diego, CA, USA, 21–26 October 2001; pp. 341–347. [Google Scholar] [CrossRef] [Green Version]
- Mueller, T.G.; Pusuluri, N.B.; Mathias, K.K.; Cornelius, P.L.; Barnhisel, R.I.; Shearer, S.A. Map quality for ordinary kriging and inverse distance weighted interpolation. Soil Sci. Soc. Am. J. 2004, 68, 2042–2047. [Google Scholar] [CrossRef]
- Changhua County Government (CCG). The Statistical Yearbook of Changhua County; Changhua County Government: Changhua, Taiwan, 1990–2020. (In Chinese) [Google Scholar]
- Seah, T.H.; Moh, Z.C.; Chin, C.T.; Duann, S.W. Pile foundations of Taiwan High Speed Rail. In Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, 12–16 September 2005. [Google Scholar] [CrossRef]
- Bawden, G.W.; Thatcher, W.; Stein, R.S.; Hudnut, K.W.; Peltzer, G. Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature 2001, 412, 812–815. [Google Scholar] [CrossRef]
- Chiang, C.J.; Lin, Y.C.; Chen, C.L.; Lai, T.H. Natural and Man-Induced Land Subsidence in the Choushuichi Groundwater Basin. Spec. Publ. Cent. Geol. Surv. 2014, 27, 1–12. (In Chinese) [Google Scholar]
Mission | ERS-1/2 | Envisat | ALOS (DAICHI) | TerraSAR-X | Sentinel-1A | |
---|---|---|---|---|---|---|
SAR band/wavelength | C/5.6 cm | C/5.6 cm | L/23.6 cm | X/3.1 cm | C/5.6 cm | |
Repeat cycle (days) | 35 | 35 | 46 | 11 | 12 | |
Orbit | Descending | Descending | Ascending | Descending | Ascending | |
Incidence angle | 23° | 21° | 34° | 28° | 34° | |
Spatial resolution (azimuth x range) | 26 × 30 m | 28 × 28 m | 7.6 × 10.2 m | 3.3 × 1.2 m | 5 × 20 m | |
Coverage period (dd/mm/yyyy) | 25/10/1993–15/07/1999 | 28/10/1999–24/07/2003 | 03/06/2004–25/09/2008 | 31/12/2006–26/02/2011 | 07/08/2014–18/09/2015 | 14/04/2016–23/04/2019 |
Number of images | 39 | 18 | 21 | 19 | 10 | 78 |
Number of IFGs1 | 325 | 70 | 136 | 68 | 32 | 482 |
Number of benchmarks | 106 | 205 | 478 | 515 | 676 | 824 |
Number of CGPS stations | 3 | 3 | 6 | 10 | 12 | 23 |
Number of MLCWs | 4 | 8 | 23 | 28 | 29 | 32 |
Mission | ERS-1/2 | Envisat | ALOS (DAICHI) | TerraSAR-X | Sentinel-1A | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time period | 1993–1999 | 1999–2003 | 2004–2008 | 2006–2011 | 2014–2015 | 2016–2019 | ||||||
Number of benchmarks | 61 | 131 | 385 | 458 | 420 | 817 | ||||||
Calibration1 | B | A | B | A | B | A | B | A | B | A | B | A |
Correlation coefficient (r) | 0.83 | 0.91 | 0.67 | 0.90 | 0.87 | 0.97 | 0.89 | 0.92 | 0.68 | 0.90 | 0.89 | 0.96 |
RMSD (mm/yr) | 32.2 | 16.3 | 29.3 | 12.2 | 25.0 | 6.7 | 11.8 | 9.2 | 25.1 | 9.3 | 16.0 | 4.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-A.; Chang, C.-P.; Hung, W.-C.; Yen, J.-Y.; Lu, C.-H.; Hwang, C. Space-Time Evolutions of Land Subsidence in the Choushui River Alluvial Fan (Taiwan) from Multiple-Sensor Observations. Remote Sens. 2021, 13, 2281. https://doi.org/10.3390/rs13122281
Chen Y-A, Chang C-P, Hung W-C, Yen J-Y, Lu C-H, Hwang C. Space-Time Evolutions of Land Subsidence in the Choushui River Alluvial Fan (Taiwan) from Multiple-Sensor Observations. Remote Sensing. 2021; 13(12):2281. https://doi.org/10.3390/rs13122281
Chicago/Turabian StyleChen, Yi-An, Chung-Pai Chang, Wei-Chia Hung, Jiun-Yee Yen, Chih-Heng Lu, and Cheinway Hwang. 2021. "Space-Time Evolutions of Land Subsidence in the Choushui River Alluvial Fan (Taiwan) from Multiple-Sensor Observations" Remote Sensing 13, no. 12: 2281. https://doi.org/10.3390/rs13122281
APA StyleChen, Y. -A., Chang, C. -P., Hung, W. -C., Yen, J. -Y., Lu, C. -H., & Hwang, C. (2021). Space-Time Evolutions of Land Subsidence in the Choushui River Alluvial Fan (Taiwan) from Multiple-Sensor Observations. Remote Sensing, 13(12), 2281. https://doi.org/10.3390/rs13122281