Creating a Field-Wide Forage Canopy Model Using UAVs and Photogrammetry Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Fields
Field Conditions
2.2. Data Collection Process
2.2.1. Ground Control Points
2.2.2. Flights
2.2.3. Photogrammetry Processing
2.2.4. Model Assessment
2.2.5. Yield Estimation Using the 3D Canopy Models
3. Results
3.1. 3D Model Creation
3.2. Yield Estimation
4. Discussion
Comparisons with Other Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nelson, B. Alfalfa Remains Country’s 3rd Most Valuable Field Crop; National Alfalfa & Forage Alliance: St. Paul, MN, USA, 2019. [Google Scholar]
- NASS. Crop Values 2017 Summary; United State Department of Agriculture, National Agricultural Statistics Service: Washington, DC, USA, 2018.
- Lamb, J.F.S.; Sheaffer, C.C.; Samac, D.A. Population Density and Harvest Maturity Effects on Leaf and Stem Yield in Alfalfa. Agron. J. 2003, 95, 635–641. [Google Scholar] [CrossRef] [Green Version]
- Ball, D.M.; Collins, M.; Lacefield, G.D.; Martin, N.P.; Mertens, D.A.; Olson, K.E.; Putnam, D.H.; Undersander, D.J.; Wolf, M.W. Understanding Forage Quality; American Farm Bureau Federation Publication: Park Ridge, IL, USA, 2001; Volume 1. [Google Scholar]
- Saha, U.K.; Sonon, L.S.; Hancock, D.W.; Hill, N.S.; Stewart, L.; Heusner, G.L.; Kissel, D.E. Common Terms Used in Animal Feeding and Nutrition; University of Georgia, College of Agricultural and Environmental Sciences: Athens, GA, USA, 2017. [Google Scholar]
- Undersander, D.; Hall, M.H.; Vassalotti, P.; Cosgrove, D. Alfalfa Germination & Growth; University of Wisconsin-Extension Cooperative Extension: Madison, WI, USA, 2011; p. 18. [Google Scholar]
- Ball, D.M.; Hoveland, C.S.; Lacefield, G.D. Southern Forages; Potash & Phosphate Institute, Foundation for Agronomic Research: Atlanta, GR, USA, 1991; ISBN 978-0-9629598-1-3. [Google Scholar]
- Hancock, D.W.; Buntin, G.D.; Ely, L.O.; Lacy, R.C.; Heusner, G.L.; Stewart, R.L. Alfalfa Management in Georgia; University of Georgia, College of Agricultural and Environmental Sciences: Athens, GA, USA, 2009. [Google Scholar]
- Undersander, D.; Cosgrove, D.; Cullen, E.; Grau, C.; Rice, M.E.; Renz, M.; Sheaffer, C.C.; Shewmaker, G.; Sulc, M. Alfalfa Management Guide; American Society of Agronomy: Madison, WI, USA, 2011; ISBN 0-89118-179-2. [Google Scholar]
- Hintz, R.W.; Albrecht, K.A. Prediction of Alfalfa Chemical Composition from Maturity and Plant Morphology. Crop Sci. 1991, 31. [Google Scholar] [CrossRef]
- Lang, B. Estimate First Crop Pre-Harvest Alfalfa Quality in the Field Using PEAQ; Iowa State University Extension and Outreach Publication: Ames, IA, USA, 2017; pp. 1–2. [Google Scholar]
- Mueller, S.C.; Teuber, L.R. Alfalfa Growth and Development. In Irrigated Alfalfa Management for Mediterranean and Desert Zones; Summers, C.G., Putnam, D.H., Eds.; University of California Alfalfa & Forage Systems Workgroup: Davis, CA, USA, 2007. [Google Scholar]
- Dvorak, J.S.; Pampolini, L.F.; Jackson, J.J.; Seyyedhasani, H.; Sama, M.P.; Goff, B. Predicting Quality and Yield of Growing Alfalfa from a UAV. Trans. ASABE 2021, 64, 1. [Google Scholar] [CrossRef]
- Brodbeck, C.; Sikora, E.; Delaney, D.; Pate, G.; Johnson, J. Using Unmanned Aircraft Systems for Early Detection of Soybean Diseases; Cambridge University Press: Edinburgh, UK, July 2017; Volume 8, pp. 802–806. [Google Scholar]
- Vanegas, F.; Bratanov, D.; Powell, K.; Weiss, J.; Gonzalez, F. A Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data. Sensors 2018, 18, 260. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.; Jung, J.; Maeda, M.M.; Landivar, J. Crop Height Monitoring with Digital Imagery from Unmanned Aerial System (UAS). Comput. Electron. Agric. 2017, 141, 232–237. [Google Scholar] [CrossRef]
- Enciso, J.; Avila, C.A.; Jung, J.; Elsayed-Farag, S.; Chang, A.; Yeom, J.; Landivar, J.; Maeda, M.; Chavez, J.C. Validation of Agronomic UAV and Field Measurements for Tomato Varieties. Comput. Electron. Agric. 2019, 158, 278–283. [Google Scholar] [CrossRef]
- Madec, S.; Baret, F.; de Solan, B.; Thomas, S.; Dutartre, D.; Jezequel, S.; Hemmerlé, M.; Colombeau, G.; Comar, A. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates. Front. Plant Sci. 2017, 8, 2002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, K.; Guo, W.; Arai, K.; Takanashi, H.; Kajiya-Kanegae, H.; Kobayashi, M.; Yano, K.; Tokunaga, T.; Fujiwara, T.; Tsutsumi, N.; et al. High-Throughput Phenotyping of Sorghum Plant Height Using an Unmanned Aerial Vehicle and Its Application to Genomic Prediction Modeling. Front. Plant Sci. 2017, 8, 421. [Google Scholar] [CrossRef] [Green Version]
- Feng, A.; Zhang, M.; Sudduth, K.A.; Vories, E.D.; Zhou, J. Cotton Yield Estimation from UAV-Based Plant Height. Trans. ASABE 2019, 62, 393–404. [Google Scholar] [CrossRef]
- Huang, Y.; Brand, H.J.; Sui, R.; Thomson, S.J.; Furukawa, T.; Ebelhar, M.W. Cotton Yield Estimation Using Very High-Resolution Digital Images Acquired with a Low-Cost Small Unmanned Aerial Vehicle. Trans. ASABE 2016, 59, 1563–1574. [Google Scholar] [CrossRef] [Green Version]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Zhou, J.; Han, Z.; Li, D.; Cao, Q.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cheng, T. Improved Estimation of Aboveground Biomass in Wheat from RGB Imagery and Point Cloud Data Acquired with a Low-Cost Unmanned Aerial Vehicle System. Plant Methods 2019, 15, 17. [Google Scholar] [CrossRef] [Green Version]
- Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models. Remote Sens. 2017, 9, 708. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Thomasson, J.A.; Murray, S.C.; Pugh, N.A.; Rooney, W.L.; Shafian, S.; Rajan, N.; Rouze, G.; Morgan, C.L.S.; Neely, H.L.; et al. Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research. PLoS ONE 2016, 11, e0159781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gauci, A.A.; Brodbeck, C.J.; Poncet, A.M.; Knappenberger, T. Assessing the Geospatial Accuracy of Aerial Imagery Collected with Various UAS Platforms. Trans. ASABE 2018, 61, 1823–1829. [Google Scholar] [CrossRef]
- Mesas-Carrascosa, F.-J.; Torres-Sánchez, J.; Clavero-Rumbao, I.; García-Ferrer, A.; Peña, J.-M.; Borra-Serrano, I.; López-Granados, F. Assessing Optimal Flight Parameters for Generating Accurate Multispectral Orthomosaicks by UAV to Support Site-Specific Crop Management. Remote Sens. 2015, 7, 12793–12814. [Google Scholar] [CrossRef] [Green Version]
- Seifert, E.; Seifert, S.; Vogt, H.; Drew, D.; van Aardt, J.; Kunneke, A.; Seifert, T. Influence of Drone Altitude, Image Overlap, and Optical Sensor Resolution on Multi-View Reconstruction of Forest Images. Remote Sens. 2019, 11, 1252. [Google Scholar] [CrossRef] [Green Version]
- Nakano, K.; Nakano, K.; Suzuki, H.; Tamino, T.; Chikatsu, H. On Fundamental Evaluation Using Uav Imagery and 3d Modeling Software. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B5, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Mesas-Carrascosa, F.-J.; Notario García, M.D.; Meroño de Larriva, J.E.; García-Ferrer, A. An Analysis of the Influence of Flight Parameters in the Generation of Unmanned Aerial Vehicle (UAV) Orthomosaicks to Survey Archaeological Areas. Sensors 2016, 16, 1838. [Google Scholar] [CrossRef] [Green Version]
- Raczynski, R.J. Accuracy Analysis of Products Obtained from UAV-Borne Photogrammetry Influenced by Various Flight Parameters. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2017. [Google Scholar]
- Torres-Sánchez, J.; López-Granados, F.; Borra-Serrano, I.; Peña, J.M. Assessing UAV-Collected Image Overlap Influence on Computation Time and Digital Surface Model Accuracy in Olive Orchards. Precis. Agric. 2018, 19, 115–133. [Google Scholar] [CrossRef]
- Kalu, B.A.; Fick, G.W. Quantifying Morphological Development of Alfalfa for Studies of Herbage Quality. Crop Sci. 1981, 21, 267–271. [Google Scholar] [CrossRef]
- Strecha, C.; von Hansen, W.; Van Gool, L.; Fua, P.; Thoennessen, U. On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Agarwal, S.; Furukawa, Y.; Snavely, N.; Curless, B.; Seitz, S.M.; Szeliski, R. Reconstructing Rome. Computer 2010, 43, 40–47. [Google Scholar] [CrossRef]
- Strecha, C.; Van Gool, L.; Fua, P. A Generative Model for True Orthorectification. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Congress, Beijing, China, 3–11 July 2008. [Google Scholar]
- Strecha; Tuytelaars; Gool, V. Dense Matching of Multiple Wide-Baseline Views. In Proceedings of the Ninth IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; Volume 2, pp. 1194–1201. [Google Scholar]
- Strecha, C.; Pylvänäinen, T.; Fua, P. Dynamic and Scalable Large Scale Image Reconstruction. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 406–413. [Google Scholar]
- Pix4D SA. How Are the GCP Errors Defined in the Quality Report. Available online: https://support.pix4d.com/hc/en-us/articles/203604125-How-are-the-GCP-Errors-defined-in-the-Quality-Report (accessed on 15 September 2020).
Flight Parameters 1 (50–90° FP) | Flight Parameters 2 (50–75° FP) | Flight Parameters 3 (30–90° FP) | |
---|---|---|---|
Elevation (m) | 50.0 | 50.0 | 30.0 |
Speed (m s−1) | 5.70 | 5.70 | 3.30 |
Gimbal Angle a | −90.0° | −75.0° | −90.0° |
Resolution (cm px−1) | 1.40 | 2.20 | 0.80 |
Field 1 | Field 2 | |||
---|---|---|---|---|
Full | Partial | Full | Partial | |
Area (ha) | 7.02 | 1.30 | 3.09 | 2.02 |
Mission Duration (min.:sec.) | ||||
50–90° FP | 21:35 | 4:09 | 10:09 | --- a |
50–75° FP | --- a | 2:52 | 10:09 | --- a |
30–90° FP | --- a | 10:36 | --- a | 17:25 |
Images Captured (count) | ||||
50–90° FP | 513 | 90 | 217 | --- a |
50–75° FP | --- a | 61 | 217 | --- a |
30–90° FP | --- a | 244 | --- a | 395 |
Processing Step | Option | |
---|---|---|
1. | Initial Processing | Keypoints Images Scale = Full |
2. | Point Cloud Mesh | Export = LAS (a file format for saving point clouds) |
3. | DSM (Digital Surface Model), Orthomosaic, and Index. | Resolution = Automatic; Use Noise Filtering (box is checked); Use Surface Smoothing (box is checked)—Type = Sharp. |
Date (dd/mm/yyyy) | Field | Flight Parameters (Height (m)-Gimbal Angle) | Field Scan (Full/Partial) | Model RMSE (cm) | Camera Calibration Difference (%) | Model GSD (cm) |
---|---|---|---|---|---|---|
17/05/2019 | Field 1 | 30–90° | Partial | 0.50 | 4.44% | 0.79 |
Field 1 | 50–75° | Partial | 1.00 | 2.55% | 1.44 | |
Field 1 c | 50–90° | Full | 1.00 | 11.3% | 1.38 | |
Field 1 | Combined | Combined | 0.50 | 0.70% | 1.35 | |
Field 2 c | 30–90° | Partial | 1.40 | 85.4% a | 0.79 | |
Field 2 | 50–75° | Full | 1.90 | 0.30% | 1.41 | |
Field 2 | 50–90° | Full | 2.10 | 0.45% | 1.36 | |
Field 2 | Combined | Combined | 1.40 | 0.25% | 1.23 | |
21/05/2019 | Field 1 | 30–90° | Partial | 1.30 | 11.3% | 0.79 |
Field 1 | 50–75° | Partial | 1.60 | 3.00% | 1.39 | |
Field 1 | 50–90° | Partial | 0.60 | 8.55% | 1.28 | |
Field 1 | Combined | Combined | 0.80 | 0.99% | 0.81 | |
Field 2 | 30–90° | Partial | 1.50 | 4.55% | 0.77 | |
Field 2 | 50–75° | Full | 1.70 | 1.09% | 1.37 | |
Field 2 | 50–90° | Full | 1.70 | 0.67% | 1.34 | |
Field 2 | Combined | Combined | 1.30 | 0.13% | 1.27 | |
28/05/2019 | Field 1 | 30–90° | Partial | 2.50 | 14.1% | 0.74 |
Field 1 | 50–75° | Partial | 2.00 | 4.62% | 1.38 | |
Field 1 | 50–90° | Partial | 2.40 | 5.49% | 1.35 | |
Field 1 | Combined | Combined | 2.20 | 0.07% | 0.77 | |
Field 2 c | 30–90° | Partial | 13.1 b | 14.3% | 0.79 | |
Field 2 d | 50–75° | Full | 2.20 | 1.56% | 1.46 | |
Field 2 | 50–90° | Full | 5.70 | 0.56% | 1.38 | |
Field 2 | Combined | Combined | 5.20 | 0.21% | 1.31 | |
04/06/2019 | Field 1 | 30–90° | Partial | 1.60 | 12.5% | 0.76 |
Field 1 | 50–75° | Partial | 1.80 | 2.92% | 1.42 | |
Field 1 | 50–90° | Partial | 2.20 | 5.49% | 1.36 | |
Field 1 | Combined | Combined | 1.90 | 0.13% | 0.79 | |
Field 2 | 30–90° | Partial | 2.30 | 14.2% | 0.75 | |
Field 2 | 50–75° | Full | 2.20 | 1.08% | 1.40 | |
Field 2 | 50–90° | Full | 2.20 | 1.92% | 1.33 | |
Field 2 | Combined | Combined | 2.00 | 0.10% | 1.25 |
Flight Parameters (Height (m)-Gimbal Angle) | Model GSD (cm) | |||
---|---|---|---|---|
Min. | Max. | Mean | Std. Dev | |
30–90° | 0.740 | 0.790 | 0.767 | 0.021 |
50–75° | 1.37 | 1.46 | 1.41 | 0.030 |
50–90° | 1.28 | 1.38 | 1.35 | 0.032 |
Combined | 0.770 | 1.35 | 1.09 | 0.257 |
Flight Parameters (Height (m)-Gimbal Angle) | Model RMS Error (cm) | |||
---|---|---|---|---|
Min. | Max. | Mean | Std. Dev | |
30–90° | 0.500 | 2.50 | 1.62 | 0.722 |
50–75° | 1.00 | 2.20 | 1.80 | 0.389 |
50–90° | 0.600 | 5.70 | 2.24 | 1.54 |
Combined | 0.500 | 5.20 | 1.91 | 1.45 |
Flight Parameters (Height (m)-Gimbal Angle) | 3-Variable Model | 2-Variable Model | Average (Both Models) | |||
---|---|---|---|---|---|---|
RMSE (kg ha−1) a | R2 | RMSE (kg ha−1) a | R2 | RMSE (kg ha−1) a | R2 | |
Quadrat Only | 907 | 0.71 | 821 | 0.60 | 864 | 0.65 |
30–90° | 780 | 0.68 | 897 | 0.30 | 838 | 0.49 |
50–75° | 490 | 0.87 | 354 | 0.84 | 422 | 0.85 |
50–90° | 1045 | 0.55 | 966 | 0.35 | 1005 | 0.45 |
Combined | 1298 | 0.53 | 1353 | 0.47 | 1325 | 0.50 |
Average | 904 | 0.67 | 878 | 0.51 | 891 | 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minch, C.; Dvorak, J.; Jackson, J.; Sheffield, S.T. Creating a Field-Wide Forage Canopy Model Using UAVs and Photogrammetry Processing. Remote Sens. 2021, 13, 2487. https://doi.org/10.3390/rs13132487
Minch C, Dvorak J, Jackson J, Sheffield ST. Creating a Field-Wide Forage Canopy Model Using UAVs and Photogrammetry Processing. Remote Sensing. 2021; 13(13):2487. https://doi.org/10.3390/rs13132487
Chicago/Turabian StyleMinch, Cameron, Joseph Dvorak, Josh Jackson, and Stuart Tucker Sheffield. 2021. "Creating a Field-Wide Forage Canopy Model Using UAVs and Photogrammetry Processing" Remote Sensing 13, no. 13: 2487. https://doi.org/10.3390/rs13132487
APA StyleMinch, C., Dvorak, J., Jackson, J., & Sheffield, S. T. (2021). Creating a Field-Wide Forage Canopy Model Using UAVs and Photogrammetry Processing. Remote Sensing, 13(13), 2487. https://doi.org/10.3390/rs13132487