PlanetScope Imageries and LiDAR Point Clouds Processing for Automation Land Cover Mapping and Vegetation Assessment of a Reclaimed Sulfur Mine
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
- PlanetScope imagery (planet), date: 22 September 2019; channels: B—blue, G—green, R—red, and NIR; 3.0 m resolution; source: Planet’s Education and Research (E&R) Program [40];
- ALS point clouds; source: IT System for the Protection of Poland (pl. ISOK) project, point cloud density: 6 pts/m2; a minimum of 4 reflections; the altitude accuracy (mean error) of the ALS point clouds after alignment was ≤ 0.15 m; situational accuracy ≤ 0.50 m;
- Orthophotomaps and cadastral data.
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Susyan, E.A.; Wirth, S.; Ananyeva, N.D.; Stolnikova, E.V. Forest succession on abandoned arable soils in European Russia—Impacts on microbial biomass, fungal-bacterial ratio, and basal CO2 respiration activity. Eur. J. Soil Biol. 2011, 47, 169–174. [Google Scholar] [CrossRef]
- Hawryło, P.; Francini, S.; Chirici, G.; Giannetti, F.; Parkitna, K.; Krok, G.; Mitelsztedt, K.; Lisańczuk, M.; Stereńczak, K.; Ciesielski, M.; et al. The use of remotely sensed data and Polish NFI plots for prediction of growing stock volume using different predictive methods. Remote Sens. 2020, 12, 3331. [Google Scholar] [CrossRef]
- Socha, J.; Hawryło, P.; Pierzchalski, M.; Stereńczak, K.; Krok, G.; Wężyk, P.; Tymińska-Czabańska, L. An allometric area-based approach a cost-effective method for stand volume estimation based on ALS and NFI data. Forestry 2020, 93, 344–358. [Google Scholar] [CrossRef]
- Socha, J.; Hawryło, P.; Stereńczak, K.; Miścicki, S.; Tymińska-Czabańska, L.; Młocek, W.; Gruba, P. Assessing the sensitivity of site index models developed using bi-temporal airborne laser scanning data to different top height estimates and grid cell sizes. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102129. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Krzaklewski, W. Reclamation of mine lands in Poland. In Bio-Geotechnologies for Mine Site Rehabilitation; Prasad, M.N.V., Favas, P., Maiti, S.K., Eds.; Elsevier: Amsterdam, The Netherlands; Oxford, UK; Cambridge, MA, USA, 2018; Chapter 27; pp. 493–513. ISBN 978-0-12-812986-9. [Google Scholar]
- Pietrzykowski, M. Tree species selection and reaction to mine soil reconstructed at reforested post-mine sites: Central and Eastern European experiences. Ecol. Eng. X 2019, 3, 100012. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Daniels, W.L. Estimation of carbon sequestration by pine (Pinus sylvestris L.) ecosystems developed on reforested post-mining sites in Poland on differing mine soil substrates. Ecol. Eng. 2014, 73, 209–218. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Woś, B.; Likus-Cieślik, J.; Świątek, B.; Pająk, M. Forest and climate change—A global view and local cases. In The Role of Agriculture in Climate Change Mitigation, 1st ed.; Pawłowski, L., Litwińczuk, Z., Zhou, G., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 29–39. [Google Scholar]
- Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. Sentinel-2: Examining the added value of Sentinel-2′s red-edge bands to land-use and land-cover mapping in Burkina Faso. GISci. Remote Sens. 2018, 55, 331–354. [Google Scholar] [CrossRef]
- Lasanta, T.; Arnáez, J.; Pascual, N.; Ruiz-Flaño, P.; Errea, M.P.; Lana-Renault, N. Space–time process and drivers of land abandonment in Europe. Catena 2017, 149, 810–823. [Google Scholar] [CrossRef]
- Marangoz, A.M.; Sekertekin, A.; Akcin, H. Analysis of land use land cover classification results derived from Sentinel-2 image. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management (SGEM 2017), Vienna, Austria, 27–29 November 2017; pp. 25–32. [Google Scholar]
- Sekertekin, A.; Marangoz, A.M.; Akcin, H. Pixel-based classification analysis of land use land cover using Sentinel-2 and Landsat-8 data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 91–93. [Google Scholar] [CrossRef] [Green Version]
- Szostak, M.; Hawryło, P.; Piela, D. Using of Sentinel-2 images for automation of the forest succession detection. Eur. J. Remote Sens. 2018, 51, 142–149. [Google Scholar] [CrossRef]
- Planet. 2020. Available online: https://www.planet.com/products/planet-imagery (accessed on 30 September 2020).
- Bork, E.; Su, J. Integrating LIDAR data and multispectral imagery for enhanced classification of rangeland vegetation: A meta-analysis. Remote Sens. Environ. 2007, 111, 11–24. [Google Scholar] [CrossRef]
- van Ewijk, K.Y.; Treitz, P.M.; Scott, N.A. Characterizing forest succession in central Ontario using lidar-derived indices. Photogramm. Eng. Remote Sens. 2011, 77, 261–269. [Google Scholar] [CrossRef]
- Falkowski, M.; Jeffrey, S.; Evans, J.; Martinuzzi, S.; Gessler, P.; Hudak, A. Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA. Remote Sens. Environ. 2009, 113, 946–956. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.; Vogler, J.; Shoemaker, D.; Meentemeyer, R. LiDAR-Landsat data fusion for large-area assessment of urban land cover: Balancing spatial resolution, data volume, and mapping accuracy. ISPRS J. Photogramm. Remote Sens. 2012, 74, 110–121. [Google Scholar] [CrossRef]
- Axelsson, P. DEM generation from laser scanner data using adaptive TIN models. Int. Arch. Photogramm. Remote Sens. 2000, 33, 203–210. [Google Scholar]
- Andersen, H.E.; Reutebuch, S.E.; McGaughey, R.J. A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods. Can. J. Remote Sens. 2006, 32, 355–366. [Google Scholar] [CrossRef]
- Hyyppä, J.; Hyyppä, H.; Litkey, P.; Yu, X.; Haggrén, H.; Rönnholm, P.; Pyysalo, U.; Pitkanen, J.; Maltamo, M. Algorithms and methods of airborne laser-scanning for forest measurements. In Laser-Scanners for Forest and Landscape Assessment, Proceedings of the ISPRS Working Group VIII/2Thies, Freiburg, Germany, 3–6 October 2004; Koch, M., Spiecker, B., Weinacker, H., Eds.; International Archives of Photogrammetry, Remote Sensing, and the Spatial Information Sciences: Freiburg, Germany, 2004; Volume XXXVI–8/W2. [Google Scholar]
- Maier, B.; Tiede, D.; Dorren, L. Characterizing mountain forest structure using landscape metrics on LIDAR-based canopy surface models. In Cartography from Pole to Pole; Springer Science and Business Media: Heidelberg, Germany, 2008; pp. 625–643. [Google Scholar]
- McGaughey, R.J.; Carson, W.; Reutebuch, S.; Andersen, H.E. Direct measurement of individual tree characteristics from lidar data. In Proceedings of the Annual ASPRS Conference, Denver, CO, USA, 23–28 May 2004. [Google Scholar]
- Naesset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Naesset, E.; Okland, T. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sens. Environ. 2002, 79, 105–115. [Google Scholar] [CrossRef]
- Wężyk, P.; Szostak, M.; Tompalski, P.; Zajączkowski, G. The role of Airborne Laser scanning in updating and revision of GIS databases—A case study in the Polish State Forest (Chojna District). In Proceedings of the 10th International Conference on LiDAR Applications for Assessing Forest Ecosystems (Silvaster 2010), Freiburg, Germany, 14–17 September 2010. [Google Scholar]
- Wężyk, P.; Tompalski, P.; Szostak, M.; Glista, M.; Pierzchalski, M. Describing the selected canopy layer parameters of the Scots pine stands using ALS data. In Proceedings of the 8th International Conference on LiDAR Applications in Forest Assessment and Inventory, Edinburgh, UK, 17–19 September 2008; pp. 636–645. [Google Scholar]
- EU Biodiversity Strategy. 2011. Available online: https://ec.europa.eu/ (accessed on 30 September 2020).
- National Program for Increasing Woodness. Document Adopted for Implementation by a Resolution of the Council of Ministers in June 1995, Updated in 2003. Ministry of the Environment, Warsaw; 2003. Available online: https://www.gov.pl (accessed on 30 September 2020).
- Main Statistical Office Poland. Statistical Books of Forestry. 2018. Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/roczniki-statystyczne/rocznik-statystyczny-lesnictwa-2020,13,3.html (accessed on 30 September 2020).
- Hościło, A.; Mirończuk, A.; Lewandowsk, A. Determination of the actual forest area in Poland based on the available spatial datasets. Sylwan 2016, 160, 627–634. [Google Scholar]
- Jabłoński, M.; Mionskowski, M.; Budniak, P. Forest area in Poland based on national forest inventory. Sylwan 2018, 162, 365–372. [Google Scholar]
- Karol, B. Using of PlanetScope Satellite Images to Determine Land Cover Classes on a Former Sulfur Mines “Machów” and “Jeziórko”. Master’s Thesis, University of Agriculture in Krakow, Kraków, Poland, 2020. [Google Scholar]
- Likus-Cieślik, J.; Pietrzykowski, M. Vegetation development and nutrients supply of trees in habitats with high sulfur concentration in reclaimed former sulfur mines Jeziórko (Southern Poland). Environ. Sci. Pollut. Res. 2017, 24, 20556–20566. [Google Scholar] [CrossRef] [Green Version]
- Likus-Cieślik, J.; Pietrzykowski, M.; Śliwińska-Siuśta, M.; Krzaklewski, W.; Szostak, M. A preliminary assesment of soil sulfur contamination and vegetations in the vicinity of former boreholes on the afforested post-mine site Jeziórko. Geol. Geophys. Environ. 2015, 41, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Likus-Cieślik, J.; Pietrzykowski, M.; Szostak, M.; Szulczewski, M. Spatial distribution and concentration of sulfur in relation to vegetation cover and soil properties on a reclaimed sulfur mine site (Southern Poland). Environ. Monit. Assess. 2017, 189, 87. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, S.E.; Landhäusser, S.M.; Skousen, J.; Franklin, J.; Frouz, J.; Hall, S.; Jacobs, D.F.; Quideau, S. Forest restoration following surface mining disturbance: Challenges and solutions. N. For. 2015, 46, 703–732. [Google Scholar] [CrossRef] [Green Version]
- Gołda, T. Uwarunkowania prac rekultywacyjnych w kopalni siarki “Jeziórko” w wyniku wywołanych przekształceń w środowisku glebowo-wodnym: Próba syntetycznej oceny. Inżynieria Środowiska 2003, 8, 29–43. (In Polish) [Google Scholar]
- Stefan, K.; Fürst, A.; Hacker, R.; Bartels, U. Forest Foliar Condition in Europe. Forest Foliar Coordinating Centre in cooperating with the Australian Federal Forest Research Centre; EC-UN/ECE-FBV A: Brussels, Geneva, 1997. [Google Scholar]
- Planet’s Education and Research (E&R) Program; Planet Team. Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA. 2017. Available online: https://api.planet.com (accessed on 30 September 2020).
- McGaughey, R.J. Fusion/Ldv: Software for Lidar Data Analysis and Visualization; US Department of Agriculture, Forest Service: Washington, DC, USA; Pacific Northwest Research Station: Seattle, WA, USA, 2012.
- Knapik, K. Determination of Spatial Structure of Vegetation for the Reclaimed Former Sulfur Mine “Jeziórko” Based on Airborne Laser Scanning Point Clouds. Master’s Thesis, University of Agriculture in Krakow, Kraków, Poland, 2019. [Google Scholar]
- Szostak, M.; Knapik, K.; Likus-Cieślik, J.; Wężyk, P.; Pietrzykowski, M. Fusing Sentinel-2 imagery and ALS Point Clouds for defining the LULC changes ongoing on reclaimed areas by afforestation. Sustainability 2019, 11, 1251. [Google Scholar] [CrossRef] [Green Version]
- Szostak, M.; Pietrzykowski, M.; Likus-Cieślik, J. Reclaimed area land cover mapping using Sentinel-2 Imagery and LiDAR Point Clouds. Remote Sens. 2020, 12, 261. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Chao, D.K.; Shipman, T.C.; Wulder, M.A. Utilization of Landsat data to quantify land-use and land-cover changes related to oil and gas activities in West-Central Alberta from 2005 to 2013. GISci. Remote Sens. 2017, 54, 700–720. [Google Scholar] [CrossRef]
- Farrand, W.H.; Harsanyi, J.C. Mapping the distribution of mine tailings in the Coeur d’Alene River Valley, Idaho, through the use of a constrained energy minimization technique. Remote Sens. Environ. 1997, 59, 64–76. [Google Scholar] [CrossRef]
- Pitblado, J.R.; Amiro, B.D. Landsat mapping of the industrially disturbed vegetation communities of Sudbury, Canada. Can. J. Remote Sens. 2014, 8, 17–28. [Google Scholar] [CrossRef]
- Pouliot, D.; Latifovic, R. Land change attribution based on Landsat time series and integration of ancillary disturbance data in the Athabasca oil sands region of Canada. GISci. Remote Sens. 2016, 53, 382–401. [Google Scholar] [CrossRef]
- Powers, R.P.; Hermosilla, T.; Coops, N.C.; Chen, G. Remote sensing and object-based techniques for mapping fine-scale industrial disturbances. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 51–57. [Google Scholar] [CrossRef]
- Townsend, P.; Helmers, D.; Kingdon, C.; McNeil, B.; de Beurs, K.; Eshleman, K. Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 LANDSAT time series. Remote Sens. Environ. 2009, 113, 62–72. [Google Scholar] [CrossRef]
- Szostak, M.; Wężyk, P.; Pająk, M.; Hawryło, P.; Lisańczuk, M. Determination of the spatial structure of vegetation on the repository of the mine Fryderyk in Tarnowskie Góry, based on airborne laser scanning from the ISOK project and digital orthophotomaps. Geod. Cartogr. 2015, 64, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Szostak, M.; Furgała, T.; Knapik, K. Landscape monitoring of post-industrial area using LiDAR point clouds and Sentinel-2 images. In Proceedings of the 19th International Multidisciplinary Scientific Geoconference SGEM Conference (SGEM 2019), Albena, Bulgaria, 28 June–7 July 2019; pp. 431–438. [Google Scholar] [CrossRef]
- Osińska-Skotak, K.; Radecka, A.; Piórkowski, H.; Michalska-Hejduk, D.; Kopeć, D.; Tokarska-Guzik, B.; Ostrowski, W.; Kania, A.; Niedzielko, J. Mapping succession in non-forest habitats by means of remote sensing: Is the data acquisition time critical for species discrimination? Remote Sens. 2019, 11, 2629. [Google Scholar] [CrossRef] [Green Version]
- Wężyk, P.; Szostak, M.; Krzaklewski, W.; Pająk, M.; Pierzchalski, M.; Szwed, P.; Hawryło, P.; Ratajczak, M. Landscape monitoring of post-industrial areas using LiDAR and GIS technology. Geod. Cartogr. 2015, 64, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Alvarenga, P.; Clemente, R.; Garbisu, C.; Becerril, J.M. Indicators for monitoring mine site rehabilitation. In Bio-Geotechnologies for Mine Site Rehabilitation; Prasad, M.N., Favas, P.J.C., Maiti, S.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 49–66. [Google Scholar]
- Favas, P.J.C.; Martino, L.E.; Prasad, M.N.V. Abandoned mine land reclamation—Challenges and opportunities (holistic approach). In Bio-Geotechnologies for Mine Site Rehabilitation; Prasad, M.N., Favas, P.J.C., Maiti, S.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–31. [Google Scholar]
- Gatica-Saavedra, P.; Echeverría, C.; Nelson, C.R. Ecological indicators for assessing ecological success of forest restoration: A world review. Restor. Ecol. 2017, 25, 850–857. [Google Scholar] [CrossRef]
- Wang, J.; Wei, Z.; Wang, O. Evaluating the eco-environment benefit of land reclamation in the dump of an opencast coal mine. Chem. Ecol. 2017, 33, 607–624. [Google Scholar] [CrossRef]
- Bradshaw, A.D.; Hüttl, R. Future minesite restoration involves a broader approach. Ecol. Eng. 2001, 17, 87–90. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Krzaklewski, W. An assessment of energy efficiency in reclamation to forest. Ecol. Eng. 2007, 30, 341–348. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Krzaklewski, W.; Woś, B.; Pietrzak, W. Ocena zagospodarowania leśnego zrekultywowanych terenów po otworowej eksploatacji siarki. Przegląd Górniczy, Miesięcznik Stowarzyszenia Inżynierów i Techników Górnictwa 2012, 7, 98–103. (In Polish) [Google Scholar]
- Pietrzykowski, M.; Woś, B.; Haus, M. Scots pine needles macro-nutrient (N, P, K, Ca, Mg, and S) supply at different reclaimed mine soil substrates—As an indicator of the stability of developed forest ecosystems. Environ. Monit. Assess. 2013, 185, 7445–7457. [Google Scholar] [CrossRef] [Green Version]
- Szostak, M.; Wężyk, P.; Hawryło, P.; Pietrzykowski, M. The analysis of spatial and temporal changes of land cover and land use in the reclaimed areas with the application of airborne orthophotomaps and LANDSAT images. Geod. Cartogr. 2015, 64, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Szostak, M.; Likus-Cieślik, J.; Knapik, K.; Wężyk, P.; Pietrzykowski, M. Analysis of land use and land cover classes for the afforested post-mine site using Sentinel-2 images. In Proceedings of the 18th International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management (SGEM 2018), Albena, Bulgaria, 30 June–9 July 2018; Volume 18, pp. 41–48. [Google Scholar] [CrossRef]
- Szostak, M.; Likus-Cieślik, J.; Knapik, K.; Wężyk, P.; Pietrzykowski, M. Monitoring the spatial range of forested areas in the reclaimed sites using Sentinel-2 images. Sylwan 2019, 163, 55–61. [Google Scholar]
- Kolecka, N.; Kozak, J.; Kaim, D.; Dobosz, M.; Ginzler, C.; Psomas, A. Mapping secondary forest succession on abandoned agricultural land with LiDAR point clouds and terrestrial photography. Remote Sens. 2015, 7, 8300–8322. [Google Scholar] [CrossRef] [Green Version]
- Szostak, M. Automated land cover change detection and forest succession monitoring using LiDAR Point Clouds and GIS analyses. Geosciences 2020, 10, 321. [Google Scholar] [CrossRef]
- Vastaranta, M.; Wulder, M.A.; White, J.C.; Pekkarinen, A.; Tuominen, S.; Ginzler, C.; Kankare, V.; Holopainen, M.; Hyyppä, J.; Hyyppä, H. Airborne laser scanning and digital stereo imagery measures of forest structure: Comparative results and implications to forest mapping and inventory update. Can. J. Remote Sens. 2013, 39, 382–395. [Google Scholar] [CrossRef]
- Ostrowski, W.; Górski, K.; Pilarska, M.; Salach, A.; Bakuła, K. Comparison of the laser scanning solutions for the unmanned aerial vehicles. Arch. Photogramm. Cartogr. Remote Sens. 2017, 29, 101–123. [Google Scholar] [CrossRef]
- Osińska-Skotak, K.; Jełowiecki, Ł.; Bakuła, K.; Michalska-Hejduk, D.; Wylazłowska, J.; Kopeć, D. Analysis of using dense image matching techniques to study the process of secondary succession in non-forest natura 2000 habitats. Remote Sens. 2019, 11, 893. [Google Scholar] [CrossRef] [Green Version]
- White, J.; Stepper, C.; Tompalski, P.; Coops, N.; Wulder, M. Comparing ALS and image-based point cloud metrics and modelled forest inventory attributes in complex coastal forest environment. Forests 2015, 6, 3704–3732. [Google Scholar] [CrossRef]
- White, J.; Wulder, M.; Vastaranta, M.; Coops, N.; Pitt, D.; Woods, M. The utility of image-based point clouds for forest inventory: A comparison with airborne laser scanning. Forests 2013, 4, 518–536. [Google Scholar] [CrossRef] [Green Version]
- Koska, B.; Jirkab, V.; Urbana, R.; Kremena, T.; Hesslerovab, P.; Jona, J.; Pospisila, J.; Fogl, M. Suitability, characteristics, and comparison of an airship UAV with lidar for middle size area mapping. Int. J. Remote Sens. 2017, 38, 2973–2990. [Google Scholar] [CrossRef]
- Moudrý, V.; Gdulová, K.; Fogl, M.; Klápště, P.; Urban, R.; Komárek, J.; Moudrá, L.; Štroner, M.; Barták, V.; Solský, M. Comparison of leaf-off and leaf-on combined UAV imagery and airborne LiDAR for assessment of a post-mining site terrain and vegetation structure: Prospects for monitoring hazards and restoration success. Appl. Geogr. 2019, 104, 32–41. [Google Scholar] [CrossRef]
- Urban, R.; Koska, B.; Moudry, V.; Solsky, M. Terrain of post mining site from airship lidar. In Proceedings of the 16th International Multidisciplinary Scientific GeoConference (SGEM 2016), Albena, Bulgaria, 30 June–6 July 2016; Volume 2, pp. 577–584. [Google Scholar] [CrossRef]
- Ai, J.; Zhang, C.; Chen, L.; Li, D. Mapping annual land use and land cover changes in the Yangtze estuary region using an object-based classification framework and Landsat time series data. Sustainability 2020, 12, 659. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Lin, Y.; Zhou, M.; Wu, C.; Chen, B.; Xiao, G.; Cai, J. Ecosystem services dynamics response to tremendous reclamation in a coastal island city. Ecosyst. Health Sustain. 2019, 5, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Li, X.; Zhang, P.; Hu, Y.; Huang, L. Effects of vegetation reclamation on temperature and humidity properties of a dumpsite: A case study in the open pit coal mine of Heidaigou. Arid Land Res. Manag. 2015, 29, 375–381. [Google Scholar] [CrossRef]
Land Cover Classes | Mineral Extraction Sites | Broad-Leaved Forest | Coniferous Forest | Transitional Woodland Shrub | Water | Total | User Accuracy (%) |
---|---|---|---|---|---|---|---|
Mineral extraction sites | 37 | 0 | 0 | 1 | 0 | 38 | 97.37 |
Broad-leaved forest | 0 | 114 | 2 | 14 | 0 | 130 | 87.69 |
Coniferous forest | 0 | 5 | 118 | 9 | 0 | 132 | 89.39 |
Transitional w. shrub | 3 | 1 | 1 | 173 | 0 | 178 | 97.19 |
Water | 0 | 0 | 0 | 0 | 23 | 23 | 100.00 |
Total | 40 | 120 | 121 | 197 | 23 | 501 | 94.32 |
Producer Accuracy (%) | 92.50 | 95.00 | 97.52 | 87.82 | 100.00 | 94.56 | OA = 92.81 |
Land Cover Classes | Area (ha) | Percentage (%) |
---|---|---|
Mineral extraction sites | 3.04 | 1.40 |
Broad-leaved forest | 44.02 | 20.31 |
Coniferous forest | 90.84 | 41.91 |
Transitional woodland shrub | 77.96 | 35.97 |
Water | 0.86 | 0.40 |
Total | 216.72 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szostak, M.; Likus-Cieślik, J.; Pietrzykowski, M. PlanetScope Imageries and LiDAR Point Clouds Processing for Automation Land Cover Mapping and Vegetation Assessment of a Reclaimed Sulfur Mine. Remote Sens. 2021, 13, 2717. https://doi.org/10.3390/rs13142717
Szostak M, Likus-Cieślik J, Pietrzykowski M. PlanetScope Imageries and LiDAR Point Clouds Processing for Automation Land Cover Mapping and Vegetation Assessment of a Reclaimed Sulfur Mine. Remote Sensing. 2021; 13(14):2717. https://doi.org/10.3390/rs13142717
Chicago/Turabian StyleSzostak, Marta, Justyna Likus-Cieślik, and Marcin Pietrzykowski. 2021. "PlanetScope Imageries and LiDAR Point Clouds Processing for Automation Land Cover Mapping and Vegetation Assessment of a Reclaimed Sulfur Mine" Remote Sensing 13, no. 14: 2717. https://doi.org/10.3390/rs13142717
APA StyleSzostak, M., Likus-Cieślik, J., & Pietrzykowski, M. (2021). PlanetScope Imageries and LiDAR Point Clouds Processing for Automation Land Cover Mapping and Vegetation Assessment of a Reclaimed Sulfur Mine. Remote Sensing, 13(14), 2717. https://doi.org/10.3390/rs13142717