On the Geomagnetic Field Line Resonance Eigenfrequency Variations during Seismic Event
Abstract
:1. Introduction
2. Data and Methods
3. FLR Frequency Behaviour during Seismic Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGW | Acoustic Gravity Wave |
EM | Electromagnetic |
EQ | Earthquake |
FLR | Field Line Resonance |
IGRF | International Geomagnetic Reference Field |
MHD | Magnetohydrodynamic |
M.I.L.C. | Magnetosphere Ionosphere Lithosphere Coupling |
VLF | Very Low Frequency |
Appendix A. Field Line Resonance Eigenfrequency Equation
References
- Gokhberg, M.B.; Morgounov, V.A.; Yoshino, T.; Tomizawa, I. Experimental measurement of electromagnetic emissions possibly related to earthquakes in Japan. J. Geophys. Res. 1982, 87, 7824–7828. [Google Scholar] [CrossRef]
- Gokhberg, M.B.; Pilipenko, V.A.; Pokhotelov, O.A. On the seismic precursors within the ionosphere. Izv. Acad. Sci. USSR Ser. Physics Earth 1983, 10, 17–21. [Google Scholar]
- Larkina, V.I.; Nalivayko, A.V.; Gershenzon, N.I.; Gokhberg, M.B.; Liperovskiy, V.A.; Shalimov, S.L. Observation of VLF emission related with seismic activity on the Intercosmos-19 satellite. Geomagn. Aeron. 1993, 23, 684–687. [Google Scholar]
- Battiston, R.; Vitale, V. First evidence for correlations between electron fluxes measured by NOAA-POES satellites and large seismic events. Nucl. Phys. B Proc. Suppl. 2013, 243–244, 249–257. [Google Scholar] [CrossRef]
- Sgrigna, V.; Carota, L.; Conti, L.; Corsi, M.; Galper, A.M.; Koldashov, S.V.; Murashov, A.M.; Picozza, P.; Scrimaglio, R.; Stagni, L. Correlations between earthquakes and anomalous particle bursts from SAMPEX/PET satellite observations. J. Atmos. Sol. Terr. Phys. 2005, 67, 1448–1462. [Google Scholar] [CrossRef]
- Molchanov, O.; Rozhnoi, A.; Solovieva, M.; Akentieva, O.; Berthelier, J.J.; Parrot, M.; Lefeuvre, F.; Biagi, P.F.; Castellana, L.; Hayakawa, M. Global diagnostics of the ionospheric perturbations related to the seismic activity using the VLF radio signals collected on the DEMETER satellite. Nat. Hazard Earth Sys. 2006, 6, 745–753. [Google Scholar] [CrossRef]
- Bertello, I.; Piersanti, M.; Candidi, M.; Diego, P.; Ubertini, P. Electromagnetic field observations by the DEMETER satellite in connection with the L’Aquila earthquake. Ann. Geophys. 2018, 36, 1483–1493. [Google Scholar] [CrossRef] [Green Version]
- Gokhberg, M.B.; Kustov, A.V.; Liperovsky, V.A.; Liperovskaya, R.K.; Kharin, E.P.; Shalimov, S.L. About disturbances in F-region of ionosphere before strong earth-quakes. Izvestiya Acad. Sci. USSR Ser. Physics Earth 1988, 4, 12–20. [Google Scholar]
- Fraser-Smith, A.C.; Bernardi, A.; McGill, P.R.; Ladd, M.; Helliwell, R.; Villard, O.G., Jr. Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake. Geophys. Res. Lett. 1990, 17, 1465–1468. [Google Scholar] [CrossRef]
- Gogatishvili, I.M. Geomagnetic precursors of intense earthquakes in the spectrum of geomagnetic pulsations with frequencies of 1–0.02 Hz. Geomagn. Aeron. 1984, 24, 697–700. [Google Scholar]
- Kolokolov, L.E.; Liperovskaya, E.V.; Liperovsky, V.A.; Pokhotelov, O.A.; Mararovsky, A.V.; Shalimov, S.L. Sudden diffusion of sporadic E-layers in the mid-latitude ionosphere during the earthquake preparation. Izvestiya RAN Earth Phys. 1992, 7, 105–113. [Google Scholar]
- Parrot, M. Statistical study of ELF/VLF emissions recorded by a low-altitude satellite during seismic events. J. Geophys. Res. 1994, 99, 23339. [Google Scholar] [CrossRef]
- Serebryakova, O.N.; Bilichenko, S.V.; Chmyrev, V.M.; Parrot, M.; Ranch, J.L.; Lefeuvre, F.; Pokhotelov, O.A. Electromagnetic ELF radiation from earthquakes regions as observed by low-altitude satellites. Geophys. Res. Lett. 1992, 19, 91. [Google Scholar] [CrossRef]
- Migulin, V.V.; Larkina, V.I.; Molchanov, O.A.; Nalivaiko, A.V.; Gokhberg, M.B.; Pilipenko, V.A.; Liperovsky, V.A.; Pokhotelov, O.A.; Shalimov, S.L. Detection of earthquake influence on the ELF/VLF emissions at the upper ionosphere. Preprint IZMIRAN 1982, 25, 2390. [Google Scholar]
- Carbone, V.; Piersanti, M.; Materassi, M.; Battiston, R.; Lepreti, F.; Ubertini, P. A mathematical model of Lithosphere-Atmospherecoupling for seismic events. Sci. Rep. Nat. 2021. [Google Scholar] [CrossRef]
- Piersanti, M.; Materassi, M.; Battiston, R.; Carbone, V.; Cicone, A.; D’Angelo, G.; Diego, P.; Ubertini, P. Magnetospheric–Ionospheric–Lithospheric Coupling Model. 1: Observations during the 5 August 2018 Bayan Earthquake. Remote Sens. 2020, 12, 3299. [Google Scholar] [CrossRef]
- Waters, C.L.; Menk, F.W.; Fraser, B.J. Low latitude geomagnetic field line resonances: Experiment and modeling. J. Geophys. Res. 1994, 99, 547. [Google Scholar] [CrossRef]
- Green, A.W.; Worthington, E.W.; Baransky, L.N.; Fedorov, E.N.; Kurneva, N.A.; Pilipenko, V.A.; Shvetzov, D.N.; Bektemirov, A.A.; Philipov, G.V. Alfven field line resonances at low latitudes (L = 1.5). J. Geophys. Res. 1993, 98, 15693–15699. [Google Scholar] [CrossRef]
- Waters, C.L.; Samson, J.C.; Donovan, E.F. Variation of plasmatrough density derived from magnetospheric field line resonances. J. Geophys. Res. 1996, 101, 24737–24745. [Google Scholar] [CrossRef]
- Matzka, J.; Bronkalla, O.; Tornow, K.; Elger, K.; Stolle, C. Geomagnetic Kp index. V. 1.0. GFZ Data Services. 2021. Available online: https://dataservices.gfz-potsdam.de/panmetaworks/showshort.php?id=escidoc:5216888 (accessed on 16 July 2021). [CrossRef]
- Menk, F.W.; Waters, C.L. Magnetoseismology: Ground-Based Remote Sensing of Earth’s Magnetosphere; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Menk, F.W.; Waters, C.L.; Fraser, B.J. Field line resonances and waveguide modes at low latitudes: 1. Observations. J. Geophys. Res. 2000, 105, 7747–7761. [Google Scholar] [CrossRef]
- Vellante, M.; Piersanti, M.; Pietropaolo, E. Comparison of equatorial plasma mass densities deduced from field line resonances observed at ground for dipole and IGRF models. J. Geophys. Res. 2014, 119. [Google Scholar] [CrossRef]
- Martinez, W.L.; Martinez, A.R. Computational Statistics Handbook with MATLAB; Chapman and Hall/CRC: Boca Raton, FL, USA, 2002. [Google Scholar]
- Rankin, R.; Tikhonchuk, V.T. Dispersive shear Alfvén waves on model Tsyganenko magnetic field lines. Adv. Space Res. 2001, 28, 1595. [Google Scholar] [CrossRef]
- Vellante, M.; Piersanti, M.; Heilig, B.; Reda, J.; Corpo, A.D. Magnetospheric plasma density inferred from field line resonances: Effects of using different magnetic field models. In Proceedings of the 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 16–23 August 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Singer, H.J.; Southwood, D.J.; Walker, R.J.; Kivelson, M.G. Alfven wave resonances in a realistic magnetospheric magnetic field geometry. J. Geophys. Res. 1981, 86, 4589. [Google Scholar] [CrossRef] [Green Version]
- Thébault, E.; Finlay, C.C.; Beggan, C.D.; Alken, P.; Aubert, J.; Barrois, O.; Bertr, F.; Bondar, T.; Boness, A.; Brocco, L.; et al. International Geomagnetic Reference Field: The 12th generation. Earth Planet Sp. 2015, 67, 79. [Google Scholar] [CrossRef]
- Tsyganenko, N.A. A model of the magnetosphere with a dawn-dusk asymmetry, 1, Mathematical structure. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef] [Green Version]
- Tsyganenko, N.A. A model of the near magnetosphere with a dawn-dusk asymmetry, 2, Parameterization and fitting to observations. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Menk, F.W.; Kale, Z.; Sciffer, M.; Robinson, P.; Waters, C.L.; Grew, R.l.; Clilverd, M.; Mann, I. Remote sensing the plasmasphere, plasmapause, plumes and other features using ground-based magnetometers. J. Space Weather Space Clim. 2014, 4, A34. [Google Scholar] [CrossRef] [Green Version]
- Piersanti, M.; Villante, U.; Waters, C.; Coco, I. The 8 June 2000 ULF wave activity: A case study. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Hennermann, K. ERA5 Data Documentation. In Copernicus Knowledge Base. 2017. Available online: https://confluence.ecmwf.int/display/CKB/ERA5+data+documentation (accessed on 19 October 2017).
- Tsuda, T.; Murayama, Y.; Nakamura, T.; Vincent, R.A.; Manson, A.H.; Meek, C.E.; Wilson, R.L. Variations of the gravity wave characteristics with height, season and latitude revealed by comparative observations. J. Atmos. Terr. Phys. 1994, 56, 555–568. [Google Scholar] [CrossRef]
- Tsuda, T.; Nishida, M.; Rocken, C.; Ware, R.H. A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J. Geophys. Res. 2000, 105, 7257–7273. [Google Scholar] [CrossRef]
- Yang, S.-S.; Asano, T.; Hayakawa, M. Abnormal gravity wave activity in the stratosphere prior to the 2016 Kumamoto earthquakes. J. Geophys. Res. Space Phys. 2019, 124. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D.P. Lithosphere–atmosphere–ionosphere coupling (LAIC) model—An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kasahara, Y.; Nakamura, T.; Hobara, Y.; Rozhnoi, A.; Solovieva, M.; Molchanov, O.; Korepanov, V. Atmospheric gravity waves as a possible candidate for seismo-ionospheric perturbation. J. Atmo. Electr. 2011, 31, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, M.; Kasahara, Y.; Nakamura, T.; Muto, F.; Horie, T.; Maekawa, S.; Hobara, Y.; Rozhnoi, A.A.; Solovieva, M.; Molchanov, O.A. A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes. J. Geophys. Res. 2010, 115, A09305. [Google Scholar] [CrossRef]
- Hocke, K.; Schlegel, K. A review of atmospheric gravity waves and travelling ionospheric disturbances. Ann. Geophys. 1996, 14, 1996. [Google Scholar] [CrossRef]
- Stubbe, P.; Hagfors, T. The Earth’s ionosphere: A wall-less plasma laboratory. Surv. Geophys. 1997, 18, 57–127. [Google Scholar] [CrossRef]
- Cappello, S.; Escande, D.F. Bifurcation in viscoelastic MHD: The Hartmann Number and the Reversed Field Pinch. Phys. Rev. Lett. 2000, 85, 3838–3841. [Google Scholar] [CrossRef]
- Cummings, W.D.; O’Sullivan, R.J.; Coleman, P.J. Standing Alfvén waves in the magnetosphere. J. Geophys. Res. 1969, 74, 778–793. [Google Scholar] [CrossRef]
FLR | Date | UTC Time | M | Latitude | Longitude | Region | |
---|---|---|---|---|---|---|---|
X | 17/07/2001 | 14.50.57 | 0 | 6.3 | 3.061 S | 148.180 E | Bismarck Sea |
X | 27/11/2002 | 00.17.20 | 1 | 5.4 | 12.279 N | 120.753 E | Philippines |
X | 12/12/2003 | 08.07.30 | 1 | 5.2 | 0.110 S | 123.991 E | Indonesia |
X | 28/01/2004 | 07.41.04 | 1 | 5.7 | 4.931 S | 153.584 E | New Guinea |
- | 09/02/2006 | 05.44.30 | 2 | 6.2 | 4.810 S | 133.063 E | Indonesia |
X | 17/05/2006 | 01.21.26 | 1 | 6.0 | 3.743 S | 144.305 E | New Guinea |
X | 24/06/2006 | 00.03.07 | 1 | 6.3 | 3.071 S | 127.183 E | Indonesia |
X | 16/09/2007 | 01.20.38 | 2 | 6.4 | 2.763 S | 101.106 E | Indonesia |
- | 26/10/2007 | 16.34.47 | 0 | 6.0 | 3.271 S | 143.763 E | New Guinea |
X | 14/11/2007 | 17.44.04 | 2 | 5.7 | 23.215 S | 70.526 W | Chile |
- | 25/07/2008 | 20.11.07 | 1 | 6.5 | 5.808 S | 146.658 E | New Guinea |
X | 11/09/2008 | 00.00.02 | 1 | 6.6 | 1.885 N | 127.363 E | Indonesia |
- | 19/12/2008 | 00.34.58 | 2 | 6.8 | 20.372 N | 146.339 E | Mariana Islands |
X | 06/01/2009 | 19.56.25 | 2 | 6.0 | 0.566 S | 132.784 E | Indonesia |
X | 16/02/2009 | 00.33.36 | 2 | 6.1 | 3.664 S | 149.608 E | Bismarck Sea |
X | 02/03/2009 | 00.03.39 | 1 | 6.5 | 1.105 S | 119.868 E | Indonesia |
X | 25/07/2009 | 18.41.58 | 2 | 5.8 | 1.869 N | 97.020 E | Indonesia |
X | 15/10/2009 | 03.34.28 | 1 | 6.0 | 1.111 N | 85.322 W | Ecuador |
- | 24/02/2008 | 04.36.29 | 2 | 6.5 | 3.741 S | 101.986 E | Indonesia |
NA | 07/06/2008 | 19.10.48 | 2 | 5.0 | 3.552 S | 140.851 E | Indonesia |
- | 02/07/2008 | 00.08.31 | 2 | 5.2 | 12.451 N | 44.202 W | Mid-Atlantic |
X | 07/02/2008 | 23.16.41 | 1 | 5.3 | 17.558 N | 144.922 E | Mariana Islands |
- | 19/12/2006 | 12.48.16 | 2 | 6.0 | 2.458 N | 98.000 E | Idonesia |
X | 16/11/2009 | 18.34.24 | 0 | 5.2 | 19.556 S | 70.365 W | Chile |
NA | 11/01/2009 | 14.03.49 | 1 | 5.6 | 6.388 S | 147.423 E | New Guinea |
NA | 11/01/2009 | 14.15.54 | 1 | 5.0 | 0.769 S | 133.506 E | Indonesia |
X | 16/09/2008 | 21.47.14 | 2 | 5.7 | 17.438 N | 73.915 E | India |
X | 24/05/2003 | 01.46.06 | 1 | 5.9 | 14.428 N | 53.813 E | Owen region |
- | 14/11/2007 | 18.55.49 | 2 | 5.1 | 22.670 S | 70.292 W | Chile |
NA | 26/10/2007 | 16.34.47 | 1 | 5.6 | 3.271 S | 143.7630 E | New Guinea |
X | 22/11/2003 | 09.30.03 | 1 | 5.1 | 13.281 N | 57.466 E | Arabic Sea |
X | 12/03/2008 | 01.32.34 | 2 | 6.0 | 1.934 N | 132.519 E | Indonesia |
X | 02/02/2013 | 14.17.33 | 1 | 6.9 | 42.8 N | 143.27 E | Japan |
- | 25/10/2013 | 17.10.16 | 2 | 7.1 | 37.194 N | 144.66 E | Japan |
X | 06/10/2017 | 07.59.32 | 1 | 6.2 | 37.325 N | 144.02 E | Japan |
X | 08/01/2019 | 12.39.31 | 2 | 6.3 | 30.526 N | 131.113 E | Japan |
X | 18/06/2019 | 13.22.22 | 0 | 6.4 | 38.563 N | 139.504 E | Japan |
X | 27/07/2019 | 18.31.07 | 1 | 6.3 | 33.015 N | 137.413 E | Japan |
X | 19/04/2020 | 20.39.08 | 2 | 6.3 | 38.858 N | 141.99 E | Japan |
- | 21/11/2016 | 20.58.47 | 1 | 6.9 | 38.296 N | 141.642 E | Japan |
X | 05/08/2018 | 11.58.00 | 0 | 6.5 | 8.28 S | 116.4 E | Indonesia |
X | 25/04/2015 | 06.45.21 | 2 | 6.6 | 28.18 N | 84.72 E | Nepal |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piersanti, M.; Burger, W.J.; Carbone, V.; Battiston, R.; Iuppa, R.; Ubertini, P. On the Geomagnetic Field Line Resonance Eigenfrequency Variations during Seismic Event. Remote Sens. 2021, 13, 2839. https://doi.org/10.3390/rs13142839
Piersanti M, Burger WJ, Carbone V, Battiston R, Iuppa R, Ubertini P. On the Geomagnetic Field Line Resonance Eigenfrequency Variations during Seismic Event. Remote Sensing. 2021; 13(14):2839. https://doi.org/10.3390/rs13142839
Chicago/Turabian StylePiersanti, Mirko, William Jerome Burger, Vincenzo Carbone, Roberto Battiston, Roberto Iuppa, and Pietro Ubertini. 2021. "On the Geomagnetic Field Line Resonance Eigenfrequency Variations during Seismic Event" Remote Sensing 13, no. 14: 2839. https://doi.org/10.3390/rs13142839
APA StylePiersanti, M., Burger, W. J., Carbone, V., Battiston, R., Iuppa, R., & Ubertini, P. (2021). On the Geomagnetic Field Line Resonance Eigenfrequency Variations during Seismic Event. Remote Sensing, 13(14), 2839. https://doi.org/10.3390/rs13142839