Regional-Scale Systematic Mapping of Archaeological Mounds and Detection of Looting Using COSMO-SkyMed High Resolution DEM and Satellite Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Archaeological Setting of Wasit, Iraq
2.2. Digital Elevation Model (DEM) Data
2.2.1. Global Medium Resolution Data
2.2.2. High Resolution COSMO-SkyMed Data
2.3. Other Satellite Imagery
2.4. Ancillary Data
2.5. Archaeological Mapping of Tells in Wasit
3. Results
3.1. COSMO-SkyMed DEM Coverage and Accuracy
3.2. Visibility and Spatial Analysis of Archaeological Deposits
3.3. Condition Assessment and Impact of Looting
4. Discussion
4.1. Assessment of COSMO-SkyMed DEM
- At equal accuracy, the resulting DEM is of much smaller horizontal posting and therefore enhanced resolution;
- If seasonal and contextual anthropogenic factors are accounted for, acquisitions can be tasked to achieve a DEM representing the situation at a given time window (which may also match with the timings of the terrestrial surveys undertaken by field archaeologists, if allowed);
- New acquisitions can be tasked over time to generate new DEM products for topographic change detection analysis (although this was beyond the scope of this research).
4.2. Spatial Distribution of Archaeological Deposits and Tells
4.3. Monitoring Strategies for Condition Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chase, A.S.Z.; Chase, D.Z.; Chase, A.F. LiDAR for Archaeological Research and the Study of Historical Landscapes; Springer: Cham, Switzerland, 2017; pp. 89–100. [Google Scholar]
- Opitz, R.S.; Cowley, D.C. Interpreting Archaeological Topography Airborne Laser Scanning, 3D Data and Ground Observation; Oxbow Books: Oakville, CT, USA, 2013; ISBN 978-1-84217-516-3. [Google Scholar]
- Kaimaris, D. Ancient Theaters in Greece and the Contribution of Geoinformatics to Their Macroscopic Constructional Features. Sci. Cult. 2018, 4, 9–25. [Google Scholar]
- Diwan, G.A. GIS-based comparative archaeological predictive models: A first application to iron age sites in the bekaa (Lebanon). Mediterr. Archaeol. Archaeom. 2020, 20, 143–158. [Google Scholar] [CrossRef]
- Wheatley, D.; Gillings, M. Spatial Technology and Archaeology; Taylor & Francis Group: London, UK, 2002. [Google Scholar]
- Conolly, J.; Lake, M. Geographical Information Systems in Archaeology; Cambridge University Press: Cambridge, UK, 2006; ISBN 9780511807459. [Google Scholar]
- Evans, D.; Traviglia, A. Uncovering Angkor: Integrated remote sensing applications in the archaeology of early Cambodia. In Remote Sensing and Digital Image Processing; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Monterroso-Checa, A. Remote sensing and archaeology from Spanish LiDAR-PNOA: Identifying the amphitheatre of the roman city of torreparedones (Córdoba-Andalucía-Spain). Mediterr. Archaeol. Archaeom. 2017, 17. [Google Scholar] [CrossRef]
- Lausch, A.; Schaepman, M.E.; Skidmore, A.K.; Truckenbrodt, S.C.; Hacker, J.M.; Baade, J.; Bannehr, L.; Borg, E.; Bumberger, J.; Dietrich, P.; et al. Linking the remote sensing of geodiversity and traits relevant to biodiversity—Part II: Geomorphology, terrain and surfaces. Remote Sens. 2020, 12, 3690. [Google Scholar] [CrossRef]
- Tapete, D.; Banks, V.; Jones, L.; Kirkham, M.; Garton, D. Contextualising archaeological models with geological, airborne and terrestrial LiDAR data: The Ice Age landscape in Farndon Fields, Nottinghamshire, UK. J. Archaeol. Sci. 2017, 81, 31–48. [Google Scholar] [CrossRef]
- Risbøl, O.; Gustavsen, L. LiDAR from drones employed for mapping archaeology–Potential, benefits and challenges. Archaeol. Prospect. 2018, 25, 329–338. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–380. [Google Scholar] [CrossRef]
- Takaku, J.; Tadono, T.; Tsutsui, K. Generation of high resolution global DSM from ALOS PRISM. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS TC IV Symposium, Suzhou, China, 14–16 May 2014; Volume XL-4, pp. 243–248. [Google Scholar]
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise Global DEM Generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 71. [Google Scholar] [CrossRef] [Green Version]
- Tachikawa, T.; Hato, M.; Kaku, M.; Iwasaki, A. Characteristics of ASTER GDEM version 2. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 3657–3660. [Google Scholar]
- Biswas, T.; Pandey, K. Satellite Photogrammetry based DEM Generation using Satellite Stereo Pair Images and Terrain Parameters Extraction. Int. J. Adv. Remote. Sens. GIS 2016, 4, 64–76. [Google Scholar]
- Lu, Z.; Jung, H.S.; Zhang, L.; Lee, W.; Lee, C.W.; Dzurisin, D. Digital elevation model generation from satellite interferometric synthetic aperture radar. In Advances in Mapping from Remote Sensor Imagery: Techniques and Applications; CRC Press: Boca Raton, FL, USA, 2012; pp. 119–144. ISBN 9781439874592. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Zeng, Q.; Jiao, J. Quality assessment of tandem-x dems, srtm and aster gdem on selected chinese sites. Remote Sens. 2021, 13, 1304. [Google Scholar] [CrossRef]
- Wiseman, J.; El-Baz, F. Remote Sensing in Archaeology; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 9780387444536. [Google Scholar]
- Orengo, H.A.; Petrie, C.A. Multi-scale relief model (MSRM): A new algorithm for the visualization of subtle topographic change of variable size in digital elevation models. Earth Surf. Process. Landf. 2018, 43, 1361–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hageman, J.B.; Bennett, D.A. Construction of digital elevation models for archaeological applications. In Practical Applications of GIS for Archaeologists: A Predictive Modelling Toolkit; Taylor & Francis: Philadelphia, PA, USA, 1999; ISBN 9781482262964. [Google Scholar]
- Malinverni, E.S.; Pierdicca, R.; Bozzi, C.A.; Colosi, F.; Orazi, R. Analysis and processing of nadir and stereo VHR pleiadés images for 3D mapping and planning the land of Nineveh, Iraqi Kurdistan. Geosciences 2017, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Gupta, E.; Rajani, M.B.; Menon, S. Remote sensing investigation of the Buddhist archaeological landscape around Sannati, India. J. Archaeol. Sci. Rep. 2019, 25, 294–307. [Google Scholar] [CrossRef]
- Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Borla Tridon, D.; Bräutigam, B.; Bachmann, M.; Schulze, D.; Fritz, T.; Huber, M.; et al. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogramm. Remote Sens. 2017, 132, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Erasmi, S.; Rosenbauer, R.; Buchbach, R.; Busche, T.; Rutishauser, S. Evaluating the quality and accuracy of TanDEM-X digital elevation models at archaeological sites in the Cilician Plain, Turkey. Remote Sens. 2014, 6, 9475–9493. [Google Scholar] [CrossRef] [Green Version]
- Rutishauser, S.; Erasmi, S.; Rosenbauer, R.; Buchbach, R. SARchaeology—Detecting Palaeochannels Based on High Resolution Radar Data and Their Impact of Changes in the Settlement Pattern in Cilicia (Turkey). Geosciences 2017, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Tapete, D.; Cigna, F. Trends and perspectives of space-borne SAR remote sensing for archaeological landscape and cultural heritage applications. J. Archaeol. Sci. Rep. 2017, 14, 716–726. [Google Scholar] [CrossRef] [Green Version]
- Covello, F.; Battazza, F.; Coletta, A.; Lopinto, E.; Fiorentino, C.; Pietranera, L.; Valentini, G.; Zoffoli, S. COSMO-SkyMed an existing opportunity for observing the Earth. J. Geodyn. 2010, 49, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Tapete, D.; Cigna, F. COSMO-SkyMed SAR for detection and monitoring of archaeological and cultural heritage sites. Remote Sens. 2019, 11, 1326. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, N.; Lorusso, R.; Milillo, G. Accuracy of high resolution CSK interferometric Digital Elevation Models. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 2967–2970. [Google Scholar]
- Guimarães, U.S.; Narvaes, I.d.S.; Galo, M.d.L.B.T.; da Silva, A.d.Q.; Camargo, P.d.O. Radargrammetric approaches to the flat relief of the amazon coast using COSMO-SkyMed and TerraSAR-X datasets. ISPRS J. Photogramm. Remote Sens. 2018, 145, 284–296. [Google Scholar] [CrossRef] [Green Version]
- Battagliere, M.L.; Virelli, M.; Lenti, F.; Lauretta, D.; Coletta, A. A Review of the Exploitation of the Operational Mission COSMO-SkyMed: Global Trends (2014–2017). Space Policy 2019, 48, 60–67. [Google Scholar] [CrossRef]
- Salvini, R.; Carmignani, L.; Francioni, M.; Casazza, P. Elevation modelling and palaeo-environmental interpretation in the Siwa area (Egypt): Application of SAR interferometry and radargrammetry to COSMO-SkyMed imagery. Catena 2015, 129, 46–62. [Google Scholar] [CrossRef]
- Menze, B.H.; Ur, J.A.; Sherratt, A.G. Detection of ancient settlement mounds: Archaeological survey based on the SRTM terrain model. Photogramm. Eng. Remote Sens. 2006, 72, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, T.J. Archaeological Landscapes of the Near East; The University of Arizona Press: Tucson, AZ, USA, 2003; ISBN 9780816521739. [Google Scholar]
- Sherratt, A. Spotting tells from space. Antiquity 2004, 78. [Google Scholar]
- Menze, B.H.; Ur, J.A. Mapping patterns of long-term settlement in Northern Mesopotamia at a large scale. Proc. Natl. Acad. Sci. USA 2012, 109, E778–E787. [Google Scholar] [CrossRef] [Green Version]
- Jotheri, J.; de Gruchy, M.W.; Almaliki, R.; Feadha, M. Remote sensing the archaeological traces of Boat Movement in the Marshes of Southern Mesopotamia. Remote Sens. 2019, 11, 2474. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.M. Heartland of Cities: Surveys of Ancient Settlement and Land Use on the Central Floodplain of the Euphrates; University of Chicago Press: Chicago, IL, USA, 1981. [Google Scholar]
- Ur, J. The archaeological renaissance in the Kurdistan Region of Iraq. Near East. Archaeol. 2017, 80, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, N.; Al-Hussainy, A.; Valeri, M.; Zaina, F. Assessing Endangered Cultural Heritage in Central Iraq. Methods and Perspectives of the QADIS Survey Project. Sumer. J. Archaeol. Iraq Arab World 2018, 64, 11–34. [Google Scholar]
- Zaina, F. A Risk Assessment for Cultural Heritage in Southern Iraq: Framing Drivers, Threats and Actions Affecting Archaeological Sites. Conserv. Manag. Archaeol. Sites 2019, 21, 184–206. [Google Scholar] [CrossRef]
- Marchetti, N.; Einwag, B.; Al-Hussainy, A.; Luglio, G.; Marchesi, G.; Otto, A.; Scazzosi, G.; Leoni, E.; Valeri, M.; Zaina, F. QADIS. The Iraqi-Italian 2016 Survey Season in the South-Eastern Region of Qadisiyah. Sumer. J. Archaeol. Iraq Arab World 2017, 63, 63–92. [Google Scholar]
- Emberling, G.; Hanson, K. Catastrophe! The Looting and Destruction of Iraq’s Past; Oriental Institute of the University of Chicago: Chicago, IL, USA, 2008; ISBN 9781885923561. [Google Scholar]
- NASA Shuttle Radar Topography Mission (SRTM) Shuttle Radar Topography Mission (SRTM) Global. Distributed by OpenTopography. Available online: https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.042013.4326.1 (accessed on 6 December 2020).
- Rodríguez, E.; Morris, C.S.; Belz, J.E. A global assessment of the SRTM performance. Photogramm. Eng. Remote Sens. 2006, 72, 249–260. [Google Scholar] [CrossRef] [Green Version]
- OpenTopography-ALOS World 3D-30m Ellipsoidal. Available online: https://portal.opentopography.org/raster?opentopoID=OTALOS.082017.4326.1 (accessed on 6 December 2020).
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 171–182. [Google Scholar] [CrossRef]
- Digital Elevation Model-SRTM X-band (DLR) | UN-SPIDER Knowledge Portal. Available online: https://un-spider.org/links-and-resources/data-sources/digital-elevation-model-srtm-x-band-dlr (accessed on 6 December 2020).
- Zebker, H.A.; Werner, C.L.; Rosen, P.A.; Hensley, S. Accuracy of Topographic Maps Derived from ERS-1 Interferometric Radar. IEEE Trans. Geosci. Remote Sens. 1994, 32, 823–836. [Google Scholar] [CrossRef] [Green Version]
- Abdelfattah, R.; Nicolas, J.M. Topographic SAR interferometry formulation for high-precision DEM generation. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2415–2426. [Google Scholar] [CrossRef]
- Crosetto, M. Calibration and validation of SAR interferometry for DEM generation. ISPRS J. Photogramm. Remote Sens. 2002, 57, 213–227. [Google Scholar] [CrossRef]
- Lombardi, N.; Lorusso, R.; Fasano, L.; Milillo, G. Interferometric COSMO-SkyMed Spotlight DEM generation. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6495–6498. [Google Scholar]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Pepe, A.; Calò, F. A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth’s Surface displacements. Appl. Sci. 2017, 7, 1264. [Google Scholar] [CrossRef] [Green Version]
- Italian Space Agency-ASI. COSMO-SkyMed Mission and Products Description; Italian Space Agency-ASI: Rome, Italy, 2019; Available online: https://www.asi.it/wp-content/uploads/2019/08/COSMO-SkyMed-Mission-and-Products-Description_rev3-2.pdf (accessed on 1 July 2021).
- Day, D.A.; Logsdon, J.M.; Latell, B. Eye in the Sky: The Story of the Corona Spy Satellites. Optom. Vis. Sci. 1998, 75, 779–780. [Google Scholar] [CrossRef]
- USGS EROS Archive-Declassified Data-Declassified Satellite Imagery-1. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-declassified-data-declassified-satellite-imagery-1?qt-science_center_objects=0#qt-science_center_objects (accessed on 25 July 2021).
- Casana, J.; Cothren, J. The CORONA Atlas Project: Orthorectification of CORONA Satellite Imagery and Regional-Scale Archaeological Exploration in the Near East. In Mapping Archaeological Landscapes from Space. SpringerBriefs in Archaeology; Springer: New York, NY, USA, 2013; Volume 5. [Google Scholar] [CrossRef]
- Corona @ CAST, UA. Available online: https://corona.cast.uark.edu/ (accessed on 7 May 2020).
- Casana, J.; Cothren, J.; Kalayci, T. Swords into Ploughshares: Archaeological Applications of CORONA Satellite Imagery in the Near East. Internet Archaeol. 2012, 32. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F. Appraisal of opportunities and perspectives for the systematic condition assessment of heritage sites with copernicus Sentinel-2 high-resolution multispectral imagery. Remote Sens. 2018, 10, 561. [Google Scholar] [CrossRef] [Green Version]
- Tapete, D.; Cigna, F. Detection of archaeological looting from space: Methods, achievements and challenges. Remote Sens. 2019, 11, 2389. [Google Scholar] [CrossRef] [Green Version]
- Bini, M.; Isola, I.; Zanchetta, G.; Ribolini, A.; Ciampalini, A.; Baneschi, I.; Mele, D.; D’Agata, A.L. Identification of Leveled Archeological Mounds (Höyük) in the Alluvial Plain of the Ceyhan River (Southern Turkey) by Satellite Remote-Sensing Analyses. Remote Sens. 2018, 10, 241. [Google Scholar] [CrossRef] [Green Version]
- Shibanov, F.A. The essence and content of the history of cartography and the results of fifty years of work by soviet scholars. Cartogr. Int. J. Geogr. Inf. Geovisualiz. 1975, 12, 141–145. [Google Scholar] [CrossRef]
- Nikishov, M.I.; Terekhov, N.M. 50 Years Of Soviet Cartography. Cartogr. Int. J. Geogr. Inf. Geovis. 1968, 5, 122–132. [Google Scholar] [CrossRef]
- US Department of the Army. Soviet Topographic Map Symbols, Technical Manual N. 30-548; U.S. Government Printing Office: Washington, DC, USA, 1958. [Google Scholar]
- Rondelli, B.; Stride, S.; García-Granero, J.J. Soviet military maps and archaeological survey in the Samarkand region. J. Cult. Herit. 2013, 14, 270–276. [Google Scholar] [CrossRef]
- Pedersén, O. Ancient Near East on Google Earth: Problems, Preliminary Results, and Prospects. In Proceedings of the 7th International Congress on the Archaeology of the Ancient Near East: 3, Fieldworks and Recent Research, The British Museum and UCL, London, UK, 12–16 April 2010; Matthews, R., Curtis, J.W., Eds.; Harrassowitz: Leipzig, Germany, 2012; pp. 385–393. [Google Scholar]
- Pedersén, O. Waters at Babylon. In A History of Water: Series III, Volume 1; Bloomsbury Academic: London, UK, 2020. [Google Scholar]
- NIMA (United States National Imagery Mapping Agency) Iraq-Water Courses (Rivers and Streams)—Humanitarian Data Exchange. Available online: https://data.humdata.org/dataset/iraq-water-courses (accessed on 15 December 2020).
- Traviglia, A. Integration of MIVIS Hyperspectral Remotely Sensed Data and Geographical Information Systems to Study Ancient Landscapes: The Aquileia Case Study. Agri Centuriati 2005, 2, 139–170. [Google Scholar] [CrossRef]
- Opitz, R.; Herrmann, J. Recent Trends and Long-standing Problems in Archaeological Remote Sensing. J. Comput. Appl. Archaeol. 2018, 1, 19–41. [Google Scholar] [CrossRef] [Green Version]
- Tapete, D.; Cigna, F.; Donoghue, D.N.M. “Looting marks” in space-borne SAR imagery: Measuring rates of archaeological looting in Apamea (Syria) with TerraSAR-X Staring Spotlight. Remote Sens. Environ. 2016, 178, 42–58. [Google Scholar] [CrossRef] [Green Version]
- Lippolis, C. Patterns of Destruction: The Looting of Tūlūl al Baqarat in the last 20 years. Sumer. J. Archaeol. Iraq Arab World 2018, 64, 49–64. [Google Scholar]
- Orengo, H.A.; Conesa, F.C.; Garcia-Molsosa, A.; Lobo, A.; Green, A.S.; Madella, M.; Petrie, C.A. Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data. Proc. Natl. Acad. Sci. USA 2020, 117, 18240–18250. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, T.J.; Galiatsatos, N.; Lawrence, D.; Ricci, A.; Dunford, R.; Philip, G. Late chalcolithic and Early Bronze Age landscapes of settlement and mobility in the Middle Euphrates: A reassessment. Levant 2012, 44, 139–185. [Google Scholar] [CrossRef] [Green Version]
Tile ID | Input Dates | Beam | θ [°] | β [°] | Orbit | BP [m] | BPc [m] | ha [m] |
---|---|---|---|---|---|---|---|---|
#1 | 17/06/2018–18/06/2018 | H4_04 | 29.0 | 32.2 | asc. | −856 | 2027 | 6.2 |
#2 | 16/05/2018–17/05/2018 | H4_03 | 26.5 | 29.3 | asc. | +976 | 1782 | 4.9 |
#3 | 25/04/2018–26/04/2018 | H4_07 | 33.6 | 37.4 | asc. | −1043 | 2551 | 6.1 |
#4 | 03/02/2019–04/02/2019 | H4_0A | 18.1 | 19.9 | desc. | −668 | 1100 | 4.7 |
#5 |
Tile ID | hmin [m] | hmax [m] | No Data [%] | SRTM_GL1 Δhi [m] | AW3D30 Δhi [m] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Av. ± StD. | RMSE | Min. | Max. | Av. ± StD. | RMSE | ||||
#1 | −7.74 | +13.17 | 3.3 | −26.02 | +27.09 | −0.04 ± 1.28 | +1.28 | −17.06 | +50.76 | −0.46 ± 1.41 | +1.48 |
#2 | −4.07 | +21.12 | 10.0 | −43.74 | +40.29 | −0.23 ± 2.64 | +2.65 | −17.69 | +15.56 | −0.13 ± 2.32 | +2.32 |
#3 | −1.52 | +25.66 | 23.5 | −29.42 | +24.43 | −0.39 ± 1.92 | +1.96 | −16.94 | +25.83 | −0.14 ± 1.39 | +1.40 |
#4 | +14.55 | +40.67 | 12.0 | −26.05 | +13.48 | −0.16 ± 1.69 | +1.69 | −12.64 | +10.71 | −0.04 ± 1.23 | +1.23 |
#5 | +15.42 | +38.15 | 18.8 | −22.66 | +18.47 | −0.16 ± 1.74 | +1.75 | −26.41 | +42.27 | −0.34 ± 1.42 | +1.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tapete, D.; Traviglia, A.; Delpozzo, E.; Cigna, F. Regional-Scale Systematic Mapping of Archaeological Mounds and Detection of Looting Using COSMO-SkyMed High Resolution DEM and Satellite Imagery. Remote Sens. 2021, 13, 3106. https://doi.org/10.3390/rs13163106
Tapete D, Traviglia A, Delpozzo E, Cigna F. Regional-Scale Systematic Mapping of Archaeological Mounds and Detection of Looting Using COSMO-SkyMed High Resolution DEM and Satellite Imagery. Remote Sensing. 2021; 13(16):3106. https://doi.org/10.3390/rs13163106
Chicago/Turabian StyleTapete, Deodato, Arianna Traviglia, Eleonora Delpozzo, and Francesca Cigna. 2021. "Regional-Scale Systematic Mapping of Archaeological Mounds and Detection of Looting Using COSMO-SkyMed High Resolution DEM and Satellite Imagery" Remote Sensing 13, no. 16: 3106. https://doi.org/10.3390/rs13163106
APA StyleTapete, D., Traviglia, A., Delpozzo, E., & Cigna, F. (2021). Regional-Scale Systematic Mapping of Archaeological Mounds and Detection of Looting Using COSMO-SkyMed High Resolution DEM and Satellite Imagery. Remote Sensing, 13(16), 3106. https://doi.org/10.3390/rs13163106