Estimating Rainfall with Multi-Resource Data over East Asia Based on Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Satellite Observations and Numerical Products
2.1.2. Satellite-Gauge Product
2.1.3. Rain Gauge Observations
2.1.4. Data Processing
2.2. Methods
2.2.1. Random Forests
2.2.2. Resampling Technique for Imbalanced Data
3. Implementation Details
3.1. Model Tuning and Training
3.2. Validation and Testing
4. Results
4.1. Rain Area Delineation
4.2. Precipitation Grades’ Estimation
4.3. The Rainfall Retrieval Integrated Model
4.4. Comparison with Rain Gauge Stations
4.5. Comparison with GFS Model
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACC | Accuracy |
CAPE | Convection Available Potential Energy |
CIMISS | China Integrated Meteorological Information Sharing System |
CIN | Convective Inhibition |
CMORPH | Climate Prediction Center Morphing Method |
CSI | Critical Success Index |
CST | Convective-Stratiform Technology |
DPR | Dual-frequency Precipitation Radar |
ETS | Equitable Threat Score |
FAR | False-Alarm Ratio |
GATE | GARP Atlantic Tropical Experiment |
GFS | Global Forest System |
GMI | GPM Microwave Imager |
GOES | Geostationary Operational Environmental Satellite |
GPI | GOES Precipitation Index |
GPM | Global Precipitation Measurement |
Himawari-8/AHI | Advanced Himawari Imager-8 |
HSS | Heike skill score |
IMERG | Integrated Multi-satellite Retrievals for GPM |
IR | Infrared |
JMA | Japan Meteorological Agency |
LI | Best four-layer Lifted Index |
LST | Land Surface Temperature |
MSG-SEVIRI | Meteosat Second Generation-Spinning Enhanced Visible |
and InfraRed Imager | |
NWP | Numerical Weather Product |
OOB score | Out-Of-Bag score |
PERSIANN | Precipitation Estimation from Remotely Sensed Information |
using Artificial Neural Networks | |
PMW | Passive Microwave |
POD | Probability Of Detection |
PW | Precipitable Water |
RH | Relative Humidity |
RF | Random Forest |
SAZ | Satellite Zenith Angle |
SMOTE | Synthetic Minority Over-sampling Technique |
TRMM | Tropical Rainfall Measuring Mission |
U | U component of planetary boundary layer wind |
V | V component of planetary boundary layer wind |
References
- Cheng, H.; Wu, T.; Dong, W. Thermal contrast between the middle-latitude Asian continent and adjacent ocean and its connection to the East Asian summer precipitation. J. Clim. 2008, 21, 4992–5007. [Google Scholar] [CrossRef]
- Yao, C.; Yang, S.; Qian, W.; Lin, Z.; Wen, M. Regional summer precipitation events in Asia and their changes in the past decades. J. Geophys. Res. Atmos. 2008, 113, D17. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Hou, W.; Feng, G. Atmospheric circulation patterns over East Asia and their connection with summer precipitation and surface air temperature in Eastern China during 1961–2013. J. Meteorol. Res. 2018, 32, 203–218. [Google Scholar] [CrossRef]
- Huang, R.; Liu, Y.; Feng, T. Interdecadal change of summer precipitation over Eastern China around the late-1990s and associated circulation anomalies, internal dynamical causes. Chin. Sci. Bull. 2013, 58, 1339–1349. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.; Wang, M.; Yang, L.; Wang, X.; Feng, G. Water vapor transport related to the interdecadal shift of summer precipitation over northern East Asia in the late 1990s. J. Meteorol. Res. 2018, 32, 781–793. [Google Scholar] [CrossRef]
- Neeck, S.P.; Kakar, R.K.; Azarbarzin, A.A.; Hou, A.Y. Global precipitation measurement (gpm) implementation. In Sensors, Systems, and Next-Generation Satellites XIV. International Society for Optics and Photonics; SPIE: Toulouse, France, 2010; Volume 7826, p. 78260X. [Google Scholar]
- Du, L.; Tian, Q.; Yu, T.; Meng, Q.; Jancso, T.; Udvardy, P.; Huang, Y. A comprehensive drought monitoring method integrating MODIS and TRMM data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 245–253. [Google Scholar] [CrossRef]
- Panegrossi, G.; Casella, D.; Dietrich, S.; Marra, A.C.; Sano, P.; Mugnai, A.; Baldini, L.; Roberto, N.; Adirosi, E.; Cremonini, R.; et al. Use of the GPM constellation for monitoring heavy precipitation events over the Mediterranean region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2733–2753. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, J.; Cheng, F.; Deng, H.; Chen, S. Drought monitoring in Yunnan Province based on a TRMM precipitation product. Nat. Hazards 2020, 104, 2369–2387. [Google Scholar] [CrossRef]
- Anagnostou, E.N.; Maggioni, V.; Nikolopoulos, E.I.; Meskele, T.; Hossain, F.; Papadopoulos, A. Benchmarking high-resolution global satellite rainfall products to radar and rain-gauge rainfall estimates. IEEE Trans. Geosci. Remote Sens. 2009, 48, 1667–1683. [Google Scholar] [CrossRef]
- Stampoulis, D.; Anagnostou, E.N. Evaluation of global satellite rainfall products over continental Europe. J. Hydrometeorol. 2012, 13, 588–603. [Google Scholar] [CrossRef]
- Dinku, T.; Chidzambwa, S.; Ceccato, P.; Connor, S.; Ropelewski, C. Validation of high-resolution satellite rainfall products over complex terrain. Int. J. Remote Sens. 2008, 29, 4097–4110. [Google Scholar] [CrossRef]
- Bitew, M.M.; Gebremichael, M. Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Satgé, F.; Xavier, A.; Pillco Zolá, R.; Hussain, Y.; Timouk, F.; Garnier, J.; Bonnet, M.P. Comparative assessments of the latest GPM mission’s spatially enhanced satellite rainfall products over the main Bolivian watersheds. Remote Sens. 2017, 9, 369. [Google Scholar] [CrossRef] [Green Version]
- Sorooshian, S.; Hsu, K.L.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef] [Green Version]
- Dinku, T.; Connor, S.J.; Ceccato, P. Comparison of CMORPH and TRMM-3B42 over mountainous regions of Africa and South America. In Satellite Rainfall Applications for Surface Hydrology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 193–204. [Google Scholar]
- Chen, F.; Li, X. Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China. Remote Sens. 2016, 8, 472. [Google Scholar] [CrossRef] [Green Version]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The Global Precipitation Measurement (GPM) mission for science and society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, R.; Lai, C.; Chen, J. Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility. Atmos. Res. 2017, 196, 151–163. [Google Scholar] [CrossRef]
- Foelsche, U.; Kirchengast, G.; Fuchsberger, J.; Tan, J.; Petersen, W.A. Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrol. Earth Syst. Sci. 2017, 21, 6559–6572. [Google Scholar]
- Hosseini-Moghari, S.M.; Tang, Q. Validation of gpm imerg v05 and v06 precipitation products over iran. J. Hydrometeorol. 2020, 21, 1011–1037. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Leng, G.; Python, A.; Peng, J. A Comprehensive Evaluation of Latest GPM IMERG V06 Early, Late and Final Precipitation Products across China. Remote Sens. 2021, 13, 1208. [Google Scholar] [CrossRef]
- Li, X.; Sungmin, O.; Wang, N.; Huang, Y. Evaluation of the GPM IMERG V06 products for light rain over Mainland China. Atmos. Res. 2021, 253, 105510. [Google Scholar] [CrossRef]
- Arkin, P.A. The relationship between fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array. Mon. Weather Rev. 1979, 107, 1382–1387. [Google Scholar] [CrossRef] [Green Version]
- Arkin, P.A.; Joyce, R.; Janowiak, J.E. The estimation of global monthly mean rainfall using infrared satellite data: The GOES Precipitation Index (GPI). Remote Sens. Rev. 1994, 11, 107–124. [Google Scholar] [CrossRef]
- Arkin, P.A.; Meisner, B.N. The relationship between large-scale convective rainfall and cold cloud over the western hemisphere during 1982–84. Mon. Weather Rev. 1987, 115, 51–74. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Gairola, R.; Varma, A.; Agarwal, V.K. Improved rainfall estimation over the Indian region using satellite infrared technique. Adv. Space Res. 2011, 48, 49–55. [Google Scholar] [CrossRef]
- Todd, M.C.; Kidd, C.; Kniveton, D.; Bellerby, T.J. A combined satellite infrared and passive microwave technique for estimation of small-scale rainfall. J. Atmos. Ocean. Technol. 2001, 18, 742–755. [Google Scholar] [CrossRef]
- Adler, R.F.; Negri, A.J. A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteorol. Climatol. 1988, 27, 30–51. [Google Scholar] [CrossRef] [Green Version]
- Grecu, M.; Anagnostou, E.N.; Adler, R.F. Assessment of the use of lightning information in satellite infrared rainfall estimation. J. Hydrometeorol. 2000, 1, 211–221. [Google Scholar] [CrossRef]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Früh, B.; Bendix, J.; Nauss, T.; Paulat, M.; Pfeiffer, A.; Schipper, J.W.; Thies, B.; Wernli, H. Verification of precipitation from regional climate simulations and remote-sensing observations with respect to ground-based observations in the upper Danube catchment. Meteorol. Z. 2007, 16, 275–293. [Google Scholar] [CrossRef]
- Ba, M.B.; Gruber, A. GOES multispectral rainfall algorithm (GMSRA). J. Appl. Meteorol. 2001, 40, 1500–1514. [Google Scholar] [CrossRef]
- Nauss, T.; Kokhanovsky, A.A. Discriminating raining from non-raining clouds at mid-latitudes using multispectral satellite data. Atmos. Chem. Phys. 2006, 6, 5031–5036. [Google Scholar] [CrossRef] [Green Version]
- Ebert, E.E.; Manton, M.J. Performance of satellite rainfall estimation algorithms during TOGA COARE. J. Atmos. Sci. 1998, 55, 1537–1557. [Google Scholar] [CrossRef]
- Torricella, F.; Cattani, E.; Levizzani, V. Rain area delineation by means of multispectral cloud characterization from satellite. Adv. Geosci. 2008, 17, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Cattani, E.; Torricella, F.; Laviola, S.; Levizzani, V. On the statistical relationship between cloud optical and microphysical characteristics and rainfall intensity for convective storms over the Mediterranean. Nat. Hazards Earth Syst. Sci. 2009, 9, 2135–2142. [Google Scholar] [CrossRef] [Green Version]
- Thies, B.; Nauß, T.; Bendix, J. Precipitation process and rainfall intensity differentiation using Meteosat second generation spinning enhanced visible and infrared imager data. J. Geophys. Res. Atmos. 2008, 113, D23. [Google Scholar] [CrossRef]
- Feidas, H.; Giannakos, A. Classifying convective and stratiform rain using multispectral infrared Meteosat Second Generation satellite data. Theor. Appl. Climatol. 2012, 108, 613–630. [Google Scholar] [CrossRef]
- Bellerby, T.; Todd, M.; Kniveton, D.; Kidd, C. Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network. J. Appl. Meteorol. 2000, 39, 2115–2128. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.L.; Sorooshian, S.; Gao, X. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteorol. 2004, 43, 1834–1853. [Google Scholar] [CrossRef] [Green Version]
- Meyer, H.; Kühnlein, M.; Appelhans, T.; Nauss, T. Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals. Atmos. Res. 2016, 169, 424–433. [Google Scholar] [CrossRef]
- Chen, H.; Chandrasekar, V.; Cifelli, R.; Xie, P. A machine learning system for precipitation estimation using satellite and ground radar network observations. IEEE Trans. Geosci. Remote Sens. 2019, 58, 982–994. [Google Scholar] [CrossRef]
- Ramanujam, S.; Radhakrishnan, C.; Subramani, D.; Chakravarthy, B. On the effect of non-raining parameters in retrieval of surface rain rate using TRMM PR and TMI measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 735–743. [Google Scholar] [CrossRef]
- Chen, H.; Chandrasekar, V.; Tan, H.; Cifelli, R. Rainfall estimation from ground radar and TRMM precipitation radar using hybrid deep neural networks. Geophys. Res. Lett. 2019, 46, 10669–10678. [Google Scholar] [CrossRef]
- Balaji, C.; Krishnamoorthy, C.; Chandrasekar, R. On the possibility of retrieving near-surface rain rate from the microwave sounder SAPHIR of the Megha-Tropiques mission. Curr. Sci. 2014, 106, 587–593. [Google Scholar]
- Hamidi, O.; Poorolajal, J.; Sadeghifar, M.; Abbasi, H.; Maryanaji, Z.; Faridi, H.R.; Tapak, L. A comparative study of support vector machines and artificial neural networks for predicting precipitation in Iran. Theor. Appl. Climatol. 2015, 119, 723–731. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, G.; Lu, E. Using the gradient boosting decision tree to improve the delineation of hourly rain areas during the summer from advanced Himawari imager data. J. Hydrometeorol. 2018, 19, 761–776. [Google Scholar] [CrossRef]
- Kühnlein, M.; Appelhans, T.; Thies, B.; Nauß, T. Precipitation estimates from MSG SEVIRI daytime, nighttime, and twilight data with random forests. J. Appl. Meteorol. Climatol. 2014, 53, 2457–2480. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Chakraborty, R.; Maitra, A. A random forest algorithm for nowcasting of intense precipitation events. Adv. Space Res. 2017, 60, 1271–1282. [Google Scholar] [CrossRef]
- Min, M.; Bai, C.; Guo, J.; Sun, F.; Liu, C.; Wang, F.; Xu, H.; Tang, S.; Li, B.; Di, D.; et al. Estimating summertime precipitation from Himawari-8 and global forecast system based on machine learning. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2557–2570. [Google Scholar] [CrossRef]
- Turini, N.; Thies, B.; Bendix, J. Estimating high spatio-temporal resolution rainfall from MSG1 and GPM IMERG based on machine learning: Case study of Iran. Remote Sens. 2019, 11, 2307. [Google Scholar] [CrossRef] [Green Version]
- Kolbe, C.; Thies, B.; Egli, S.; Lehnert, L.; Schulz, H.M.; Bendix, J. Precipitation Retrieval over the Tibetan Plateau from the Geostationary Orbit—Part 1: Precipitation Area Delineation with Elektro-L2 and Insat-3D. Remote Sens. 2019, 11, 2302. [Google Scholar] [CrossRef] [Green Version]
- Hirose, H.; Shige, S.; Yamamoto, M.K.; Higuchi, A. High temporal rainfall estimations from Himawari-8 multiband observations using the random-forest machine-learning method. J. Meteorol. Soc. Japan 2019, 97, 689–710. [Google Scholar] [CrossRef] [Green Version]
- Turini, N.; Thies, B.; Horna, N.; Bendix, J. Random forest-based rainfall retrieval for Ecuador using GOES-16 and IMERG-V06 data. Eur. J. Remote Sens. 2021, 54, 117–139. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.; Li, Y.; Fu, J.; Tian, C.; Bi, B.; Zhou, Q.; Committee, C.N.S.M. Grade of Precipitation. GB/T 28592–2012; National Meteorological Center: Beijing, China, 2012. [Google Scholar]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Hoens, T.R.; Chawla, N.V. Imbalanced datasets: From sampling to classifiers. In Imbalanced Learning: Foundations, Algorithms, and Applications; Wiley Online Library: Hoboken, NJ, USA, 2013; pp. 43–59. [Google Scholar]
- Yap, B.W.; Abd Rani, K.; Abd Rahman, H.A.; Fong, S.; Khairudin, Z.; Abdullah, N.N. An application of oversampling, undersampling, bagging and boosting in handling imbalanced datasets. In Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013); Springer: Berlin/Heidelberg, Germany, 2014; pp. 13–22. [Google Scholar]
- Sáez, J.A.; Krawczyk, B.; Woźniak, M. Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets. Pattern Recognit. 2016, 57, 164–178. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Lemaître, G.; Nogueira, F.; Aridas, C.K. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 2017, 18, 559–563. [Google Scholar]
Products | Variable | Unit |
---|---|---|
Himawari-8 | SAZ (Satellite Zenith Angle) | |
△T | K | |
△T | K | |
△T | K | |
△T | K | |
T | K | |
T | K | |
T | K | |
T | K | |
GFS | LST (Land Surface Temperature) | K |
CIN (Convective Inhibition) | J/kg | |
CAPE (Convection Available Potential Energy) | J/kg | |
LI (Best 4-layer Lifted Index) | K | |
PW (Precipitable Water) | kg/m | |
RH (Relative Humidity) | % | |
U (U-component of the planetary boundary layer) | m/s | |
V (V-component of the planetary boundary layer) | m/s |
Class | Grades | Range |
---|---|---|
1 | No rain | <0.1 mm/h |
2 | Light rain | 0.1 mm/h–1.5 mm/h |
3 | Moderate rain | 1.6 mm/h–6.9 mm/h |
4 | Heavy rain | ≥7.0 mm/h |
Name | Formula | Range | Optimum |
---|---|---|---|
Probability of detection | [0, 1] | 1 | |
False-alarm ratio | [0, 1] | 0 | |
Critical success index | [0, 1] | 1 | |
Heike skill score | [, 1] | 1 | |
Equitable threat score | [−1/3, 1] | 1 | |
Bias | [0, ] | 1 |
Model Name | Clear Sky/Rainy | POD | FAR | CSI | HSS | ETS | Bias |
---|---|---|---|---|---|---|---|
Scenario_0 | 4:1 | 0.70 | 0.16 | 0.61 | 0.56 | 0.39 | 0.83 |
Scenario_1 | 3:1 | 0.72 | 0.17 | 0.63 | 0.57 | 0.39 | 0.87 |
Scenario_2 | 2:1 | 0.76 | 0.19 | 0.64 | 0.58 | 0.39 | 0.94 |
Scenario_3 | 1.25:1 | 0.80 | 0.21 | 0.66 | 0.59 | 0.39 | 1.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wu, K.; Zhang, J.; Zhang, F.; Xiao, H.; Wang, F.; Zhou, J.; Song, Y.; Peng, L. Estimating Rainfall with Multi-Resource Data over East Asia Based on Machine Learning. Remote Sens. 2021, 13, 3332. https://doi.org/10.3390/rs13163332
Zhang Y, Wu K, Zhang J, Zhang F, Xiao H, Wang F, Zhou J, Song Y, Peng L. Estimating Rainfall with Multi-Resource Data over East Asia Based on Machine Learning. Remote Sensing. 2021; 13(16):3332. https://doi.org/10.3390/rs13163332
Chicago/Turabian StyleZhang, Yushan, Kun Wu, Jinglin Zhang, Feng Zhang, Haixia Xiao, Fuchang Wang, Jianyin Zhou, Yi Song, and Liang Peng. 2021. "Estimating Rainfall with Multi-Resource Data over East Asia Based on Machine Learning" Remote Sensing 13, no. 16: 3332. https://doi.org/10.3390/rs13163332
APA StyleZhang, Y., Wu, K., Zhang, J., Zhang, F., Xiao, H., Wang, F., Zhou, J., Song, Y., & Peng, L. (2021). Estimating Rainfall with Multi-Resource Data over East Asia Based on Machine Learning. Remote Sensing, 13(16), 3332. https://doi.org/10.3390/rs13163332