Early Detection of Powdery Mildew Disease and Accurate Quantification of Its Severity Using Hyperspectral Images in Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Definition of Disease Severity (DS)
2.3. Acquisition and Pre-Processing of Hyperspectral Images
2.4. Selection of the Sensitive Feature
2.4.1. Construction of Texture Indices
2.4.2. Selection of Vegetation Indices
2.5. Development of the Recognition Model for Wheat Leaf Disease
2.6. Construction of the DS Estimation Model for Wheat Leaf Disease
3. Results
3.1. Time-Series Variation of Spectral Reflectance
3.2. Selection of the Sensitive Features
3.2.1. Selection of Sensitive Wavebands
3.2.2. Selection of Optimal Vegetation Indices
3.2.3. Extraction of Texture Features
3.2.4. Calculation of Normalized Difference Texture Indices (NDTIs)
3.3. PLS-LDA Model for Classifying the Healthy and Diseased Leaves
3.3.1. Evaluation of PLS-LDA Model Based on Different Selected Sensitive Features
3.3.2. Classification of Healthy and Diseased Leaves at Early Stage after Inoculation
3.4. PLSR Model for Estimating the Disease Severity
4. Discussion
4.1. Why the Selected Features Are Rational?
4.2. What Is the Reason of Detection Performance at Varied Growth Stages?
4.3. How Early to Detect the Disease When the Combined Feature Is Applied?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.Y.; Song, X.Y.; Li, C.J.; Qi, N.; Huang, W.J.; Wang, J.H. Monitoring and evaluation of the diseases of and yield winter wheat from multi-temporal remotely-sensed data. Trans. CSAE 2009, 25, 137–143. [Google Scholar]
- Foulkes, M.J.; Paveley, N.D.; Worland, A.; Welham, S.J.; Thomas, J.; Snape, J.W. Major genetic changes in wheat with potential to affect disease tolerance. Phytopathology 2006, 96, 680–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bingham, I.J.; Walters, D.R.; Foulkes, M.J.; Paveley, N.D. Crop traits and the tolerance of wheat and barley to foliar disease. Ann. Appl. Biol. 2009, 154, 159–173. [Google Scholar] [CrossRef]
- Qin, W.; Xue, X.; Zhang, S.; Gu, W.; Wang, B. Droplet deposition and efficiency of fungicides sprayed with small UAV against wheat powdery mildew. Int. J. Agric. Biol. Eng. 2018, 11, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Kuska, M.; Wahabzada, M.; Leucker, M.; Dehne, H.W.; Kersting, K.; Oerke, E.C. Hyperspectral phenotyping on the microscopic scale: Towards automated characterization of plant-pathogen interactions. Plant Methods 2015, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Mutka, A.M.; Bart, R.S. Image-based phenotyping of plant disease symptoms. Front. Plant Sci. 2015, 5, 734. [Google Scholar] [CrossRef] [Green Version]
- Siricharoen, P.; Scotney, B.; Morrow, P.; Parr, G. A lightweight mobile system for crop disease diagnosis. In International Conference Image Analysis and Recognition. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2016; Volume 9730, pp. 783–791. [Google Scholar]
- Barbedo, J.G.A. A review on the main challenges in automatic plant disease identification based on visible range images. Biosyst. Eng. 2016, 144, 52–60. [Google Scholar] [CrossRef]
- Mirik, M.; Jones, D.C.; Price, J.A.; Workneh, F.; Ansley, R.J.; Rush, C.M. Satellite remote sensing of wheat infected by wheat streak mosaic virus. Plant Dis. 2011, 95, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zhou, X.; Zhang, J.; Lan, Y.; Xu, C.; Liang, D. Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging. PLoS ONE 2018, 13, e0187470. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhang, Q.; Huang, D. A review of imaging techniques for plant phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef] [PubMed]
- Zarco-Tejada, P.J.; Morales, A.; Testi, L.; Villalobos, F. Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance. Remote. Sens. Environ. 2013, 133, 102–115. [Google Scholar] [CrossRef]
- Kim, D.M.; Zhang, H.; Zhou, H.; Du, T.; Wu, Q.; Mockler, T.C.; Berezin, M.Y. Highly sensitive image-derived indices of water-stressed plants using hyperspectral imaging in SWIR and histogram analysis. Sci. Rep. 2015, 5, 15919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, X.; Abe, S.; Zhang, S. Estimation and mapping of nitrogen content in apple trees at leaf and canopy levels using hyperspectral imaging. Precis. Agric. 2020, 21, 198–225. [Google Scholar] [CrossRef]
- Zhou, R.Q.; Jin, J.J.; Li, Q.M.; Su, Z.Z.; Yu, X.J.; Tang, Y.; Luo, S.M.; He, Y.; Li, X.L. Early detection of magnaporthe oryzae-infected barley leaves and lesion visualization based on hyperspectral imaging. Front. Plant Sci. 2019, 9, 1962. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Huang, W.; González-Moreno, P.; Luke, B.; Dong, Y.; Zheng, Q.; Ma, H.; Liu, L. Wavelet-based rust spectral feature set (WRSFS): A novel spectral feature set based on continuous wavelet transformation for tracking progressive host–pathogen interaction of yellow rust on wheat. Remote Sens. 2018, 10, 525. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.C.; Pu, R.L.; Wang, J.H.; Huang, W.J.; Yuan, L.; Luo, J.H. Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Comput. Electron. Agric. 2012, 85, 13–23. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, W.; Luo, J.; Huang, L.; Zhou, X. Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis. Comput. Electron. Agric. 2017, 141, 171–180. [Google Scholar] [CrossRef]
- Zheng, Q.; Huang, W.; Cui, X.; Dong, Y.; Shi, Y.; Ma, H.; Liu, L. Identification of wheat yellow rust using optimal three-band spectral indices in different growth stages. Sensors 2019, 19, 35. [Google Scholar] [CrossRef] [Green Version]
- Gowen, A.A.; O’Donnell, C.P.; Cullen, P.J.; Downey, G.; Frias, J.M. Hyperspectral imaging—An emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598. [Google Scholar] [CrossRef]
- Eckert, S. Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data. Remote Sens. 2012, 4, 810–829. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y. The Key Diagnosis Technology of Rice Blast Based on Hyperspectral Image; Zhejiang University: Hangzhou, China, 2012. [Google Scholar]
- Al-Saddik, H.; Laybros, A.; Billiot, B.; Cointault, F. Using image texture and spectral reflectance analysis to detect yellowness and esca in grapevines at leaf-level. Remote Sens. 2018, 10, 618. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Zhou, M.; Gao, Y.; Jiang, H. Using hyperspectral imaging to discriminate yellow leaf curl disease in tomato leaves. Precis. Agric. 2018, 19, 379–394. [Google Scholar] [CrossRef]
- Mahlein, A.K.; Rumpf, T.; Welke, P.; Dehne, H.W.; Plumer, L.; Steiner, U.; Oerke, E.C. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 2013, 128, 21–30. [Google Scholar] [CrossRef]
- Li, H.-D.; Zeng, M.; Tan, B.-B.; Liang, Y.-Z.; Xu, Q.-S.; Cao, D.-S. Recipe for revealing informative metabolites based on model population analysis. Metabolomics 2010, 6, 353–361. [Google Scholar] [CrossRef]
- Mo, X.X.; Sun, T.; Liu, J.; Wu, Y.Q.; Liu, M.H. Qualitative detection of haloxyfop- P- methyl residue in edible oil by near infrared spectroscopy combined with variable selection method. Chin. J. Anal. Lab. 2018, 37, 125–130. [Google Scholar]
- Sun, T.; Wu, Y.Q.; Li, X.Z.; Xu, P.; Liu, M. Discrimination of camellia oil adulteration by NIR spectra and subwindow permutation analysis. Acta Opt. Sin. 2015, 35, 342–349. [Google Scholar]
- Wang, W.Y. Monitoring Powdery Mildew with Hyperspectral Reflectance in Wheat; Nanjing Agricultural University: Nanjing, China, 2016. [Google Scholar]
- Graeff, S.; Link, J.; Claupein, W. Identification of powdery mildew (Erysiphe graminis sp. tritici) and take-all disease (Gaeumannomyces graminis sp. tritici) in wheat (Triticum aestivum L.) by means of leaf reflectance measurements. Cent. Eur. J. Biol. 2006, 1, 275–288. [Google Scholar] [CrossRef]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Cheng, T.; Zhou, M.; Li, D.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery. Precis. Agric. 2019, 20, 611–629. [Google Scholar] [CrossRef]
- Huang, W.; Guan, Q.; Luo, J.; Zhang, J.; Zhao, J.; Liang, D.; Huang, L.; Zhang, D. New optimized spectral indices for identifying and monitoring winter wheat diseases. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2516–2524. [Google Scholar] [CrossRef]
- Chen, B.; Wang, K.; Li, S.; Wang, J.; Bai, J.; Xiao, C.; Lai, J. Spectrum characteristics of cotton canopy infected with verticillium wilt and inversion of severity level. Comput. Comput. Technol. Agric. 2008, 2, 1169. [Google Scholar]
- Gamon, J.A.; Penuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Lewis, H.G.; Brown, M. A generalized confusion matrix for assessing area estimates from remotely sensed data. Int. J. Remote Sens. 2001, 22, 3223–3235. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semiempirical indexes to assess carotenoids chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Merton, R.; Huntington, J. Early simulation results of the ARIES-1 satellite sensor for multi-temporal vegetation research derived from AVIRIS. In Proceedings of the Eighth Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 8–11 February 1999; pp. 9–11. [Google Scholar]
- Thenkabail, P.S.; Smith, R.B.; Pauw, E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote. Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Filella, I.; Serrano, L.; Serra, J.; Peñuelas, J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop. Sci. 1995, 35, 1400–1405. [Google Scholar] [CrossRef]
- Broge, N.H.; Mortensen, J.V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens. Environ. 2001, 81, 45–57. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Mirik, M.; Michels, G.J.; Kassymzhanova-Mirik, S.; Elliott, N.C.; Catana, V.; Jones, D.; Bowling, R. Using digital image analysis and spectral reflectance data to quantify damage by greenbug (Hemitera: Aphididae) in winter wheat. Comput. Electron. Agric. 2006, 51, 86–98. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Bozzolo, A.; Wilkins, J.L.; Kwasniewski, M.T. Early detection of plant physiological responses to different levels of water stress using reflectance spectroscopy. Remote Sens. 2017, 9, 745. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Shao, Y.; Li, X.; He, Y. Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging. Sci. Rep. 2015, 5, 16564. [Google Scholar] [CrossRef]
- Tang, X.; Cao, X.; Xu, X.; Jiang, Y.; Luo, Y.; Ma, Z.; Fan, J.; Zhou, Y. Effects of climate change on epidemics of powdery mildew in winter wheat in China. Plant Dis. 2017, 101, 1753–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.Y.; Zhang, J.C.; Zhu, D.Z.; Wang, J.H.; Luo, J.H.; Zhao, J.L.; Huang, W.-J. Investigation of the hyperspectral image characteristics of wheat leaves under different stress. Spectrosc. Spectr. Anal. 2011, 31, 1101–1105. [Google Scholar]
- Yao, S.; Huo, Z.; Dong, Z.; Li, M.; Chen, X. Indices and modeling of wheat powdery mildew epidemic based on hourly air temperature and humidity data. Shengtaixue Zazhi 2013, 32, 1364–1370. [Google Scholar]
- Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 2010, 72, 1–13. [Google Scholar] [CrossRef]
- Yuan, L. Identification and Differentiation of Wheat Disease and Insects with Multi-Source and Multi-Scale Remote Sensing Data; Zhejiang University: Hangzhou, China, 2015. [Google Scholar]
Number | Name | Equation | Description |
---|---|---|---|
1 | Mean, MEA | Reflects the average of grayscale | |
2 | Variance, VAR | Reflects the size of the grayscale change | |
3 | Homogeneity, HOM | Reflects local homogeneity of texture | |
4 | Contrast, CON | Reflects the clarity of the texture | |
5 | Dissimilarity, DIS | Same as contrast, used to detect similarity | |
6 | Entropy, ENT | Measures the amount of information of an image | |
7 | Second Moment, SEM | Reflects the uniformity of the grayscale distribution of the image | |
8 | Correlation, COR | Reflects the extension of a gray value along a certain direction |
Definition | Equations | Reference |
---|---|---|
| (R515 − R698)/(R515 + R698) − 0.5 ∗ R738 | [34] |
| (R800/R670 − 1)/(R800/R670 + 1)1/2 | [35] |
| (R570 − R531)/(R570 + R531) | [36] |
| (R550 − R531)/(R550 + R531) | [36] |
| [(R701 − R671) − 0.2(R701 − R549)]/(R701/R671) | [37] |
| (R550)−1 − (R700)−1 | [38] |
| (R800 − R445)/(R800 − R680) | [39] |
| (R680 − R430)/(R680 + R430) | [39] |
| [(R712 + R752)/2] − R732 | [40] |
| (R850 − R680)/(R850 + R680) | [41] |
| (R570 − R670)/(R570 + R670) | [42] |
| 0.5[120(R750 − R550) − 200(R670 − R550)] | [43] |
| 3[(R700 − R670) − 0.2(R700 − R550)(R700/R670)] | [44] |
| (R680 − R500)/R750 | [45] |
| (R740 − R887)/(R691 − R698) | [46] |
Dataset | Inputted Features | Features | Calibration Accuracy (%) | Validation Accuracy (%) | ||||
---|---|---|---|---|---|---|---|---|
Healthy | Infected | Overall | Healthy | Infected | Overall | |||
Both stages | VIs | 6 | 76.49 | 78.26 | 77.13 | 74.19 | 74.00 | 74.22 |
NDTIs | 10 | 72.63 | 67.70 | 70.85 | 72.53 | 65.96 | 70.18 | |
VIs & NDTIs | 16 | 77.17 | 75.16 | 76.46 | 77.62 | 73.72 | 76.23 | |
Jointing stage | VIs | 6 | 71.71 | 76.06 | 73.09 | 72.70 | 69.64 | 72.65 |
NDTIs | 10 | 73.68 | 73.24 | 73.54 | 73.47 | 67.80 | 72.23 | |
VIs & NDTIs | 16 | 76.97 | 71.83 | 75.34 | 74.63 | 74.43 | 74.88 | |
Booting stage | VIs | 6 | 85.71 | 62.22 | 76.23 | 82.36 | 63.29 | 75.36 |
NDTIs | 10 | 75.19 | 63.33 | 70.40 | 77.42 | 63.36 | 70.30 | |
VIs & NDTIs | 16 | 84.21 | 75.56 | 80.72 | 91.97 | 61.40 | 78.93 |
Classification Accuracies (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Growth stage | DAI | 4 | 5 | 6 | 7 | 8 | 10 | 11 | 12 |
T (°C) | 21.5 | 21 | 17.5 | 11 | 13 | 12 | 8.8 | 15.8 | |
DS/State | 1% | 1.3% | 3.9% | 8.1% | 16.6% | 23.1% | 24.9% | 25% | |
Jointing stage | Healthy | 56.25 | 57.14 | 82.35. | 87.5 | 84.62 | 87.5 | 100 | 100 |
Diseased | 100 | 100 | 100 | 87.5 | 100 | 100 | 90.91 | 90.91 | |
OA (%) | 63.16 | 64.71 | 87.50 | 87.50 | 90.91 | 91.67 | 95.65 | 95.65 | |
Kappa | 0.29 | 0.32 | 0.73 | 0.73 | 0.82 | 0.82 | 0.91 | 0.91 | |
Growth stage | DAI | 3 | 4 | 5 | 7 | 9 | 10 | 11 | 12 |
T (°C) | 27.7 | 25.8 | 31 | 31.5 | 30.8 | 32.4 | 29.3 | 33.2 | |
DS/State | 1.1% | 6.2% | 9.6% | 13.5% | 25.6% | 25.7% | 31.9% | 45.4% | |
Booting stage | Healthy | 81.25 | 88.89 | 92.31 | 100 | 91.67 | 100 | 100 | 100 |
Diseased | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
OA | 86.96 | 94.44 | 95.83 | 1 | 95.45 | 1 | 1 | 1 | |
Kappa | 0.73 | 0.89 | 0.92 | 1 | 0.91 | 1 | 1 | 1 |
Growth Stage | Inputted Features | Number of Features | Calibration | Validation | |||
---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | RRMSE | |||
Both stages | VIs | 6 | 0.687 | 14.166 | 0.660 | 14.761 | 0.597 |
NDTIs | 10 | 0.694 | 14.001 | 0.649 | 14.992 | 0.606 | |
VIs & NDTIs | 16 | 0.748 | 12.711 | 0.722 | 13.356 | 0.540 | |
Jointing stage | VIs | 6 | 0.527 | 15.166 | 0.431 | 16.636 | 0.924 |
NDTIs | 10 | 0.531 | 15.102 | 0.344 | 17.872 | 0.993 | |
VIs & NDTIs | 16 | 0.619 | 13.624 | 0.532 | 15.162 | 0.842 | |
Booting stage | VIs | 6 | 0.831 | 9.990 | 0.792 | 11.511 | 0.384 |
NDTIs | 10 | 0.815 | 11.374 | 0.747 | 13.230 | 0.443 | |
VIs & NDTIs | 16 | 0.855 | 10.060 | 0.818 | 11.320 | 0.377 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, I.H.; Liu, H.; Li, W.; Cao, A.; Wang, X.; Liu, H.; Cheng, T.; Tian, Y.; Zhu, Y.; Cao, W.; et al. Early Detection of Powdery Mildew Disease and Accurate Quantification of Its Severity Using Hyperspectral Images in Wheat. Remote Sens. 2021, 13, 3612. https://doi.org/10.3390/rs13183612
Khan IH, Liu H, Li W, Cao A, Wang X, Liu H, Cheng T, Tian Y, Zhu Y, Cao W, et al. Early Detection of Powdery Mildew Disease and Accurate Quantification of Its Severity Using Hyperspectral Images in Wheat. Remote Sensing. 2021; 13(18):3612. https://doi.org/10.3390/rs13183612
Chicago/Turabian StyleKhan, Imran Haider, Haiyan Liu, Wei Li, Aizhong Cao, Xue Wang, Hongyan Liu, Tao Cheng, Yongchao Tian, Yan Zhu, Weixing Cao, and et al. 2021. "Early Detection of Powdery Mildew Disease and Accurate Quantification of Its Severity Using Hyperspectral Images in Wheat" Remote Sensing 13, no. 18: 3612. https://doi.org/10.3390/rs13183612
APA StyleKhan, I. H., Liu, H., Li, W., Cao, A., Wang, X., Liu, H., Cheng, T., Tian, Y., Zhu, Y., Cao, W., & Yao, X. (2021). Early Detection of Powdery Mildew Disease and Accurate Quantification of Its Severity Using Hyperspectral Images in Wheat. Remote Sensing, 13(18), 3612. https://doi.org/10.3390/rs13183612