Disentangling Climatic Factors and Human Activities in Governing the Old and New Forest Productivity
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Datasets
2.3. Methods
2.3.1. Chang Trends of NPP
2.3.2. Contributions of Climate Factors and Human Activities to Forest Dynamics
2.3.3. Contribution Proportions of Climate Factors and Human Activities to Forest Restoration and Degradation
3. Results
3.1. Spatiotemporal Characteristics of NPP Dynamics
3.2. Contributions of Climate and Human Activities to NPP
3.3. Contributions Proportions of Climate Change and Human Activities to Forest Restoration or Degradation
4. Discussion
4.1. NPP Difference between Fold and Fnew
4.2. Impacts of Climate on Forest Productivity
4.3. Impact of UF on Forest NPP
4.3.1. Impact of UF on Fold NPP
4.3.2. Impact of UF on Fnew NPP
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; UN. Global Forest Resources Assessment 2020: Key Findings; FAO: Rome, Italy, 2020. [Google Scholar]
- Meng, Z.; Liu, M.; Gao, C.; Zhang, Y.; She, Q.; Long, L.; Tu, Y.; Yang, Y. Greening and Browning of the Coastal Areas in Mainland China: Spatial Heterogeneity, Seasonal Variation and its Influential Factors. Ecol. Indic. 2020, 110, 105888. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, A.; Dong, B. Changes in Global Vegetation Activity and its Driving Factors during 1982–2013. Agric. For. Meteorol. 2018, 249, 198–209. [Google Scholar] [CrossRef]
- Chen, T.; Tang, G.; Yuan, Y.; Guo, H.; Xu, Z.; Jiang, G.; Chen, X. Unraveling the Relative Impacts of Climate Change and Human Activities on Grassland Productivity in Central Asia over Last Three Decades. Sci. Total Environ. 2020, 743, 140649. [Google Scholar] [CrossRef]
- Wang, M.; Wang, S.; Zhao, J.; Ju, W.; Hao, Z. Global Positive Gross Primary Productivity Extremes and Climate Contributions during 1982–2016. Sci. Total Environ. 2021, 774, 145703. [Google Scholar] [CrossRef] [PubMed]
- Churkina, G.; Running, S.W. Contrasting Climatic Controls on the Estimated Productivity of Global Terrestrial Biomes. Ecosystems 1998, 1, 206–215. [Google Scholar] [CrossRef]
- Miles, V.V.; Esau, I. Spatial Heterogeneity of Greening and Browning between and within Bioclimatic Zones in Northern West Siberia. Environ. Res. Lett. 2016, 11, 115002. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Ciais, P.; Zhu, B. Variations in Satellite-derived Phenology in China’s Temperate Vegetation. Glob. Chang. Biol. 2006, 12, 672–685. [Google Scholar] [CrossRef]
- Ge, W.; Deng, L.; Wang, F.; Han, J. Quantifying the Contributions of Human Activities and Climate Change to Vegetation Net Primary Productivity Dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef]
- Pasho, E.; Camarero, J.J.; de Luis, M.; Vicente-Serrano, S.M. Impacts of Drought at Different Time Scales on Forest Growth across a Wide Climatic Gradient in North-eastern Spain. Agric. For. Meteorol. 2011, 151, 1800–1811. [Google Scholar] [CrossRef]
- Guo, Y.; Du, X.; Chen, H.; Zheng, G.; Zhang, X.; Wang, Q. Influence of Shale Gas Development on Core Forests in the Subtropical Karst Region in Southwestern China. Sci. Total Environ. 2021, 771, 145287. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Wang, K.; Yue, Y.; Brandt, M.; Liu, B.; Zhang, C.; Liao, C.; Fensholt, R. Quantifying the Effectiveness of Ecological Restoration Projects on Long-term Vegetation Dynamics in the Karst Regions of Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Liu, X.; Wen, Y.; Ou, J. Quantitative Analysis of the Contributions of Climatic and Human Factors to Grassland Productivity in Northern China. Ecol. Indic. 2019, 103, 542–553. [Google Scholar] [CrossRef]
- Jiang, H.L.; Xu, X.; Guan, M.X.; Wang, L.F.; Huang, Y.M.; Jiang, Y. Determining the Contributions of Climate Change and Human Activities to Vegetation Dynamics in Agro-pastural Transitional Zone of Northern China from 2000 to 2015. Sci. Total Environ. 2020, 718, 134871. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Gang, C.; Zhou, F.; Li, J.; Dong, X.; Zhao, C. Quantitative Assessment of the Individual Contribution of Climate and Human Factors to Desertification in Northwest China Using Net Primary Productivity as an Indicator. Ecol. Indic. 2015, 48, 560–569. [Google Scholar] [CrossRef]
- Qu, S.; Wang, L.; Lin, A.; Yu, D.; Yuan, M.; Li, C. Distinguishing the Impacts of Climate Change and Anthropogenic Factors on Vegetation Dynamics in the Yangtze River Basin, China. Ecol. Indic. 2020, 108, 105724. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Discrimination between Climate and Human-induced Dryland Degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- State Forestry Administration. China Forest Statistical Yearbook 2014–2018; China Forestry: Beijing, China, 2019. [Google Scholar]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Zhao, M.; Running, S.W.; Wofsy, S.C.; Urbanski, S.; Dunn, A.L.; Munger, J.W. Scaling Gross Primary Production (GPP) over Boreal and Deciduous Forest Landscapes in Support of MODIS GPP Product Validation. Remote Sens. Environ. 2003, 88, 256–270. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.S.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS Terrestrial Gross and Net Primary Production Global Data Set. Remote Sens. Environ. 2005, 95, 164–176. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Cheng, Y.; Ju, W.; Chen, H.Y.H.; Ruan, H. Afforestation Promotes the Enhancement of Forest LAI and NPP in China. For. Ecol. Manag. 2020, 462, 117990. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km Monthly Temperature and Precipitation Dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Song, X.; Mu, X.; Gao, P.; Wang, F.; Zhao, G. Spatiotemporal Vegetation Cover Variations Associated with Climate Change and Ecological Restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209–210, 87–99. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multi-scalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index—SPEI. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Meng, D.; Mo, X. Assessing the Effect of Climate Change on Mean Annual Runoff in the Songhua River basin, China. Hydrol. Process. 2012, 26, 1050–1061. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D. Climatic Factors Influencing Changing Pan Evaporation across China from 1961 to 2001. J. Hydrol. 2012, 414–415, 184–193. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Li, Q.; Zhao, J.; Guo, X.; Ying, H.; Deng, G.; Rihan, W.; Wang, S. Vegetation Productivity Dynamics in Response to Climate Change and Human Activities under Different Topography and Land Cover in Northeast China. Remot Sens. 2021, 13, 1–18. [Google Scholar]
- Chen, S.; Zhang, Y.; Wu, Q.; Liu, S.; Song, C.; Xiao, J.; Band, L.E.; Vose, J.M. Vegetation Structural Change and CO2 Fertilization more than Offset Gross Primary Production Decline Caused by Reduced Solar Radiation in China. Agric. For. Meteorol. 2021, 296, 108207. [Google Scholar] [CrossRef]
- Yuan, W.P.; Zheng, Y.; Piao, S.L.; Ciais, P.; Lombardozz, D.; Wang, Y.P.; Ryu, Y.; Chen, G.X.; Dong, W.J.; Hu, Z.M.; et al. Increased Atmospheric Vapor Pressure Deficit Reduces Global Vegetation Growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, A.J.; Renton, M.; Allen, K.J.; Grierson, P.F. The Role of Extreme Rain Events in Driving Tree Growth across a Continental-scale Climatic Range in Australia. Ecography 2021, 44, 1086–1097. [Google Scholar] [CrossRef]
- Li, C.; Tian, Q.; Yu, R.; Zhou, B.; Xia, J.; Burke, C.; Dong, B.; Tett, S.F.B.; Freychet, N.; Lott, F.; et al. Attribution of Extreme Precipitation in the Lower Reaches of the Yangtze River During May 2016. Environ. Res. Lett. 2018, 13, 014015. [Google Scholar] [CrossRef]
- Su, B.D.; Jiang, T.; Jin, W.B. Recent Trends in Observed Temperature and Precipitation Extremes in the Yangtze River basin, China. Theor. Appl. Climatol. 2005, 83, 139–151. [Google Scholar] [CrossRef]
- Marín, P.G.; Marcos, G.C.; Antonio, G.; J.Julio, C. Run to the Hills: Forest Growth Responsiveness to Drought Increased at Higher Elevation during the Late 20th Century. Sci. Total Environ. 2021, 772, 145286. [Google Scholar]
- Zhu, W.; Pan, Y.; Yang, X.; Song, G. Comprehensive Analysis of the Impact of Climatic Changes on Chinese Terrestrial Net Primary Productivity. Chin. Sci. Bull. 2007, 52, 3253–3260. [Google Scholar] [CrossRef]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s Response to a National Land-system Sustainability Emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, J.; Zhang, Z. Forest Quality-based Assessment of the Returning Farmland to Forest Program at the Community Level in SW China. For. Ecol. Manag. 2020, 461, 117938. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its Drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Liu, X.; Pei, F.; Wen, Y.; Li, X.; Wang, S.; Wu, C.; Cai, Y.; Wu, J.; Chen, J.; Feng, K.; et al. Global Urban Expansion Offsets Climate-driven Increases in Terrestrial Net Primary Productivity. Nat. Commun. 2019, 10, 5558. [Google Scholar] [CrossRef] [Green Version]
Scenario | Ccon | Hcon | Contribution | Relative Role | ||
---|---|---|---|---|---|---|
Climate (%) | Human (%) | |||||
S > 0 | 1 | >0 | >0 | Both, when climate contribution is greater than human contribution, climate dominates, and vice versa. | ||
2 | >0 | <0 | 100 | 0 | Climate change | |
3 | <0 | >0 | 0 | 100 | Human activities | |
S < 0 | 1 | <0 | <0 | Both, when climate contribution is greater than human contribution, climate dominates, and vice versa. | ||
2 | <0 | >0 | 100 | 0 | Climate change | |
3 | >0 | <0 | 0 | 100 | Human activities |
Scenario | Ccon | Ocon | Contribution | Relative Role | ||
---|---|---|---|---|---|---|
Climate (%) | Other Climatic Factors (%) | |||||
S > 0 | 1 | >0 | >0 | Both, when climate contribution is greater than other climatic factors contribution, climate dominates, and vice versa. | ||
2 | >0 | <0 | 100 | 0 | Climate change | |
3 | <0 | >0 | 0 | 100 | Other climatic factors | |
S < 0 | 1 | <0 | <0 | Both, when climate contribution is greater than other climatic factors contribution, climate dominates, and vice versa. | ||
2 | <0 | >0 | 100 | 0 | Climate change | |
3 | >0 | <0 | 0 | 100 | Other climatic factors |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Wen, Z.; Ma, M.; Wu, S. Disentangling Climatic Factors and Human Activities in Governing the Old and New Forest Productivity. Remote Sens. 2021, 13, 3746. https://doi.org/10.3390/rs13183746
Chen S, Wen Z, Ma M, Wu S. Disentangling Climatic Factors and Human Activities in Governing the Old and New Forest Productivity. Remote Sensing. 2021; 13(18):3746. https://doi.org/10.3390/rs13183746
Chicago/Turabian StyleChen, Shanshan, Zhaofei Wen, Maohua Ma, and Shengjun Wu. 2021. "Disentangling Climatic Factors and Human Activities in Governing the Old and New Forest Productivity" Remote Sensing 13, no. 18: 3746. https://doi.org/10.3390/rs13183746
APA StyleChen, S., Wen, Z., Ma, M., & Wu, S. (2021). Disentangling Climatic Factors and Human Activities in Governing the Old and New Forest Productivity. Remote Sensing, 13(18), 3746. https://doi.org/10.3390/rs13183746