Automatic Detection of Inland Water Bodies along Altimetry Tracks for Estimating Surface Water Storage Variations in the Congo Basin
Abstract
:1. Introduction
2. Study Area
3. Datasets
3.1. Radar Altimetry Data
3.2. Land Cover Map of the Cuvette Centrale
- (i)
- From the enhanced vegetation index (EVI) [65] from the L3 Global 500 m 16-Day moderate resolution imaging spectroradiometer (MODIS) onboard the NASA Terra satellite product (MOD13A1) from 2001 to 2009;
- (ii)
- From a series of six PALSAR-1 images at 100 m of spatial resolution acquired at L-band, in HH polarization and at various viewing angles (from 18° to 43°), in ScanSAR mode by the phased array type synthetic aperture radar (PALSAR) sensors onboard the Advanced Land Observing Satellite (ALOS) on 7 September 2007, 25 October 2008, 25 January 2009, 27 April 2009, 13 December 2009, and 15 March 2010.
- (i)
- Open water;
- (ii)
- Permanently flooded forests;
- (iii)
- Seasonally flooded forests during the two Congo River flood pulses and located alongside the river;
- (iv)
- Seasonally flooded forests during a short time corresponding to the maximum of the largest flood pulse, farther from the river;
- (v)
- Non-flooded forests.
3.3. Altimetry-Based Time Series of Water Levels
4. Methods
4.1. Radar Altimetry Data Pre-Processing
- (i)
- Derive the altimeter height (h) from the parameters contained in the GDR using the following equation (e.g., [67]):
- (ii)
- Obtain along-track time series of backscattering coefficient presenting no missing data in entry of the clustering method. To do so, monthly climatologies (i.e., the average of all data from each month averaged over the whole study period) of backscattering at Ku-band for every normalized index along the altimetry ground-tracks were computed.
4.2. Radar Altimetry Data Clustering
- (i)
- Each object is assigned to its closest cluster in terms of distance to the center of the cluster;
- (ii)
- At every iteration, each cluster center or centroid is updated to be the average of the member of the cluster.
4.3. Automatic Generation of Time Series of Water Levels
4.4. Validation
4.5. Surface Water Volume Estimates
5. Results
5.1. Automatic Generation of Time Series of Water Levels
5.2. Unsupervised Classification Results
- (i)
- Open water;
- (ii)
- Permanently flooded forests;
- (iii)
- Seasonally flooded forests during the two Congo River flood pulses and located alongside the river;
- (iv)
- Seasonally flooded forests during a short time corresponding to the maximum of the largest flood pulse, farther from the river;
- (v)
- Non-flooded forests.
- -
- The results 0.89, 0.91 and 0.92 for ENVISAT 0.89, 0.93, 0.98 for Jason-2 when considering the sum of the backscattering values in class 1 over open water, permanently and long duration flooded forests;
- -
- The results 0.72, 0.89, 0.93 for ENVISAT and 0.85, 0.79, 0.90 for Jason-2 when considering the sum of the backscattering values in the last class over short duration flooded and non-flooded forests.
5.3. Time Series of Water Levels and Volumes
5.4. Surface Water Storage
6. Discussion
6.1. Identification of Open Water on RA Ground-Tracks
- (i)
- The size of the illuminated area at Ku-band (several km of diameter in low resolution mode (LRM)), the scene present in the altimeter footprint is very heterogenous and encompasses both rivers and the surrounding floodplains;
- (ii)
- The RA sensor is acquiring data at nadir. As a consequence, the power backscattered by the water dominates the radar echo. RA backscattering are much stronger over rivers and floodplains than over any other types of land cover (e.g., [32,36,37]). Even under forest canopy, water levels can be retrieved (e.g., [22] and this study).
6.2. Impact on Anomaly of Surface Water Storage
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ENVISAT Class | Open Water | Flood. Perm. | Flood. Seas. Long | Flood. Seas. Short | Non-Flood. |
---|---|---|---|---|---|
1 | 0.33 | 0.30 | 0.26 | 0.10 | 0.01 |
2 | 0.06 | 0.10 | 0.41 | 0.34 | 0.09 |
3 | 0.01 | 0.02 | 0.25 | 0.53 | 0.19 |
ENVISAT Class | Open Water | Flood. Perm. | Flood. Seas. Long | Flood. Seas. Short | Non-Flood. |
---|---|---|---|---|---|
1 | 0.40 | 0.29 | 0.22 | 0.08 | 0.01 |
2 | 0.08 | 0.17 | 0.43 | 0.26 | 0.06 |
3 | 0.00 | 0.04 | 0.42 | 0.41 | 0.13 |
4 | 0.00 | 0.00 | 0.11 | 0.64 | 0.25 |
Jason-2 Class | Open Water | Flood. Perm. | Flood. Seas. Long | Flood. Seas. Short | Non-Flood. |
---|---|---|---|---|---|
1 | 0.41 | 0.25 | 0.24 | 0.09 | 0.01 |
2 | 0.01 | 0.07 | 0.47 | 0.35 | 0.10 |
3 | 0.00 | 0.00 | 0.15 | 0.62 | 0.23 |
Jason-2 Class | Open Water | Flood. Perm. | Flood. Seas. Long | Flood. Seas. Short | Non-Flood. |
---|---|---|---|---|---|
1 | 0.48 | 0.26 | 0.19 | 0.06 | 0.01 |
2 | 0.15 | 0.21 | 0.39 | 0.21 | 0.04 |
3 | 0.01 | 0.05 | 0.40 | 0.42 | 0.12 |
4 | 0.01 | 0.02 | 0.18 | 0.57 | 0.22 |
References
- Davidson, N.C.; Fluet-Chouinard, E.; Finlayson, C.M. Global extent and distribution of wetlands: Trends and issues. Mar. Freshw. Res. 2018, 69, 620. [Google Scholar] [CrossRef] [Green Version]
- Mitsch, W.J.; Gosselink, J.G.; Zhang, L.; Anderson, C.J. Wetland Ecosystems; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bullock, A.; Acreman, M. The role of wetlands in the hydrological cycle. Hydrol. Earth Syst. Sci. 2003, 7, 358–389. [Google Scholar] [CrossRef] [Green Version]
- Acreman, M.; Holden, J. How wetlands affect floods. Wetlands 2013, 33, 773–786. [Google Scholar] [CrossRef] [Green Version]
- Ghermandi, A.; van der Bergh, J.; Brander, L.M.; Nunes, P. The Economic Value of Wetland Conservation and Creation: A Meta-Analysis; Working Paper 79; Fondazione Eni Enrici Mattei: Milan, Italy, 2008. [Google Scholar]
- Junk, W.J.; Brown, M.; Campbell, I.C.; Finlayson, M.; Gopal, B.; Ramberg, L.; Warner, B.G. The comparative biodiversity of seven globally important wetlands: A synthesis. Aquat. Sci. 2006, 68, 400–414. [Google Scholar] [CrossRef]
- Mitra, S.; Wassmann, R.; Vlek, P.L.G. An appraisal of global wetland area and its organic carbon stock. Curr. Sci. 2005, 88, 25–35. [Google Scholar]
- Webb, E.B.; Smith, L.M.; Vrtiska, M.P.; Lagrange, T.G. Effects of Local and Landscape Variables on Wetland Bird Habitat Use During Migration Through the Rainwater Basin. J. Wildl. Manag. 2009, 74, 109–119. [Google Scholar] [CrossRef]
- Haukos, D.A.; Smith, L.M. The importance of playa wetlands to biodiversity of the Southern High Plains. Landsc. Urban. Plan. 1994, 28, 83–98. [Google Scholar] [CrossRef]
- Gibbons, J.W. Terrestrial habitat: A vital component for herpetofauna of isolated wetlands. Wetlands 2006, 23, 630–635. [Google Scholar] [CrossRef]
- Maltby, E.; Immirzi, P. Carbon dynamics in peatlands and other wetland soils regional and global perspectives. Chemosphere 1993, 27, 999–1023. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Bernal, B.; Nahlik, A.M.; Mander, Ü.; Zhang, L.; Anderson, C.J.; Jørgensen, S.E.; Brix, H. Wetlands, carbon, and climate change. Landsc. Ecol. 2013, 28, 583–597. [Google Scholar] [CrossRef]
- Whalen, S.C. Biogeochemistry of Methane Exchange between Natural Wetlands and the Atmosphere. Environ. Eng. Sci. 2005, 22, 73–94. [Google Scholar] [CrossRef]
- Bergamaschi, P.; Frankenberg, C.; Meirink, J.F.; Krol, M.; Dentener, F.; Wagner, T.; Platt, U.; Kaplan, J.O.; Körner, S.; Heinmann, M.; et al. Satellite charactography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations. J. Geophys. Res. Atmos. 2007, 112, 73–94. [Google Scholar] [CrossRef] [Green Version]
- Bloom, A.A.; Palmer, P.I.; Fraser, A.; David, S.R.; Frankenberg, C. Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science 2010, 327, 322–325. [Google Scholar] [CrossRef] [Green Version]
- Ringeval, B.; De Noblet-Ducoudré, N.; Ciais, P.; Bousquet, P.; Prigent, C.; Papa, F.; Rossow, W.B. An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal and interannual time scales. Glob. Biogeochem. Cycles 2010, 24. [Google Scholar] [CrossRef] [Green Version]
- Biancamaria, S.; Lettenmaier, D.P.; Pavelsky, T.M. The SWOT Mission and Its Capabilities for Land Hydrology. Surv. Geophys. 2016, 37, 307–337. [Google Scholar] [CrossRef] [Green Version]
- Alsdorf, D.E.; Smith, L.C.; Melack, J.M. Amazon floodplain water level changes measured with interferometric SIR-C radar. IEEE Trans. Geosci. Remote Sens. 2001, 39, 423–431. [Google Scholar] [CrossRef]
- Lee, H.; Yuan, T.; Jung, H.C.; Beighley, E. Mapping wetland water depths over the central Congo Basin using PALSAR ScanSAR, Envisat altimetry, and MODIS VCF data. Remote Sens. Environ. 2015, 159, 70–79. [Google Scholar] [CrossRef]
- Papa, F.; Frappart, F.; Güntner, A.; Prigent, C.; Aires, F.; Getirana, A.C.V.A.C.V.; Maurer, R. Surface freshwater storage and variability in the Amazon basin from multi-satellite observations, 1993–2007. J. Geophys. Res. Atmos. 2013, 118, 11951–11965. [Google Scholar] [CrossRef] [Green Version]
- Salameh, E.; Frappart, F.; Papa, F.; Güntner, A.; Venugopal, V.; Getirana, A.; Prigent, C.; Aires, F.; Labat, D.; Laignel, B. Fifteen years (1993–2007) of surface freshwater storage variability in the ganges-brahmaputra river basin using multi-satellite observations. Water 2017, 9, 245. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Seyler, F.; Martinez, J.-M.; León, J.G.; Cazenave, A. Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels. Remote Sens. Environ. 2005, 99. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Papa, F.; Santos Da Silva, J.; Ramillien, G.; Prigent, C.; Seyler, F.; Calmant, S. Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought. Environ. Res. Lett. 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Alsdorf, D.; Han, S.C.; Bates, P.; Melack, J. Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sens. Environ. 2010, 114, 2448–2456. [Google Scholar] [CrossRef]
- Lee, H.; Beighley, R.E.; Alsdorf, D.; Jung, H.C.; Shum, C.K.; Duan, J.; Guo, J.; Yamazaki, D.; Andreadis, K. Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry. Remote Sens. Environ. 2011, 115, 3530–3538. [Google Scholar] [CrossRef] [Green Version]
- Santos da Silva, J.; Calmant, S.; Seyler, F.; Rotunno Filho, O.C.; Cochonneau, G.; Mansur, W.J. Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions. Remote Sens. Environ. 2010, 114, 2160–2181. [Google Scholar] [CrossRef]
- Frappart, F.; Papa, F.; Marieu, V.; Malbeteau, Y.; Jordy, F.; Calmant, S.; Durand, F.; Bala, S. Preliminary Assessment of SARAL/AltiKa Observations over the Ganges-Brahmaputra and Irrawaddy Rivers. Mar. Geod. 2015, 38, 568–580. [Google Scholar] [CrossRef]
- Normandin, C.; Frappart, F.; Diepkilé, A.T.; Marieu, V.; Mougin, E.; Blarel, F.; Lubac, B.; Braquet, N.; Ba, A. Evolution of the performances of radar altimetry missions from ERS-2 to Sentinel-3A over the Inner Niger Delta. Remote Sens. 2018, 10, 833. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Blarel, F.; Fayad, I.; Bergé-Nguyen, M.; Crétaux, J.-F.; Shu, S.; Schregenberger, J.; Baghdadi, N. Evaluation of the Performances of Radar and Lidar Altimetry Missions for Water Level Retrievals in Mountainous Environment: The Case of the Swiss Lakes. Remote Sens. 2021, 13, 2196. [Google Scholar] [CrossRef]
- Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F. DAHITI—An innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 2015, 19, 4345–4364. [Google Scholar] [CrossRef] [Green Version]
- Okeowo, M.A.; Lee, H.; Hossain, F.; Getirana, A. Automated Generation of Lakes and Reservoirs Water Elevation Changes from Satellite Radar Altimetry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3465–3481. [Google Scholar] [CrossRef]
- Papa, F.; Legrésy, B.; Rémy, F. Use of the Topex–Poseidon dual-frequency radar altimeter over land surfaces. Remote Sens. Environ. 2003, 87, 136–147. [Google Scholar] [CrossRef]
- Legrésy, B.; Papa, F.; Remy, F.; Vinay, G.; van den Bosch, M.; Zanife, O.-Z. ENVISAT radar altimeter measurements over continental surfaces and ice caps using the ICE-2 retracking algorithm. Remote Sens. Environ. 2005, 95, 150–163. [Google Scholar] [CrossRef]
- Papa, F.; Prigent, C.; Rossow, W.B.; Legresy, B.; Remy, F. Inundated wetland dynamics over boreal regions from remote sensing: The use of Topex-Poseidon dual-frequency radar altimeter observations. Int. J. Remote Sens. 2006, 27, 4847–4866. [Google Scholar] [CrossRef]
- Fatras, C.; Frappart, F.; Mougin, E.; Frison, P.L.; Faye, G.; Borderies, P.; Jarlan, L. Spaceborne altimetry and scatterometry backscattering signatures at C- and Ku-bands over West Africa. Remote Sens. Environ. 2015, 159, 117–133. [Google Scholar] [CrossRef]
- Frappart, F.; Fatras, C.; Mougin, E.; Marieu, V.; Diepkilé, A.T.; Blarel, F.; Borderies, P. Radar altimetry backscattering signatures at Ka, Ku, C, and S bands over West Africa. Phys. Chem. Earth 2015, 83–84, 96–110. [Google Scholar] [CrossRef]
- Frappart, F.; Blarel, F.; Papa, F.; Prigent, C.; Mougin, E.; Paillou, P.; Baup, F.; Zeiger, P.; Salameh, E.; Darrozes, J.; et al. Backscattering signatures at Ka, Ku, C and S bands from low resolution radar altimetry over land. Adv. Sp. Res. 2021, 68, 989–1012. [Google Scholar] [CrossRef]
- Abdalla, S.; Abdeh Kolahchi, A.; Ablain, M.; Adusumilli, S.; Aich Bhowmick, S.; Alou-Font, E.; Amarouche, L.; Andersen, O.B.; Antich, H.; Aouf, L.; et al. Altimetry for the future: Building on 25 years of progress. Adv. Sp. Res. 2021, 68, 319–363. [Google Scholar] [CrossRef]
- Caliñski, T.; Harabasz, J. A Dendrite Method Foe Cluster Analysis. Commun. Stat. 1974, 3, 1–27. [Google Scholar] [CrossRef]
- Betbeder, J.; Gond, V.; Frappart, F.; Baghdadi, N.N.; Briant, G.; Bartholome, E. Mapping of central africa forested wetlands using remote sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7. [Google Scholar] [CrossRef] [Green Version]
- Hydroweb. Available online: http://hydroweb.theia-land.fr/ (accessed on 6 April 2020).
- Devroey, E. Annuaire Hydrologique du Congo et Ruanda-Urundi, 1959; Institut Royal Colonial Belge: Brussels, Belgium, 1961. [Google Scholar]
- Bricquet, J.P. Les Ecoulements Du Congo a Brazzaville Et La Spatialisation Des Apports. Gd. Bassins Fluviaux 1993, 22–24. [Google Scholar]
- Runge, J. The Congo River, Central Africa. In Large Rivers: Geomorphology and Management; John Wiley & Sons Ltd: Chichester, UK, 2008; pp. 293–309. ISBN 9780470723722. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Bwangoy, J.R.B.; Hansen, M.C.; Roy, D.P.; De Grandi, G.; Justice, C.O. Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sens. Environ. 2010, 114, 73–86. [Google Scholar] [CrossRef]
- Robert, M. Le Congo Physique; Presses Universitaires de France: Liège, Belgium, 1946. [Google Scholar]
- Campbell, D. The Congo river basin. In The World’s Largest Wetlands: Ecology and Conservation; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Vancutsem, C.; Pekel, J.F.; Evrard, C.; Malaisse, F.; Defourny, P. Mapping and characterizing the vegetation types of the Democratic Republic of Congo using SPOT VEGETATION time series. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 62–76. [Google Scholar] [CrossRef]
- Verhegghen, A.; Mayaux, P.; De Wasseige, C.; Defourny, P. Mapping Congo Basin vegetation types from 300 m and 1 km multi-sensor time series for carbon stocks and forest areas estimation. Biogeosciences 2012, 9, 5061–5079. [Google Scholar] [CrossRef] [Green Version]
- FAO World-Wide Agroclimatic Data of FAO (FAOCLIM)|Land & Water|Food and Agriculture Organization of the United Nations|Land & Water|Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1028000/ (accessed on 17 March 2019).
- Devroey, E. Le Kasai et Son Bassin Hydrographique; Goemaere: Brussels, Belgium, 1939. [Google Scholar]
- Yayer, J. Caractéristiques Hydrographiques de l’Oubangui; Comité Hydrographique du Bassin Congolais: Brussels, Belgium, 1951. [Google Scholar]
- Moukolo, N.; Laraque, A.; Olivry, J.C.; Bricquet, J.P. Transport en solution et en suspension par le fleuve congo (zaïre) et ses principaux affluents de la rive droite. Hydrol. Sci. J. 1993, 38, 133–145. [Google Scholar] [CrossRef]
- Censier, C. Caractérisation de processus d’érosion régressive par analyse sédimentologique comparée des sables du chenal et des barres du cours inférieur de l’Oubangui (République Centrafricaine, Congo, Zaïre). In Proceedings of the Conference L’hydrologie Tropicale: Géoscience el Outil Pour le Développement; AISH Publication: Wallingford, UK, 1996; Volume 238, pp. 289–303. [Google Scholar]
- Junk, W.J.; Bayley, P.B.; Sparks, R.E. The flood pulse concept in river-floodplain-systems. Can. J. Fish. Aquat. Sci. 1989, 110–127. [Google Scholar] [CrossRef]
- Wesselink, A.J.; Orange, D.; Feizoure, C.T. Randriamiarisoa Les régimes hydroclimatiques et hydrologiques d’un bassin versant de type tropical humide: L’Oubangui (République Centrafricaine). IAHS-AISH Publ. 1996, 238, 179–194. [Google Scholar]
- Benveniste, J.; Roca, M.; Levrini, G.; Vincent, P.; Baker, S.; Zanife, O.; Zelli, C.; Bombaci, O. The radar altimetry mission: RA-2, MWR, DORIS and LRR. ESA Bull. 2001, 106, 25101–25108. [Google Scholar]
- Lambin, J.; Morrow, R.; Fu, L.L.; Willis, J.K.; Bonekamp, H.; Lillibridge, J.; Perbos, J.; Zaouche, G.; Vaze, P.; Bannoura, W.; et al. The OSTM/Jason-2 Mission. Mar. Geod. 2010, 33, 4–25. [Google Scholar] [CrossRef]
- Wingham, D.J.; Rapley, C.G.; Griffiths, H. New Techniques in Satellite Altimeter Tracking Systems. Proc. IGARSS Symp. Zurich 1986, 1339–1344. [Google Scholar]
- Frappart, F.; Calmant, S.; Cauhopé, M.; Seyler, F.; Cazenave, A. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sens. Environ. 2006, 100, 252–264. [Google Scholar] [CrossRef] [Green Version]
- CTOH. Available online: http://ctoh.legos.obs-mip.fr/ (accessed on 24 October 2017).
- Blarel, F.; Frappart, F.; Legrésy, B.; Blumstein, D.; Rémy, F.; Fatras, C.; Mougin, E.; Papa, F.; Prigent, C.; Niño, F.; et al. Altimetry backscattering signatures at Ku and S bands over land and ice sheets. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XVII; SPIE: Bellingham, WA, USA, 2015; Volume 9637, p. 963727. [Google Scholar]
- Frappart, F.; Legrésy, B.; Niño, F.; Blarel, F.; Fuller, N.; Fleury, S.; Birol, F.; Calmant, S. An ERS-2 altimetry reprocessing compatible with ENVISAT for long-term land and ice sheets studies. Remote Sens. Environ. 2016, 184. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Liu, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234. [Google Scholar] [CrossRef]
- Thorndike, R.L. Who belongs in the family? Psychometrika 1953, 18, 267–276. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Nielsen, K.; Frappart, F.; Papa, F.; Calmant, S.; Benveniste, J. Hydrological applications of satellite altimetry: Rivers, lakes, man-made reservoirs, inundated areas. In Satellite Altimetry over Oceans and Land Surfaces; Stammer, D., Cazenave, A., Eds.; Earth Observation of Global Changes; CRC Press: Boca Raton, FL, USA, 2017; pp. 459–504. [Google Scholar]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967; Volume 1, pp. 281–297. [Google Scholar]
- Arthur, D.; Vassilvitskii, S. k-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms; SIAM: Philadelphia, PA, USA, 2007; pp. 1027–1035. [Google Scholar]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Normandin, C.; Frappart, F.; Lubac, B.; Bélanger, S.; Marieu, V.; Blarel, F.; Robinet, A.; Guiastrennec-Faugas, L. Quantification of surface water volume changes in the Mackenzie Delta using satellite multi-mission data. Hydrol. Earth Syst. Sci. 2018, 22, 1543–1561. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.; Papa, F.; Frappart, F.; Alsdorf, D.; Calmant, S.; da Silva, J.S.; Prigent, C.; Seyler, F. Satellite-based estimates of surface water dynamics in the Congo River Basin. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 196–209. [Google Scholar] [CrossRef] [Green Version]
- Fatras, C.; Borderies, P.; Frappart, F.; Mougin, E.; Blumstein, D.; Niño, F. Impact of surface soil moisture variations on radar altimetry echoes at Ku and Ka bands in semi-arid areas. Remote Sens. 2018, 10, 582. [Google Scholar] [CrossRef] [Green Version]
- Bonnefond, P.; Verron, J.; Aublanc, J.; Babu, K.N.; Bergé-Nguyen, M.; Cancet, M.; Chaudhary, A.; Crétaux, J.-F.; Frappart, F.; Haines, B.; et al. The Benefits of the Ka-Band as Evidenced from the SARAL/AltiKa Altimetric Mission: Quality Assessment and Unique Characteristics of AltiKa Data. Remote Sens. 2018, 10, 83. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Papa, F.; Güntner, A.; Tomasella, J.; Pfeffer, J.; Ramillien, G.; Emilio, T.; Schietti, J.; Seoane, L.; da Silva Carvalho, J.; et al. The spatio-temporal variability of groundwater storage in the Amazon River Basin. Adv. Water Resour. 2019, 124, 41–52. [Google Scholar] [CrossRef] [Green Version]
ENVISAT Class | Open Water | Flood. Perm. | Flood. Seas. Long | Flood. Seas. Short | Non-Flood. |
---|---|---|---|---|---|
1 | 0.42 | 0.29 | 0.21 | 0.07 | 0.01 |
2 | 0.19 | 0.26 | 0.36 | 0.17 | 0.02 |
3 | 0.05 | 0.09 | 0.43 | 0.34 | 0.09 |
4 | 0.00 | 0.03 | 0.34 | 0.49 | 0.14 |
5 | 0.01 | 0.01 | 0.15 | 0.57 | 0.26 |
Jason-2 Class | Open Water | Flood. Perm. | Flood. Seas. Long | Flood. Seas. Short | Non-Flood. |
---|---|---|---|---|---|
1 | 0.60 | 0.21 | 0.17 | 0.01 | 0.01 |
2 | 0.21 | 0.29 | 0.31 | 0.17 | 0.02 |
3 | 0.01 | 0.10 | 0.47 | 0.33 | 0.09 |
4 | 0.00 | 0.01 | 0.38 | 0.45 | 0.16 |
5 | 0.00 | 0.00 | 0.10 | 0.64 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frappart, F.; Zeiger, P.; Betbeder, J.; Gond, V.; Bellot, R.; Baghdadi, N.; Blarel, F.; Darrozes, J.; Bourrel, L.; Seyler, F. Automatic Detection of Inland Water Bodies along Altimetry Tracks for Estimating Surface Water Storage Variations in the Congo Basin. Remote Sens. 2021, 13, 3804. https://doi.org/10.3390/rs13193804
Frappart F, Zeiger P, Betbeder J, Gond V, Bellot R, Baghdadi N, Blarel F, Darrozes J, Bourrel L, Seyler F. Automatic Detection of Inland Water Bodies along Altimetry Tracks for Estimating Surface Water Storage Variations in the Congo Basin. Remote Sensing. 2021; 13(19):3804. https://doi.org/10.3390/rs13193804
Chicago/Turabian StyleFrappart, Frédéric, Pierre Zeiger, Julie Betbeder, Valéry Gond, Régis Bellot, Nicolas Baghdadi, Fabien Blarel, José Darrozes, Luc Bourrel, and Frédérique Seyler. 2021. "Automatic Detection of Inland Water Bodies along Altimetry Tracks for Estimating Surface Water Storage Variations in the Congo Basin" Remote Sensing 13, no. 19: 3804. https://doi.org/10.3390/rs13193804
APA StyleFrappart, F., Zeiger, P., Betbeder, J., Gond, V., Bellot, R., Baghdadi, N., Blarel, F., Darrozes, J., Bourrel, L., & Seyler, F. (2021). Automatic Detection of Inland Water Bodies along Altimetry Tracks for Estimating Surface Water Storage Variations in the Congo Basin. Remote Sensing, 13(19), 3804. https://doi.org/10.3390/rs13193804