URNet: A U-Shaped Residual Network for Lightweight Image Super-Resolution
Abstract
:1. Introduction
- (1)
- We propose a lightweight feature distillation pyramid residual group to better capture the multi-scale information and reconstruct the high-frequency detailed information of the image.
- (2)
- We propose a lightweight asymmetric residual non-local block to capture the global contextual information and further improve the performance of SISR.
- (3)
- We design a simple but effective high-frequency loss function to alleviate the problem of over-smoothed super-resolved images. Extensive experiments on multi-benchmark datasets demonstrate the superiority and effectiveness of our method in SISR tasks. It is worth mentioning that our designed modules and loss function can be combined with the numerous advancements in the image SR methods presented in the literature.
2. Related Work
2.1. Single Image Super-Resolution
2.2. Attention Mechanism
2.3. Perceptual Optimization
3. U-Shaped Residual Network
3.1. Network Structure
3.2. Feature Distillation Pyramid Residual Group
3.3. Asymmetric Non-Local Residual Block
3.4. Loss Function
4. Experiments
4.1. Datasets and Metrics
4.2. Implementation Details
4.3. Ablation Studies
4.4. Comparison with State-of-the-Art Methods
4.5. Model Anaysis
4.6. Remote Sensing Image Super-Resolution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Isaac, J.S.; Kulkarni, R. Super resolution techniques for medical image processing. In Proceedings of the 2015 International Conference on Technologies for Sustainable Development, Mumbai, India, 4–6 February 2015; pp. 1–6. [Google Scholar]
- Liu, H.; Xu, J.; Wu, Y.; Guo, Q.; Ibragimov, B.; Xing, L. Learning deconvolutional deep neural network for high resolution medical image reconstruction. Inf. Sci. 2018, 468, 142–154. [Google Scholar] [CrossRef]
- Yamashita, K.; Markov, K. Medical Image Enhancement Using Super Resolution Methods. In International Conference on Computational Science; Springer: Berlin/Heidelberg, Germany, 2020; pp. 496–508. [Google Scholar]
- Rasti, P.; Uiboupin, T.; Escalera, S.; Anbarjafari, G. Convolutional neural network super resolution for face recognition in surveillance monitoring. In International Conference on Articulated Motion and Deformable Objects; Springer: Berlin/Heidelberg, Germany, 2016; pp. 175–184. [Google Scholar]
- Xu, W.; Guangluan, X.; Wang, Y.; Sun, X.; Lin, D.; Yirong, W. High quality remote sensing image super-resolution using deep memory connected network. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8889–8892. [Google Scholar]
- Ma, W.; Pan, Z.; Yuan, F.; Lei, B. Super-resolution of remote sensing images via a dense residual generative adversarial network. Remote Sens. 2019, 11, 2578. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Liao, P.; Zhang, X.; Zhang, L.; Chen, G.; Zhu, K.; Tan, X.; Lv, Z. Enlighten-GAN for Super Resolution Reconstruction in Mid-Resolution Remote Sensing Images. Remote Sens. 2021, 13, 1104. [Google Scholar] [CrossRef]
- Sajjadi, M.S.M.; Schölkopf, B.; Hirsch, M. EnhanceNet: Single Image Super-Resolution through Automated Texture Synthesis. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4501–4510. [Google Scholar]
- Wang, P.; Wang, L.; Leung, H.; Zhang, G. Super-Resolution Mapping Based on Spatial–Spectral Correlation for Spectral Imagery. IEEE Trans. Geosci. Remote Sens. 2020, 59, 2256–2268. [Google Scholar] [CrossRef]
- Wan, W.; Guo, W.; Huang, H.; Liu, J. Nonnegative and nonlocal sparse tensor factorization-based hyperspectral image super-resolution. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8384–8394. [Google Scholar] [CrossRef]
- Li, J.; Cui, R.; Li, B.; Song, R.; Li, Y.; Du, Q. Hyperspectral image super-resolution with 1D–2D attentional convolutional neural network. Remote Sens. 2019, 11, 2859. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, K.; Sridharan, S.; Denman, S.; Fookes, C. Feature-domain super-resolution framework for Gabor-based face and iris recognition. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2642–2649. [Google Scholar]
- Zhou, F.; Yang, W.; Liao, Q. A coarse-to-fine subpixel registration method to recover local perspective deformation in the application of image super-resolution. IEEE Trans. Image Process. 2011, 21, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Stark, H.; Oskoui, P. High-resolution image recovery from image-plane arrays, using convex projections. JOSA A 1989, 6, 1715–1726. [Google Scholar] [CrossRef] [PubMed]
- Patti, A.J.; Altunbasak, Y. Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolants. IEEE Trans. Image Process. 2001, 10, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.B.; Singh, A.; Ahuja, N. Single Image Super-Resolution From Transformed Self-Exemplars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5197–5206. [Google Scholar]
- Hardie, R.C.; Barnard, K.J.; Armstrong, E.E. Joint MAP registration and high-resolution image estimation using a sequence of undersampled images. IEEE Trans. Image Process. 1997, 6, 1621–1633. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image Super-Resolution Using Very Deep Residual Channel Attention Networks. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 294–310. [Google Scholar]
- Hui, Z.; Gao, X.; Yang, Y.; Wang, X. Lightweight Image Super-Resolution with Information Multi-distillation Network. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2024–2032. [Google Scholar]
- Feng, X.; Zhang, W.; Su, X.; Xu, Z. Optical Remote Sensing Image Denoising and Super-Resolution Reconstructing Using Optimized Generative Network in Wavelet Transform Domain. Remote Sens. 2021, 13, 1858. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 184–199. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Kwon Lee, J.; Mu Lee, K. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Deeply-recursive convolutional network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016; pp. 1637–1645. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar]
- Ahn, N.; Kang, B.; Sohn, K.A. Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 252–268. [Google Scholar]
- Hui, Z.; Wang, X.; Gao, X. Fast and Accurate Single Image Super-Resolution via Information Distillation Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 723–731. [Google Scholar]
- Liu, J.; Tang, J.; Wu, G. Residual Feature Distillation Network for Lightweight Image Super-Resolution. In Proceedings of the European Conference on Computer Vision AIM Workshops, Glasgow, UK, 23–28 August 2020. [Google Scholar]
- Zhu, Z.; Xu, M.; Bai, S.; Huang, T.; Bai, X. Asymmetric non-local neural networks for semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October 2019; pp. 593–602. [Google Scholar]
- Justin, J.; Alexandre, A.; Li, F.-F. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. In Proceedings of the European Conference on Computer Vision; Springer: Berlin, Germany, 2016; pp. 694–711. [Google Scholar]
- Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5892–5900. [Google Scholar]
- Yuan, Y.; Liu, S.; Zhang, J.; Zhang, Y.; Dong, C.; Lin, L. Unsupervised Image Super-Resolution using Cycle-in-Cycle Generative Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 701–710. [Google Scholar]
- Zhang, H.; Yang, Z.; Zhang, L.; Shen, H. Super-resolution reconstruction for multi-angle remote sensing images considering resolution differences. Remote Sens. 2014, 6, 637–657. [Google Scholar] [CrossRef] [Green Version]
- Chantas, G.K.; Galatsanos, N.P.; Woods, N.A. Super-resolution based on fast registration and maximum a posteriori reconstruction. IEEE Trans. Image Process. 2007, 16, 1821–1830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, T.; Cai, J.; Zhang, Y.; Xia, S.T.; Zhang, L. Second-order Attention Network for Single Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11065–11074. [Google Scholar]
- Feng, X.; Su, X.; Shen, J.; Jin, H. Single space object image denoising and super-resolution reconstructing using deep convolutional networks. Remote Sens. 2019, 11, 1910. [Google Scholar] [CrossRef] [Green Version]
- Tai, Y.; Yang, J.; Liu, X.; Xu, C. MemNet: A Persistent Memory Network for Image Restoration. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4539–4547. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2472–2481. [Google Scholar]
- Li, Z.; Yang, J.; Liu, Z.; Yang, X.; Jeon, G.; Wu, W. Feedback Network for Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3862–3871. [Google Scholar]
- Qiu, Y.; Wang, R.; Tao, D.; Cheng, J. Embedded Block Residual Network: A Recursive Restoration Model for Single-Image Super-Resolution. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 4180–4189. [Google Scholar]
- Chu, X.; Zhang, B.; Ma, H.; Xu, R.; Li, J.; Li, Q. Fast, accurate and lightweight super-resolution with neural architecture search. arXiv 2019, arXiv:1901.07261. [Google Scholar]
- Chu, X.; Zhang, B.; Xu, R.; Ma, H. Multi-objective reinforced evolution in mobile neural architecture search. arXiv 2019, arXiv:1901.01074. [Google Scholar]
- Luo, X.; Xie, Y.; Zhang, Y.; Qu, Y.; Li, C.; Fu, Y. LatticeNet: Towards Lightweight Image Super-resolution with Lattice Block. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7174. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-Local Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803. [Google Scholar]
- Liu, D.; Wen, B.; Fan, Y.; Loy, C.C.; Huang, T.S. Non-Local Recurrent Network for Image Restoration. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2018; pp. 1680–1689. [Google Scholar]
- Mei, Y.; Fan, Y.; Zhou, Y.; Huang, L.; Huang, T.S.; Shi, H. Image Super-Resolution With Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Niu, B.; Wen, W.; Ren, W.; Zhang, X.; Yang, L.; Wang, S.; Zhang, K.; Cao, X.; Shen, H. Single Image Super-Resolution via a Holistic Attention Network. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 191–207. [Google Scholar]
- Liu, H.; Fu, Z.; Han, J.; Shao, L.; Hou, S.; Chu, Y. Single image super-resolution using multi-scale deep encoder–decoder with phase congruency edge map guidance. Inf. Sci. 2019, 473, 44–58. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Guo, Y.; Ding, G.; Han, J. Acnet: Strengthening the kernel skeletons for powerful cnn via asymmetric convolution blocks. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 1911–1920. [Google Scholar]
- Wang, Z.; Liu, D.; Yang, J.; Han, W.; Huang, T. Deep networks for image super-resolution with sparse prior. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 370–378. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017; pp. 4700–4708. [Google Scholar]
- Zhang, C.; Benz, P.; Argaw, D.M.; Lee, S.; Kim, J.; Rameau, F.; Bazin, J.C.; Kweon, I.S. Resnet or densenet? introducing dense shortcuts to resnet. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Waikoloa, Hawaii, US, 5–9 January 2021; pp. 3550–3559. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017; pp. 2881–2890. [Google Scholar]
- Timofte, R.; Agustsson, E.; Van Gool, L.; Yang, M.H.; Zhang, L. Ntire 2017 challenge on single image super-resolution: Methods and results. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 114–125. [Google Scholar]
- Bevilacqua, M.; Roumy, A.; Guillemot, C.; Alberi-Morel, M.L. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In Proceedings of the 2012 British Machine Vision Conference, Surrey, UK, 3–7 September 2012. [Google Scholar]
- Zeyde, R.; Elad, M.; Protter, M. On single image scale-up using sparse-representations. In International Conference on Curves and Surfaces; Springer: Berlin/Heidelberg, Germany, 2010; pp. 711–730. [Google Scholar]
- Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 898–916. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Lu, W.; Tao, D.; Li, X. Image quality assessment based on multiscale geometric analysis. IEEE Trans. Image Process. 2009, 18, 1409–1423. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 2016, 3, 47–57. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 391–407. [Google Scholar]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep laplacian pyramid networks for fast and accurate super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 624–632. [Google Scholar]
- Tai, Y.; Yang, J.; Liu, X. Image super-resolution via deep recursive residual network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3147–3155. [Google Scholar]
- Zhang, K.; Zuo, W.; Zhang, L. Learning a single convolutional super-resolution network for multiple degradations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3262–3271. [Google Scholar]
- Lei, S.; Shi, Z.; Zou, Z. Super-resolution for remote sensing images via local–global combined network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1243–1247. [Google Scholar] [CrossRef]
- Dong, X.; Xi, Z.; Sun, X.; Gao, L. Transferred multi-perception attention networks for remote sensing image super-resolution. Remote Sens. 2019, 11, 2857. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Sun, X.; Jia, X.; Xi, Z.; Gao, L.; Zhang, B. Remote sensing image super-resolution using novel dense-sampling networks. IEEE Trans. Geosci. Remote Sens. 2020, 59, 1618–1633. [Google Scholar] [CrossRef]
- Ma, Y.; Lv, P.; Liu, H.; Sun, X.; Zhong, Y. Remote Sensing Image Super-Resolution Based on Dense Channel Attention Network. Remote Sens. 2021, 13, 2966. [Google Scholar] [CrossRef]
- Dharejo, F.A.; Deeba, F.; Zhou, Y.; Das, B.; Jatoi, M.A.; Zawish, M.; Du, Y.; Wang, X. TWIST-GAN: Towards Wavelet Transform and Transferred GAN for Spatio-Temporal Single Image Super Resolution. arXiv 2021, arXiv:2104.10268. [Google Scholar]
- Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems, San Jose, CA, USA, 2–5 November 2010; pp. 270–279. [Google Scholar]
- Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef] [Green Version]
URNet-B | ✓ | ✓ | ✓ | ✓ | ✓ |
---|---|---|---|---|---|
ACB | ✓ | ✓ | ✓ | ✓ | |
FDPRG/DS | ✓ | ✓ | ✓ | ||
FDPRG/CFPB | ✓ | ✓ | |||
ANRB | ✓ | ||||
PSNR (dB) | 35.54 | 35.56 | 35.58 | 35.59 | 35.62 |
Set5 | Set14 | B100 | Urban100 | ||
---|---|---|---|---|---|
PSNR | 38.020 | 33.685 | 32.228 | 32.356 | |
SSIM | 0.9606 | 0.9184 | 0.9003 | 0.9303 | |
PSNR | 37.999 | 33.692 | 32.181 | 32.184 | |
SSIM | 0.9605 | 0.9191 | 0.8998 | 0.9291 | |
PSNR | 35.823 | 31.776 | 30.283 | 30.145 | |
SSIM | 0.9350 | 0.8763 | 0.8439 | 0.8822 | |
PSNR | 35.267 | 31.230 | 29.870 | 29.587 | |
SSIM | 0.9328 | 0.8747 | 0.8518 | 0.8900 | |
PSNR | 38.063 | 33.684 | 32.240 | 32.415 | |
SSIM | 0.9608 | 0.9187 | 0.9005 | 0.9310 |
Method | Set5 | Set14 | B100 | Urban100 | Params | FLOPs |
---|---|---|---|---|---|---|
E-RFDN [28] | 37.99 | 33.56 | 32.19 | 32.16 | 663.9 K | 41.3 G |
URNet-B | 38.03 | 33.56 | 32.20 | 32.27 | 567.6 K | 35.9 G |
Method | Scale | Params | Set5 | Set14 | B100 | Uban100 |
---|---|---|---|---|---|---|
PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | |||
Bicubic | - | 33.66/0.9299 | 30.24/0.8688 | 29.56/0.8431 | 26.88/0.8403 | |
SRCNN [21] | 8 K | 36.66/0.9542 | 32.45/0.9067 | 31.36/0.8879 | 29.50/0.8946 | |
FSRCNN [63] | 13 K | 37.00/0.9558 | 32.63/0.9088 | 31.53/0.8920 | 29.88/0.9020 | |
VDSR [23] | 666 K | 37.53/0.9587 | 33.03/0.9124 | 31.90/0.8960 | 30.76/0.9140 | |
DRCN [24] | 1774 K | 37.63/0.9588 | 33.04/0.9118 | 31.85/0.8942 | 30.75/0.9133 | |
LapSRN [64] | 251 K | 37.52/0.9591 | 32.99/0.9124 | 31.80/0.8952 | 30.41/0.9103 | |
DRRN [65] | 298 K | 37.74/0.9591 | 33.23/0.9136 | 32.05/0.8973 | 31.23/0.9188 | |
MemNet [37] | 678 K | 37.78/0.9597 | 33.28/0.9142 | 32.08/0.8978 | 31.31/0.9195 | |
IDN [27] | 553 K | 37.83/0.9600 | 33.30/0.9148 | 32.08/0.8985 | 31.27/0.9196 | |
SRMDNF [66] | 1511 K | 37.79/0.9601 | 33.32/0.9159 | 32.05/0.8985 | 31.33/0.9204 | |
CARN [26] | 1592 K | 37.76/0.9590 | 33.52/0.9166 | 32.09/0.8978 | 31.92/0.9256 | |
IMDN [19] | 694 K | 38.00/0.9605 | 33.63/0.9177 | 32.18/0.8996 | 32.17/0.9283 | |
RFDN-L [28] | 626 K | 38.03/0.9606 | 33.65/0.9183 | 32.17/0.8996 | 32.16/0.9282 | |
URNet (ours) | 612 K | 38.06/0.9608 | 33.68/0.9187 | 32.24/0.9005 | 32.42/0.9310 | |
URNet+ (ours) | 612 K | 38.14/0.9611 | 33.70/0.9190 | 32.29/0.9009 | 32.61/0.9325 | |
Bicubic | - | 30.39/0.8682 | 27.55/0.7742 | 27.21/0.7385 | 24.46/0.7349 | |
SRCNN [21] | 8 K | 32.75/0.9090 | 29.30/0.8215 | 28.41/0.7863 | 26.24/0.7989 | |
FSRCNN [63] | 13 K | 33.18/0.9140 | 29.37/0.8240 | 28.53/0.7910 | 26.43/0.8080 | |
VDSR [23] | 666 K | 33.66/0.9213 | 29.77/0.8314 | 28.82/0.7976 | 27.14/0.8279 | |
DRCN [24] | 1774 K | 33.82/0.9226 | 29.76/0.8311 | 28.80/0.7963 | 27.15/0.8276 | |
LapSRN [64] | 502 K | 33.81/0.9220 | 29.79/0.8325 | 28.82/0.7980 | 27.07/0.8275 | |
DRRN [65] | 298 K | 34.03/0.9244 | 29.96/0.8349 | 28.95/0.8004 | 27.53/0.8378 | |
MemNet [37] | 678 K | 34.09/0.9248 | 30.00/0.8350 | 28.96/0.8001 | 27.56/0.8376 | |
IDN [27] | 553 K | 34.11/0.9253 | 29.99/0.8354 | 28.95/0.8013 | 27.42/0.8359 | |
SRMDNF [66] | 1528K | 34.12/0.9254 | 30.04/0.8382 | 28.97/0.8025 | 27.57/0.8398 | |
CARN [26] | 1592 K | 34.29/0.9255 | 30.29/0.8407 | 29.06/0.8034 | 28.06/0.8493 | |
IMDN [19] | 703 K | 34.36/0.9270 | 30.32/0.8417 | 29.09/0.8047 | 28.16/0.8519 | |
RFDN-L [28] | 633 K | 34.39/0.9271 | 30.35/0.8419 | 29.11/0.8054 | 28.24/0.8534 | |
URNet (ours) | 621 K | 34.51/0.9281 | 30.40/0.8433 | 29.14/0.8061 | 28.40/0.8574 | |
URNet+ (ours) | 621 K | 34.60/0.9288 | 30.48/0.8444 | 29.19/0.8072 | 28.57/0.8599 | |
Bicubic | - | 28.42/0.8104 | 26.00/0.7027 | 25.96/0.6675 | 23.14/0.6577 | |
SRCNN [21] | 8 K | 30.48/0.8626 | 27.50/0.7513 | 26.90/0.7101 | 24.52/0.7221 | |
FSRCNN [63] | 13 K | 30.72/0.8660 | 27.61/0.7550 | 26.98/0.7150 | 24.62/0.7280 | |
VDSR [23] | 666 K | 31.35/0.8838 | 28.01/0.7674 | 27.29/0.7251 | 25.18/0.7524 | |
DRCN [24] | 1774 K | 31.53/0.8854 | 28.02/0.7670 | 27.23/0.7233 | 25.14/0.7510 | |
LapSRN [64] | 251 K | 31.54/0.8852 | 28.09/0.7700 | 27.32/0.7275 | 25.21/0.7562 | |
DRRN [65] | 298 K | 31.68/0.8888 | 28.21/0.7720 | 27.38/0.7284 | 25.44/0.7638 | |
MemNet [37] | 678 K | 31.74/0.8893 | 28.26/0.7723 | 27.40/0.7281 | 25.50/0.7630 | |
IDN [27] | 553 K | 31.82/0.8903 | 28.25/0.7730 | 27.41/0.7297 | 25.41/0.7632 | |
SRMDNF [66] | 1552 K | 31.96/0.8925 | 28.35/0.7787 | 27.49/0.7337 | 25.68/0.7731 | |
CARN [26] | 1592 K | 32.13/0.8937 | 28.60/0.7806 | 27.58/0.7349 | 26.07/0.7837 | |
IMDN [19] | 715 K | 32.21/0.8948 | 28.58/0.7810 | 27.55/0.7353 | 26.04/0.7838 | |
RFDN-L [28] | 643 K | 32.23/0.8953 | 28.59/0.7814 | 27.56/0.7362 | 26.14/0.7871 | |
URNet (Ours) | 633K | 32.20/0.8952 | 28.63/0.7826 | 27.60/0.7369 | 26.23/0.7905 | |
URNet+ (ours) | 633K | 32.35/0.8969 | 28.71/0.7840 | 27.66/0.7383 | 26.41/0.7945 |
CARN [26] | IMDN [19] | RFDN-L [28] | URNet (ours) | |
---|---|---|---|---|
SSIM | 0.7806 | 0.7810 | 0.7814 | 0.7826 |
PSNR | 28.60 | 28.58 | 28.59 | 28.63 |
FLOPs (G) | 103.58 | 46.60 | 41.54 | 39.51 |
Scale | EDSR [25] | RCAN [18] | IMDN [19] | URNet (ours) | |
---|---|---|---|---|---|
Set5 | 2 | 38.11/0.9602 | 38.27/0.9614 | 38.00/0.9605 | 38.06/0.9608 |
3 | 34.65/0.9280 | 34.74/0.9299 | 34.36/0.9270 | 34.51/0.9281 | |
4 | 32.46/0.8968 | 32.63/0.9002 | 32.21/0.8948 | 32.20/0.8952 | |
Set14 | 2 | 33.92/0.9195 | 34.12/0.9216 | 33.63/0.9177 | 33.68/0.9187 |
3 | 30.52/0.8462 | 30.65/0.8482 | 30.32/0.8417 | 30.40/0.8433 | |
4 | 28.80/0.7876 | 28.87/0.7889 | 28.58/0.7810 | 28.63/0.7826 | |
B100 | 2 | 32.32/0.9013 | 32.41/0.9027 | 32.18/0.8996 | 32.24/0.9005 |
3 | 29.25/0.8093 | 29.32/0.8111 | 29.09/0.8047 | 29.14/0.8061 | |
4 | 27.71/0.7420 | 27.77/0.7436 | 27.55/0.7353 | 27.60/0.7369 | |
Urban100 | 2 | 32.93/0.9351 | 33.24/0.9384 | 32.17/0.9283 | 32.42/0.9310 |
3 | 28.80/0.8653 | 29.09/0.8702 | 28.16/0.8519 | 28.40/0.8574 | |
4 | 26.64/0.8033 | 26.82/0.8087 | 26.04/0.7838 | 26.23/0.7905 | |
Parameters (K) | 43,090 | 15,592 | 715 | 633 | |
FLOPs (G) | 3293.9 | 1044.0 | 46.6 | 39.5 | |
Running Time (Sec.) | 0.2178 | 0.2596 | 0.0939 | 0.0310 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhao, L.; Liu, L.; Hu, H.; Tao, W. URNet: A U-Shaped Residual Network for Lightweight Image Super-Resolution. Remote Sens. 2021, 13, 3848. https://doi.org/10.3390/rs13193848
Wang Y, Zhao L, Liu L, Hu H, Tao W. URNet: A U-Shaped Residual Network for Lightweight Image Super-Resolution. Remote Sensing. 2021; 13(19):3848. https://doi.org/10.3390/rs13193848
Chicago/Turabian StyleWang, Yuntao, Lin Zhao, Liman Liu, Huaifei Hu, and Wenbing Tao. 2021. "URNet: A U-Shaped Residual Network for Lightweight Image Super-Resolution" Remote Sensing 13, no. 19: 3848. https://doi.org/10.3390/rs13193848
APA StyleWang, Y., Zhao, L., Liu, L., Hu, H., & Tao, W. (2021). URNet: A U-Shaped Residual Network for Lightweight Image Super-Resolution. Remote Sensing, 13(19), 3848. https://doi.org/10.3390/rs13193848