Time Series Analysis of Land Cover Change in Dry Mountains: Insights from the Tajik Pamirs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Landsat Data
2.2.2. Climate Data
2.2.3. Population Data
2.2.4. Livestock Data
2.2.5. Vegetation and Land Cover Data
2.2.6. Topographic Data
2.3. Time Series Analysis Using Generalized Additive Mixed Models
3. Results
3.1. Vegetation Greening and Browning Trends as Indicated by MSAVI Time Series
3.2. Trends of Temperature and Precipitation
3.3. Trends of Population Development
3.4. Trends of Large Livestock Numbers
4. Discussion
4.1. Detection of Greening and Browning Trends
4.2. Distinction of Greening and Browning Trends
4.3. Relationship of Greening and Browning Trends to Temperature and Precipitation
4.4. Relationship of Greening and Browning Trends to Population and Livestock Numbers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, N.; Feng, X.; Fu, B.; Wang, S.; Ji, F.; Pan, S. Increasing Global Vegetation Browning Hidden in Overall Vegetation Greening: Insights from Time-Varying Trends. Remote Sens. Environ. 2018, 214, 59–72. [Google Scholar] [CrossRef]
- Nagendra, H.; Reyers, B.; Lavorel, S. Impacts of Land Change on Biodiversity: Making the Link to Ecosystem Services. Curr. Opin. Environ. Sustain. 2013, 5, 503–508. [Google Scholar] [CrossRef]
- Zeng, Z.; Peng, L.; Piao, S. Response of Terrestrial Evapotranspiration to Earth’s Greening. Curr. Opin. Environ. Sustain. 2018, 33, 9–25. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and Its Drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Brandt, M.; Mbow, C.; Diouf, A.A.; Verger, A.; Samimi, C.; Fensholt, R. Ground- and Satellite-Based Evidence of the Biophysical Mechanisms behind the Greening Sahel. Glob. Chang. Biol. 2015, 21, 1610–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of Earth Observation Based Long Term Vegetation Trends—Intercomparing NDVI Time Series Trend Analysis Consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT Data. Remote Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- Trichon, V.; Hiernaux, P.; Walcker, R.; Mougin, E. The Persistent Decline of Patterned Woody Vegetation: The Tiger Bush in the Context of the Regional Sahel Greening Trend. Glob. Chang. Biol. 2018, 24, 2633–2648. [Google Scholar] [CrossRef] [PubMed]
- Mueller, T.; Dressler, G.; Tucker, C.J.; Pinzon, J.E.; Leimgruber, P.; Dubayah, R.O.; Hurtt, G.C.; Böhning-Gaese, K.; Fagan, W.F. Human Land-Use Practices Lead to Global Long-Term Increases in Photosynthetic Capacity. Remote Sens. 2014, 6, 5717–5731. [Google Scholar] [CrossRef] [Green Version]
- Forzieri, G.; Alkama, R.; Miralles, D.G.; Cescatti, A. Response to Comment on “Satellites Reveal Contrasting Responses of Regional Climate to the Widespread Greening of Earth”. Science 2018, 360, 6394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucht, W.; Prentice, I.C.; Myneni, R.B.; Sitch, S.; Friedlingstein, P.; Cramer, W.; Bousquet, P.; Buermann, W.; Smith, B. Climatic Control of the High-Latitude Vegetation Greening Trend and Pinatubo Effect. Science 2002, 296, 1687–1689. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, Y.; Li, S.; Motesharrei, S. Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human Factors. Remote Sens. 2015, 7, 13233–13250. [Google Scholar] [CrossRef] [Green Version]
- Brehaut, L.; Danby, R.K. Inconsistent Relationships between Annual Tree Ring-Widths and Satellite-Measured NDVI in a Mountainous Subarctic Environment. Ecol. Indic. 2018, 91, 698–711. [Google Scholar] [CrossRef]
- Jeong, J.-H.; Kug, J.-S.; Kim, B.-M.; Min, S.-K.; Linderholm, H.W.; Ho, C.-H.; Rayner, D.; Chen, D.; Jun, S.-Y. Greening in the Circumpolar High-Latitude May Amplify Warming in the Growing Season. Clim. Dyn. 2012, 38, 1421–1431. [Google Scholar] [CrossRef]
- Cho, M.H.; Yang, A.R.; Baek, E.H.; Kang, S.M.; Jeong, S.J.; Kim, J.Y.; Kim, B.M. Vegetation-Cloud Feedbacks to Future Vegetation Changes in the Arctic Regions. Clim. Dyn. 2018, 50, 3745–3755. [Google Scholar] [CrossRef]
- Silapaswan, C.S.; Verbyla, D.L.; McGuire, A.D. Land Cover Change on the Seward Peninsula: The Use of Remote Sensing to Evaluate the Potential Influences of Climate Warming on Historical Vegetation Dynamics. Can. J. Remote Sens. 2001, 27, 542–554. [Google Scholar] [CrossRef]
- Goetz, S.J.; Bunn, A.G.; Fiske, G.J.; Houghton, R.A. Satellite-Observed Photosynthetic Trends across Boreal North America Associated with Climate and Fire Disturbance. Proc. Natl. Acad. Sci. USA 2005, 102, 13521–13525. [Google Scholar] [CrossRef] [Green Version]
- Sturm, M.; Racine, C.; Tape, K. Increasing Shrub Abundance in the Arctic. Nature 2001, 411, 546–547. [Google Scholar] [CrossRef]
- Sturm, M.; McFadden, J.P.; Liston, G.E.; Chapin, F.S., III; Racine, C.H.; Holmgren, J. Snow-Shrub Interactions in Arctic Tundra: A Hypothesis with Climatic Implications. J. Clim. 2001, 14, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, U.S.; Walker, D.A.; Raynolds, M.K.; Comiso, J.C.; Epstein, H.E.; Jia, G.; Gens, R.; Pinzon, J.E.; Tucker, C.J.; Tweedie, C.E.; et al. Circumpolar Arctic Tundra Vegetation Change Is Linked to Sea Ice Decline. Earth Interact. 2010, 14, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Bunn, A.G.; Goetz, S.J.; Kimball, J.S.; Zhang, K. Northern High-Latitude Ecosystems Respond to Climate Change. Eos. Trans. Am. Geophys. Union 2007, 88, 333–335. [Google Scholar] [CrossRef]
- de Jong, R.; de Bruin, S.; de Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of Monotonic Greening and Browning Trends from Global NDVI Time-Series. Remote Sens. Environ. 2011, 115, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Swann, A.L.S.; Fung, I.Y.; Chiang, J.C.H. Mid-Latitude Afforestation Shifts General Circulation and Tropical Precipitation. Proc. Natl. Acad. Sci. USA 2012, 109, 712–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Q.; Wang, C. The Greening of Northwest Indian Subcontinent and Reduction of Dust Abundance Resulting from Indian Summer Monsoon Revival. Sci. Rep. 2018, 8, 4573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haro-Carrión, X.; Waylen, P.; Southworth, J. Spatiotemporal Changes in Vegetation Greenness across Continental Ecuador: A Pacific-Andean-Amazonian Gradient, 1982–2010. J. Land Use Sci. 2021, 16, 18–33. [Google Scholar] [CrossRef]
- Kawabata, A.; Ichii, K.; Yamaguchi, Y. Global Monitoring of Interannual Changes in Vegetation Activities Using NDVI and Its Relationships to Temperature and Precipitation. Int. J. Remote Sens. 2001, 22, 1377–1382. [Google Scholar] [CrossRef]
- Chen, S.; Cui, X.; Liang, T. Response of Alpine Grassland Vegetation Phenology to Snow Accumulation and Melt in Namco Basin. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Piao, S.; Jeong, S.-J.; Zhou, L.; Zeng, Z.; Ciais, P.; Chen, D.; Huang, M.; Jin, C.-S.; Li, L.Z.X.; et al. Evaporative Cooling over the Tibetan Plateau Induced by Vegetation Growth. Proc. Natl. Acad. Sci. USA 2015, 112, 9299–9304. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhou, T.; Zhang, L. Wetting and Greening Tibetan Plateau in Early Summer in Recent Decades. J. Geophys. Res. Atmos. 2017, 122, 5808–5822. [Google Scholar] [CrossRef]
- Jeong, S.-J.; Ho, C.-H.; Park, T.-W.; Kim, J.; Levis, S. Impact of Vegetation Feedback on the Temperature and Its Diurnal Range over the Northern Hemisphere during Summer in a 2 × CO2 Climate. Clim. Dyn. 2011, 37, 821–833. [Google Scholar] [CrossRef] [Green Version]
- Bogaert, J.; Zhou, L.; Tucker, C.J.; Myneni, R.B.; Ceulemans, R. Evidence for a Persistent and Extensive Greening Trend in Eurasia Inferred from Satellite Vegetation Index Data. J. Geophys. Res. Atmos. 2002, 107, ACL 4-1. [Google Scholar] [CrossRef]
- Fan, X.; Liu, Y.; Tao, J.; Wang, Y.; Zhou, H. MODIS Detection of Vegetation Changes and Investigation of Causal Factors in Poyang Lake Basin, China for 2001–2015. Ecol. Indic. 2018, 91, 511–522. [Google Scholar] [CrossRef]
- Keeling, C.D.; Chin, J.F.S.; Whorf, T.P. Increased Activity of Northern Vegetation Inferred from Atmospheric CO2 Measurements. Nature 1996, 382, 146–149. [Google Scholar] [CrossRef]
- Tucker, C.J.; Slayback, D.A.; Pinzon, J.E.; Los, S.O.; Myneni, R.B.; Taylor, M.G. Higher Northern Latitude Normalized Difference Vegetation Index and Growing Season Trends from 1982 to 1999. Int. J. Biometeorol. 2001, 45, 184–190. [Google Scholar] [CrossRef]
- Hinzman, L.D.; Bettez, N.D.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Griffith, B.; Hollister, R.D.; Hope, A.; Huntington, H.P.; et al. Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions. Clim. Chang. 2005, 72, 251–298. [Google Scholar] [CrossRef]
- Metternicht, G.; Zinck, J.A.; Blanco, P.D.; del Valle, H.F. Remote Sensing of Land Degradation: Experiences from Latin America and the Caribbean. J. Environ. Qual. 2010, 39, 42–61. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. Variations in Northern Vegetation Activity Inferred from Satellite Data of Vegetation Index during 1981 to 1999. J. Geophys. Res. Atmos. 2001, 106, 20069–20083. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Zhu, B.; Tan, K.; Tao, S. Changes in Vegetation Net Primary Productivity from 1982 to 1999 in China. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef] [Green Version]
- Lü, Y.; Zhang, L.; Feng, X.; Zeng, Y.; Fu, B.; Yao, X.; Li, J.; Wu, B. Recent Ecological Transitions in China: Greening, Browning, and Influential Factors. Sci. Rep. 2015, 5, 8732. [Google Scholar] [CrossRef] [PubMed]
- Eddy, I.M.S.; Gergel, S.E.; Coops, N.C.; Henebry, G.M.; Levine, J.; Zerriffi, H.; Shibkov, E. Integrating Remote Sensing and Local Ecological Knowledge to Monitor Rangeland Dynamics. Ecol. Indic. 2017, 82, 106–116. [Google Scholar] [CrossRef]
- FAO; Mountain Partnership Secretariat; UNCCD; SDC; CDE. Highlands and Drylands-Mountains, a Source of Resilience in Arid Regions; FAO, UNCCD, Mountain Partnership, Swiss Agency for Development and Cooperation, and CDE, with the support of an international group of experts: Rome, Italy, 2011; p. 115. [Google Scholar]
- Grabherr, G.; Gottfried, M.; Pauli, H. Climate Effects on Mountain Plants. Nature 1994, 369, 448. [Google Scholar] [CrossRef] [PubMed]
- Salick, J.; Fang, Z.; Byg, A. Eastern Himalayan Alpine Plant Ecology, Tibetan Ethnobotany, and Climate Change. Glob. Environ. Chang. 2009, 19, 147–155. [Google Scholar] [CrossRef]
- Frei, E.; Bodin, J.; Walther, G.-R. Plant Species’ Range Shifts in Mountainous Areas—All Uphill from Here? Bot. Helv. 2010, 120, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Walther, G.-R.; Beißner, S.; Burga, C.A. Trends in the Upward Shift of Alpine Plants. J. Veg. Sci. 2005, 16, 541–548. [Google Scholar] [CrossRef]
- Theurillat, J.-P.; Guisan, A. Potential Impact of Climate Change on Vegetation in the European Alps: A Review. Clim. Chang. 2001, 50, 77–109. [Google Scholar] [CrossRef]
- Spehn, E.M.; Liberman, M.; Korner, C. Land Use Change and Mountain Biodiversity; CRC Press: New York, NY, USA, 2006; ISBN 978-1-4200-0287-4. [Google Scholar]
- Tasser, E.; Leitinger, G.; Tappeiner, U. Climate Change versus Land-Use Change—What Affects the Mountain Landscapes More? Land Use Policy 2017, 60, 60–72. [Google Scholar] [CrossRef]
- Kassam, K.-A. Viewing Change Through the Prism of Indigenous Human Ecology: Findings from the Afghan and Tajik Pamirs. Hum. Ecol. 2009, 37, 677. [Google Scholar] [CrossRef]
- Beg, G. Cross-border cooperation for biodiversity conservation and sustainable development: Case studies on Karakoram, Hindukush and Pamir. In Experiences with and Prospects for Regional Exchange and Cooperation in Mountain Areas; Kreutzmann, H., Beg, G., Richter, J., Eds.; InWEnt-Internationale Weiterbildung und Entwicklung GmbH Press: Bonn, Germany, 2009; pp. 184–211. [Google Scholar]
- Giuliani, A.; van Oudenhoven, F.; Mubalieva, S. Agricultural Biodiversity in the Tajik Pamirs. Mt. Res. Dev. 2011, 31, 16–26. [Google Scholar] [CrossRef]
- Akhmadov, K.M.; Breckle, S.-W.; Breckle, U. Effects of grazing on biodiversity, productivity, and soil erosion of alpine pastures in Tajik Mountains. In Land Use Change and Mountain Biodiversity; CRC Press: New York, NY, USA, 2006; pp. 239–248. ISBN 978-0-8493-3523-5. [Google Scholar]
- Mountain Societies Development Support Programme. In 2003 Baseline Survey of Gorno-Badakhshan Autonomous Oblast, Tajikistan; MSDSP: Khorog, Tajikistan, 2004.
- Wulder, M.A.; Hall, R.J.; Coops, N.C.; Franklin, S.E. High Spatial Resolution Remotely Sensed Data for Ecosystem Characterization. BioScience 2004, 54, 511–521. [Google Scholar] [CrossRef] [Green Version]
- Kumari, N.; Saco, P.M.; Rodriguez, J.F.; Johnstone, S.A.; Srivastava, A.; Chun, K.P.; Yetemen, O. The Grass Is Not Always Greener on the Other Side: Seasonal Reversal of Vegetation Greenness in Aspect-Driven Semiarid Ecosystems. Geophys. Res. Lett. 2020, 47, e2020GL088918. [Google Scholar] [CrossRef]
- Guo, B.; Yang, F.; Fan, Y.; Han, B.; Chen, S.; Yang, W. Dynamic Monitoring of Soil Salinization in Yellow River Delta Utilizing MSAVI–SI Feature Space Models with Landsat Images. Environ. Earth Sci. 2019, 78, 308. [Google Scholar] [CrossRef]
- Weiss, D.J.; Walsh, S.J. Remote Sensing of Mountain Environments. Geogr. Compass 2009, 3, 1–21. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.-L. Scale Issues in Remote Sensing: A Review on Analysis, Processing and Modeling. Sensors 2009, 9, 1768–1793. [Google Scholar] [CrossRef]
- Aplin, P. On Scales and Dynamics in Observing the Environment. Int. J. Remote Sens. 2006, 27, 2123–2140. [Google Scholar] [CrossRef]
- Robinson, S. Land Degradation in Central Asia: Evidence, Perception and Policy. In The End of Desertification? Disputing Environmental Change in the Drylands; Behnke, R., Mortimore, M., Eds.; Springer Earth System Sciences; Springer: Berlin/Heidelberg, Germany, 2016; pp. 451–490. ISBN 978-3-642-16014-1. [Google Scholar]
- Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.D.; Neigh, C.S.R.; Reichstein, M. Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology. Remote Sens. 2013, 5, 2113–2144. [Google Scholar] [CrossRef] [Green Version]
- de Beurs, K.M.; Henebry, G.M. A Statistical Framework for the Analysis of Long Image Time Series. Int. J. Remote Sens. 2005, 26, 1551–1573. [Google Scholar] [CrossRef]
- Vanselow, K.A.; Kraudzun, T.; Samimi, C. Grazing Practices and Pasture Tenure in the Eastern Pamirs. Mt. Res. Dev. 2012, 32, 324–336. [Google Scholar] [CrossRef]
- Breu, T.; Hurni, H. The Tajik Pamirs: Challenges of Sustainable Development in an Isolated Mountain Region; Centre for Development and Environment (CDE): Berne, Switzerland, 2003. [Google Scholar]
- U.S. Geological Survey. Landsat 7 Data Users Handbook; Earth Resources Observation and Science (EROS) Center: Sioux Falls, SC, USA, 2018. [Google Scholar]
- Simpson, G.L. Modelling Palaeoecological Time Series Using Generalised Additive Models. Front. Ecol. Evol. 2018, 6, 149. [Google Scholar] [CrossRef] [Green Version]
- Zuur, A.; Ieno, E.N.; Smith, G.M. Analyzing Ecological Data; Statistics for Biology and Health; Springer: New York, NY, USA, 2007; ISBN 978-0-387-45967-7. [Google Scholar]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A Commentary Review on the Use of Normalized Difference Vegetation Index (NDVI) in the Era of Popular Remote Sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Liu, F.; Liu, H.; Xu, C.; Zhu, X.; He, W.; Qi, Y. Remotely Sensed Birch Forest Resilience against Climate Change in the Northern China Forest-Steppe Ecotone. Ecol. Indic. 2021, 125, 107526. [Google Scholar] [CrossRef]
- Alcaraz-Segura, D.; Cabello, J.; Paruelo, J. Baseline Characterization of Major Iberian Vegetation Types Based on the NDVI Dynamics. Plant Ecol. 2009, 202, 13–29. [Google Scholar] [CrossRef]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy Global Assessment of Land Degradation. Soil Use Manag. 2008, 24, 223–234. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Khare, S.; Latifi, H.; Rossi, S. A 15-Year Spatio-Temporal Analysis of Plant β-Diversity Using Landsat Time Series Derived Rao’s Q Index. Ecol. Indic. 2021, 121, 107105. [Google Scholar] [CrossRef]
- Vanselow, K.A.; Zandler, H.; Samimi, C. Methods of Assessing Vegetation Dynamics and Pasture Potentials in Arid Mountain Regions. In Exploring and Optimizing Agricultural Landscapes; Mueller, L., Sychev, V.G., Dronin, N.M., Eulenstein, F., Eds.; Innovations in Landscape Research; Springer International Publishing: Cham, Switzerland, 2021; pp. 373–382. ISBN 978-3-030-67448-9. [Google Scholar]
- Vanselow, K.A.; Samimi, C. Predictive Mapping of Dwarf Shrub Vegetation in an Arid High Mountain Ecosystem Using Remote Sensing and Random Forests. Remote Sens. 2014, 6, 6709–6726. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Lei, S.; Bian, Z.; Huang, J.; Zhang, Y. Study of the Desertification Index Based on the Albedo-MSAVI Feature Space for Semi-Arid Steppe Region. Environ. Earth Sci. 2019, 78, 232. [Google Scholar] [CrossRef]
- Zandler, H.; Brenning, A.; Samimi, C. Quantifying Dwarf Shrub Biomass in an Arid Environment: Comparing Empirical Methods in a High Dimensional Setting. Remote Sens. Environ. 2015, 158, 140–155. [Google Scholar] [CrossRef]
- Zandler, H.; Brenning, A.; Samimi, C. Potential of Space-Borne Hyperspectral Data for Biomass Quantification in an Arid Environment: Advantages and Limitations. Remote Sens. 2015, 7, 4565–4580. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, e1353691. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.; Juanle, W.; Yanjie, W.; Haishuo, W. Estimation of Grassland Production in Central and Eastern Mongolia from 2006 to 2015 via Remote Sensing. J. Resour. Ecol. 2019, 10, 676–684. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, H.; Zhao, K.; Zheng, X. Investigating the Accuracy of Vegetation Index-Based Models for Estimating the Fractional Vegetation Cover and the Effects of Varying Soil Backgrounds Using in Situ Measurements and the PROSAIL Model. Int. J. Remote Sens. 2017, 38, 4206–4223. [Google Scholar] [CrossRef]
- Mahmoud, A.M.A.; Hasmadi, I.M.; Alias, M.S.; Azani, A.M. Rangeland Degradation Assessment in the South Slope of the Al-Jabal Al-Akhdar, Northeast Libya Using Remote Sensing Technology. J. Rangel. Sci. 2016, 6, 73–81. [Google Scholar]
- Schmidt, H.; Karnieli, A. Sensitivity of Vegetation Indices to Substrate Brightness in Hyper-Arid Environment: The Makhtesh Ramon Crater (Israel) Case Study. Int. J. Remote Sens. 2001, 22, 3503–3520. [Google Scholar] [CrossRef]
- Lee, C.K.F.; Nicholson, E.; Duncan, C.; Murray, N.J. Estimating Changes and Trends in Ecosystem Extent with Dense Time-Series Satellite Remote Sensing. Conserv. Biol. 2021, 35, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Ivits, E.; Cherlet, M.; Sommer, S.; Mehl, W. Addressing the Complexity in Non-Linear Evolution of Vegetation Phenological Change with Time-Series of Remote Sensing Images. Ecol. Indic. 2013, 26, 49–60. [Google Scholar] [CrossRef]
- Petit, C.C.; Lambin, E.F. Long-Term Land-Cover Changes in the Belgian Ardennes (1775–1929): Model-Based Reconstruction vs. Historical Maps. Glob. Chang. Biol. 2002, 8, 616–630. [Google Scholar] [CrossRef]
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017. [Google Scholar]
- Goodbody, T.R.H.; Coops, N.C.; Hermosilla, T.; Tompalski, P.; Pelletier, G. Vegetation Phenology Driving Error Variation in Digital Aerial Photogrammetrically Derived Terrain Models. Remote Sens. 2018, 10, 1554. [Google Scholar] [CrossRef] [Green Version]
- Sudo, M.; Sato, Y.; Yorozuya, H. Time-Course in Attractiveness of Pheromone Lure on the Smaller Tea Tortrix Moth: A Generalized Additive Mixed Model Approach. Ecol. Res. 2021, 36, 603–616. [Google Scholar] [CrossRef]
- Gardiner, T.; Didham, R.K. Glowing, Glowing, Gone? Monitoring Long-Term Trends in Glow-Worm Numbers in South-East England. Insect Conserv. Divers. 2020, 13, 162–174. [Google Scholar] [CrossRef] [Green Version]
- Stelzer, R.S.; Parr, T.B.; Coulibaly, M. A Ten Year Record of Nitrate Retention and Solute Trends in a Wisconsin Sand Plains Stream: Temporal Variation at Multiple Scales. Biogeochemistry 2020, 147, 125–147. [Google Scholar] [CrossRef]
- Wang, H.; Hu, X.; Sterba-Boatwright, B. A New Statistical Approach for Interpreting Oceanic FCO2 Data. Mar. Chem. 2016, 183, 41–49. [Google Scholar] [CrossRef]
- Miehe, G.; Winiger, M.; Böhner, J.; Yili, Z. The Climatic Diagram Map of High Asia: Purpose and Concepts (Klimadiagramm-Karte von Hochasien. Konzept Und Anwendung). Erdkunde 2001, 55, 94–97. [Google Scholar] [CrossRef]
- Stone, M.; Fuerle, R.D. On the Steppes of Central Asia; Spooner Press: New York, NY, USA, 1992; ISBN 978-0-9635918-0-7. [Google Scholar]
- Breckle, S.-W. Ökologie der Erde Band 3-Spezielle Ökologie der Gemäßigten und Arktischen Zonen Euro-Nordasiens: Zonobiom VI-IX; Schweizerbart: Stuttgart, Germany, 2021; ISBN 978-3-510-65422-2. [Google Scholar]
- Unger-Shayesteh, K.; Vorogushyn, S.; Farinotti, D.; Gafurov, A.; Duethmann, D.; Mandychev, A.; Merz, B. What Do We Know about Past Changes in the Water Cycle of Central Asian Headwaters? A Review. Glob. Planet. Chang. 2013, 110, 4–25. [Google Scholar] [CrossRef]
- Wucherer, W.; Breckle, S.-W. Vegetation of the Pamir (Tajikistan): Land use and desertification problems. In Land Use Change and Mountain Biodiversity; CRC Press: New York, NY, USA, 2006; ISBN 978-0-8493-3523-5. [Google Scholar]
- Vanselow, K.A.; Samimi, C.; Breckle, S.-W. Preserving a Comprehensive Vegetation Knowledge Base–An Evaluation of Four Historical Soviet Vegetation Maps of the Western Pamirs (Tajikistan). PLoS ONE 2016, 11, e0148930. [Google Scholar] [CrossRef]
- Cunha, S.F. Perestroika to Parkland: The Evolution of Land Protection in the Pamir Mountains of Tajikistan. Ann. Am. Assoc. Geogr. 2017, 107, 465–479. [Google Scholar] [CrossRef]
- Haslinger, A.; Breu, T.; Hurni, H.; Maselli, D. Opportunities and Risks in Reconciling Conservation and Development in a Post-Soviet Setting: The Example of the Tajik National Park. Int. J. Biodivers. Sci. Manag. 2007, 3, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Bragina, T.; Nowak, A.; Vanselow, K.A.; Wagner, V. Grasslands of Kazakhstan and Middle Asia: The Ecology, Conservation and Use of a Vast and Globally Important Area. In Grasslands of the World Diversity, Management and Conservation; Squires, V.R., Dengler, J., Hua, L., Feng, H., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 139–167. [Google Scholar]
- Agakhanjanz, O.E.; Breckle, S.P. Gebirge der Erde; Burga, C.A., Klötzli, F., Grabherr, G., Eds.; Ulmer: Stuttgart, Germany, 2004; pp. 151–157. [Google Scholar]
- Earth Resources Observation And Science (EROS) Center Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global 2017. [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. LEDAPS Landsat Calibration, Reflectance, Atmospheric Correction Preprocessing Code; ORNL DAAC: Oak Ridge, TN, USA, 2012. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Woodcock, C.E. Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Holden, C.; Yang, Z. Generating Synthetic Landsat Images Based on All Available Landsat Data: Predicting Landsat Surface Reflectance at Any given Time. Remote Sens. Environ. 2015, 162, 67–83. [Google Scholar] [CrossRef]
- National Centers for Environmental Information Climate Data Online. Available online: https://www.ncdc.noaa.gov/cdo-web/ (accessed on 13 January 2021).
- Copernicus Climate Change Service C3S ERA5-Land Reanalysis. Available online: https://cds.climate.copernicus.eu (accessed on 25 May 2020).
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Jackson, T. GES DISC Dataset: GPM IMERG Final Precipitation L3 1 Month 0.1 Degree x 0.1 Degree V06 (GPM_3IMERGM 06). Available online: https://doi.org/10.5067/GPM/IMERG/3B-MONTH/06 (accessed on 25 May 2020).
- Zandler, H.; Senftl, T.; Vanselow, K.A. Reanalysis Datasets Outperform Other Gridded Climate Products in Vegetation Change Analysis in Peripheral Conservation Areas of Central Asia. Sci. Rep. 2020, 10, 22446. [Google Scholar] [CrossRef] [PubMed]
- State Agency for Statistics under the President of the Republic of Tajikistan. Collection of Statistics of Socio-Economic Developments of the Gorno-Badakhshan Autonomous Oblast on the Occasion of the 22nd Anniversary of the Independence of the Republic of Tajikistan; State Agency for Statistics under the President of the Republic of Tajikistan: Khorog, Tajikistan, 2015. [Google Scholar]
- State Agency for Statistics under the President of the Republic of Tajikistan. Gorno-Badakhshan Autonomous Oblast. 25th Anniversary of the Independence of the Republic of Tajikistan. Collection of Statistics; State Agency for Statistics under the President of the Republic of Tajikistan: Khorog, Tajikistan, 2017. [Google Scholar]
- State Agency for Statistics under the President of the Republic of Tajikistan (TajStat). Collection of the Economic and Social Development of the Gorno-Badakhshan Autonomous Oblast on the Occasion of the 21st Anniversary of the Independence of the Republic of Tajikistan; State Agency for Statistics under the President of the Republic of Tajikistan: Khorog, Tajikistan, 2014. [Google Scholar]
- Qonunov, Y. Recent Changes in Pastoral Systems. Case Study on Tajikistan. In Pastoralism and Rangeland Management in Mountain Areas in the Context of Climate and Global Change. Regional Workshop in Khorog and Kashgar; Kreutzmann, H., Abdulalishoev, K., Zhaohui, L., Richter, J., Eds.; Deutsche Gesellschaft für Internationale Zusammenarbeit, Bundesministerium für Wirtschaftliche Zusammenarbeit und Entwicklung: Bonn, Germnay, 2010; pp. 82–101. [Google Scholar]
- State Agency for Statistics under the President of the Republic of Tajikistan (TajStat). Copies of the Original Hand Written Tables of the Statistical Commitee in Khorog; State Agency for Statistics under the President of the Republic of Tajikistan (TajStat): Khorog, Tajikistan, 2014. [Google Scholar]
- Hijmans, R.J. raster: Geographic Data Analysis and Modeling. R Package Version 3.1-5. Available online: https://CRAN.R-project.org/package=raster (accessed on 13 January 2021).
- Leyer, I.; Wesche, K. Multivariate Statistik in der Ökologie: Eine Einführung; Springer-Lehrbuch; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-37705-4. [Google Scholar]
- Linear Mixed-Effects Models: Basic Concepts and Examples. In Mixed-Effects Models in S and S-PLUS; Pinheiro, J.C.; Bates, D.M. (Eds.) Statistics and Computing; Springer: New York, NY, USA, 2000; pp. 3–56. ISBN 978-0-387-22747-4. [Google Scholar]
- Wood, S.N. mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. R Package Version 1.8-37. Available online: https://CRAN.R-project.org/package=mgcv (accessed on 13 January 2021).
- Hastie, T.J.; Tibshirani, R.J. Generalized Additive Models; CRC Press: Boca Raton, FL, USA, 1990; ISBN 978-0-412-34390-2. [Google Scholar]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models; Chapman and Hall/CRC Press: Boca Raton, FL, USA, 1989. [Google Scholar]
- Wood, S.N. Thin Plate Regression Splines. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2003, 65, 95–114. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Wilcox, R.R. Comparing Two Independent Groups Via Multiple Quantiles. J. R. Stat. Soc. Ser. D (Stat.) 1995, 44, 91–99. [Google Scholar] [CrossRef]
- Hedderich, J.; Sachs, L. Angewandte Statistik: Methodensammlung Mit R, 15th ed.; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-662-45691-0. [Google Scholar]
- Lamsal, P.; Kumar, L.; Shabani, F.; Atreya, K. The Greening of the Himalayas and Tibetan Plateau under Climate Change. Glob. Planet. Chang. 2017, 159, 77–92. [Google Scholar] [CrossRef]
- Breckle, S.-W.; Mergili, M.B. Seeausbrüche und Muren im Pamir. In Warnsignal Klima: Hochgebirge im Wandel; Lozan, J.L., Breckle, S.-W., Grassl, H., Eds.; GEO Magazin-Hamburg Press: Hamburg, Germany, 2020; pp. 23–27. [Google Scholar]
- Steinbauer, M.J.; Grytnes, J.-A.; Jurasinski, G.; Kulonen, A.; Lenoir, J.; Pauli, H.; Rixen, C.; Winkler, M.; Bardy-Durchhalter, M.; Barni, E.; et al. Accelerated Increase in Plant Species Richness on Mountain Summits Is Linked to Warming. Nature 2018, 556, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Haag, I.; Jones, P.D.; Samimi, C. Central Asia’s Changing Climate: How Temperature and Precipitation Have Changed across Time, Space, and Altitude. Climate 2019, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Haag, I.; Kassam, K.-A.; Senftl, T.; Zandler, H.; Samimi, C. Measurements Meet Human Observations: Integrating Distinctive Ways of Knowing in the Pamir Mountains of Tajikistan to Assess Local Climate Change. Clim. Chang. 2021, 165, 1–22. [Google Scholar] [CrossRef]
- Deji; Yao, T.; Yang, X.; Xu, B.; Zhao, H.; Li, J.; Li, Z.; Wu, G.; Yao, P.; You, C.; et al. Warming and Wetting Climate during Last Century Revealed by an Ice Core in Northwest Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 487, 270–277. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Peng, X.; Zhang, T.; Frauenfeld, O.W.; Wang, S.; Qiao, L.; Du, R.; Mu, C. Northern Hemisphere Greening in Association With Warming Permafrost. J. Geophys. Res. Biogeosciences 2020, 125, e2019JG005086. [Google Scholar] [CrossRef]
- Mergili, M.; Müllebner, B.; Kopf, C.; Schneider, J.F. Changes in the glacial and periglacial environment of the European Alps and the Central Asian mountains and their socio-economic implications: A comparison. In Proceedings of the Innsbruck Conference, November 21–23, 2011; Borsdorf, A., Stötter, J., Veulliet, E., Eds.; IGF-Forschungsberichte; Verlag der Österreichischen Akademie der Wissenschaften: Wien, Austria, 2011. [Google Scholar]
- Lambrecht, A.; Mayer, C.; Wendt, A.; Floricioiu, D.; Völksen, C. Elevation Change of Fedchenko Glacier, Pamir Mountains, from GNSS Field Measurements and TanDEM-X Elevation Models, with a Focus on the Upper Glacier. J. Glaciol. 2018, 64, 637–648. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, R.L. The Glaciers of the Hindu Kush-Himalayan Region: A Summary of the Science Regarding Glacier Melt/Retreat in the Himalayan, Hindu Kush, Karakoram, Pamir, and Tien Shan Mountain Ranges|HimalDoc; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 2010. [Google Scholar]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The State and Fate of Himalayan Glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Narama, C. Glacier Variations in Central Asia during the 20th Century. J. Geogr. 2002, 111, 486–497. [Google Scholar] [CrossRef]
- Khromova, T.E.; Osipova, G.B.; Tsvetkov, D.G.; Dyurgerov, M.B.; Barry, R.G. Changes in Glacier Extent in the Eastern Pamir, Central Asia, Determined from Historical Data and ASTER Imagery. Remote Sens. Environ. 2006, 102, 24–32. [Google Scholar] [CrossRef]
- GAPHAZ Assessment of Glacier and Permafrost Hazards in Mountain Regions—Technical Guidance Document; Standing Group on Glacier and Permafrost Hazards in Mountains (GAPHAZ) of the International Association of Cryospheric Sciences (IACS): Zürich, Switherland; The International Permafrost Association (IPA): Lima, Peru, 2017.
- Aizen, V.B.; Mayewski, P.A.; Aizen, E.M.; Joswiak, D.R.; Surazakov, A.B.; Kaspari, S.; Grigholm, B.; Krachler, M.; Handley, M.; Finaev, A. Stable-Isotope and Trace Element Time Series from Fedchenko Glacier (Pamirs) Snow/Firn Cores. J. Glaciol. 2009, 55, 275–291. [Google Scholar] [CrossRef] [Green Version]
- Oberhänsli, H.; Novotná, K.; Píšková, A.; Chabrillat, S.; Nourgaliev, D.K.; Kurbaniyazov, A.K.; Matys Grygar, T. Variability in Precipitation, Temperature and River Runoff in W Central Asia during the Past ~2000 yrs. Glob. Planet. Chang. 2011, 76, 95–104. [Google Scholar] [CrossRef]
- Schiemann, R.; Glazirina, M.G.; Schär, C. On the Relationship between the Indian Summer Monsoon and River Flow in the Aral Sea Basin. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Dörre, A.; Goibnazarov, C. Small-Scale Irrigation Self-Governance in a Mountain Region of Tajikistan. MRED 2018, 38, 104–113. [Google Scholar] [CrossRef]
- Haider, L.J.; Neusel, B.; Peterson, G.D.; Schlüter, M. Past Management Affects Success of Current Joint Forestry Management Institutions in Tajikistan. Environ. Dev. Sustain. 2019, 21, 2183–2224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mislimshoeva, B.; Samimi, C.; Kirchhoff, J.-F.; Koellner, T. Analysis of Costs and People’s Willingness to Enroll in Forest Rehabilitation in Gorno Badakhshan, Tajikistan. For. Policy Econ. 2013, 37, 75–83. [Google Scholar] [CrossRef]
- Herbers, H. Transformation in the Tajik Pamirs: Gornyi-Badakhshan-an Example of Successful Restructuring? Cent. Asian Surv. 2001, 20, 367–381. [Google Scholar] [CrossRef]
- Xenarios, S.; Gafurov, A.; Schmidt-Vogt, D.; Sehring, J.; Manandhar, S.; Hergarten, C.; Shigaeva, J.; Foggin, M. Climate Change and Adaptation of Mountain Societies in Central Asia: Uncertainties, Knowledge Gaps, and Data Constraints. Reg. Env. Chang. 2019, 19, 1339–1352. [Google Scholar] [CrossRef]
- Boonstra, W.J.; Björkvik, E.; Haider, L.J.; Masterson, V. Human Responses to Social-Ecological Traps. Sustain. Sci. 2016, 11, 877–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanselow, K.A.; Kraudzun, T.; Samimi, C. Land Stewardship in Practice: An Example from the Eastern Pamirs of Tajikistan. In Rangeland Stewardship in Central Asia: Balancing Improved Livelihoods, Biodiversity Conservation and Land Protection; Squires, V., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 71–90. ISBN 978-94-007-5367-9. [Google Scholar]
- Tayjanov, K.; Mamadalieva, N.Z.; Wink, M. Diversity of the Mountain Flora of Central Asia with Emphasis on Alkaloid-Producing Plants. Diversity 2017, 9, 11. [Google Scholar] [CrossRef] [Green Version]
Land Cover Class | Extent (km2) | Extent (%) | Elevation (m a.s.l.) | Description |
---|---|---|---|---|
Barren land | 964.0 | 75.3 | Up to 5500 | Rocks, screes, moraines; sparse vegetation cover. |
Nival areas | 113.5 | 8.9 | >4600 | Glaciers and firn fields without higher plants. |
Cushion plant vegetation | 42.4 | 3.3 | 3000–4000 | Dominant genus: Acantholimon (Prickly thrift). |
Mountain deserts | 36.3 | 2.8 | 2500–3400 | Two main types: Teresken (Krascheninnikovia ceratoides) deserts and Wormwood (Artemisia spp.) deserts. |
Cryophytic and subnival vegetation | 33.7 | 2.6 | 4000–5000 | Low-growing open aggregations composed of several herb species (e.g., Oxytropis, Potentilla, Draba, Ranunculus). |
Mountain steppes | 26.6 | 2.1 | 3200–4400 | Three main types: grass steppes (Poa, Stipa, Festuca), herbaceous steppes (e.g., Cousinia, Ziziphora), Wormwood steppes (dominated by Artemisia lehmanniana). |
Cultivated land | 25.3 | 2.0 | Up to 3400 | Agricultural land, clover meadows, gardens, settlements. |
Juniper vegetation | 13.3 | 1.0 | 2900–3800 | Juniperus polycarpos var. seravschanica, associated with umbellifer species (e.g., Prangos pabularia, Ferula jaeschkeana). |
Mountain Tugai | 13.3 | 1.0 | Up to 3700 | Alluvial scrubs and forests. Various woody species can dominate—e.g., Salix, Betula, Populus, Hippophaë. |
Floodplain meadows | 8.1 | <0.1 | Up to 4000 (sometimes 4800) | Limited to riparian habitats under the influence of groundwater or melting snow. Several associations dominated by Carex and Kobresia. |
Mountain meadows | 2.5 | <0.1 | 2600–3400 | Dominated by the genus Polygonum. |
Rosaceae scrub | 0.7 | <0.1 | 2500–2900 | Dominated by Rosa and Cotoneaster. |
Land Cover Class | Browning (Linear) | Greening (Linear) | No Trend | Non-Linear Shape |
---|---|---|---|---|
Entire study area | 6 (0.6%) | 404 (36.7%) | 605 (55.0%) | 85 (7.7%) |
Barren land | 0 | 43 | 51 | 6 |
Cushion plant vegetation | 0 | 35 | 59 | 6 |
Mountain deserts | 1 | 40 | 57 | 2 |
Cryophytic and subnival vegetation | 0 | 33 | 63 | 4 |
Mountain steppes | 1 | 18 | 76 | 5 |
Cultivated land | 1 | 40 | 43 | 16 |
Juniper vegetation | 0 | 46 | 43 | 11 |
Mountain Tugai | 2 | 31 | 48 | 19 |
Floodplain meadows | 1 | 32 | 58 | 9 |
Mountain meadows | 0 | 40 | 53 | 7 |
Rosaceae scrubs | 0 | 46 | 54 | 0 |
Land Cover Class | All Time Series | Greening | Browning |
---|---|---|---|
Entire study area | 0.01 | 0.02 | −0.03 |
Mountain Tugai | 0.01 | 0.02 | −0.02 |
Rosaceae scrub | 0.01 | 0.02 | −0.02 |
Juniper vegetation | 0.01 | 0.02 | −0.01 |
Mountain deserts | 0.02 | 0.03 | −0.04 |
Cushion plant vegetation | 0.02 | 0.03 | −0.02 |
Mountain steppes | 0.01 | 0.02 | −0.03 |
Mountain meadows | 0.02 | 0.03 | −0.03 |
Floodplain meadows | 0.01 | 0.02 | −0.02 |
Cryophytic and subnival vegetation | 0.01 | 0.02 | −0.03 |
Barren land | 0.01 | 0.02 | −0.03 |
Cultivated land | 0.03 | 0.04 | −0.04 |
Land Cover Class | Entire Study Area | No Trend | Greening | Browning |
---|---|---|---|---|
Elevation | 3909 | 4013 | 3507 | 4307 |
Slope | 32.3 | 32.0 | 33.7 | 28.1 |
North exposedness | 0.04 | −0.12 | 0.07 | 0.39 |
East exposedness | −0.17 | 0.17 | −0.64 | −0.1 |
Terrain ruggedness | 47.88 | 47.23 | 50.92 | 40.99 |
Distance to valley bottom | 137.79 | 154.3 | 126.44 | 131.1 |
UTM easting | 745,009 | 746,222 | 740,691 | 747,237 |
UTM northing | 4,190,588 | 4,190,339 | 4,192,771 | 4,189,769 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanselow, K.A.; Zandler, H.; Samimi, C. Time Series Analysis of Land Cover Change in Dry Mountains: Insights from the Tajik Pamirs. Remote Sens. 2021, 13, 3951. https://doi.org/10.3390/rs13193951
Vanselow KA, Zandler H, Samimi C. Time Series Analysis of Land Cover Change in Dry Mountains: Insights from the Tajik Pamirs. Remote Sensing. 2021; 13(19):3951. https://doi.org/10.3390/rs13193951
Chicago/Turabian StyleVanselow, Kim André, Harald Zandler, and Cyrus Samimi. 2021. "Time Series Analysis of Land Cover Change in Dry Mountains: Insights from the Tajik Pamirs" Remote Sensing 13, no. 19: 3951. https://doi.org/10.3390/rs13193951
APA StyleVanselow, K. A., Zandler, H., & Samimi, C. (2021). Time Series Analysis of Land Cover Change in Dry Mountains: Insights from the Tajik Pamirs. Remote Sensing, 13(19), 3951. https://doi.org/10.3390/rs13193951