Day–Night Monitoring of Volcanic SO2 and Ash Clouds for Aviation Avoidance at Northern Polar Latitudes
Abstract
:1. Introduction
2. Materials and Methods
2.1. UV-Based Volcanic SO2 and UVAI DR Data
2.2. Infrared-Based Volcanic SO2 and Ash Index DR Data
3. Results
3.1. Integrating Volcanic SO2 and Ash Science Algorithms into IPOPP
3.2. Integrating Volcanic SPAs into NASA’s Disasters Mapping Portal
3.3. DR Data Processing in Alaska
3.4. Using DR Data at the Alaska Volcano Observatory
3.5. Bringing Together DR Data from Alaska and Finland for Complete Arctic Coverage
4. Discussion
5. Conclusions
- This increased capacity will allow rapid confirmation of the presence of volcanic SO2 and ash clouds as well as improved monitoring of rapidly evolving events such as smoke plumes from forest fires. The coverage over polar areas will be available both day and night, and the temporal gap between measurements for a given typical area will be reduced to only several hours.
- The high spatial resolution of VIIRS (sufficient to resolve the source points of the SO2 plumes as shown in Figure 4), combined with the four times daily coverage afforded by SNPP and NOAA-20, will enable users to estimate the daily rates of SO2 emissions, or flux, via satellite observations. Changes in gas emission rates may be precursors to impending eruptions, and our OMPS-based and VIIRS-based SO2 estimates of emission rates will find immediate application in Alaska where the USGS Volcanic Emissions Project conducts annual airborne gas surveys. The majority of Alaska’s volcanoes are not monitored for gas emissions, and systematic, repetitive surveys are required before anomalous degassing behavior can be identified.
- This synergy of UV and TIR sensors on the SNPP and JPSS satellite platforms will produce the lowest possible latency and the best coverage to quantify both peak SO2 column density amounts as well as the total emitted mass and lifetime.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Explanation |
AAWU | Alaska Aviation Weather Unit at Anchorage FAA facility |
AIRS | Atmospheric Infrared Sounder on NASA’s EOS Aqua satellite |
ARTCC | Anchorage Air Route Traffic Control Center |
ASP | NASA Applied Sciences Disasters Program |
ATPG | Arctic Test Bed and Proving Ground |
A-VAAC | Anchorage Volcanic Ash Advisory Center |
AVO | Alaska Volcanic Observatory |
AWIPS | Advanced Weather Interactive Processing System |
BTD | Brightness Temperature Difference |
CrIS | Cross-Track Infrared Sounder |
CWSU | Center Weather Service Unit |
DB | Direct Broadcast of Satellite Data |
DR | Direct Readout of DB Data at Ground Receiving Station |
DRL | NASA Direct Readout Laboratory |
DST | Decision Support Tool |
DU | Dobson Unit, 1 DU = 2.69 × 1016 molecules/cm2 |
EOS | NASA Earth Observing System |
EUMETCast | Multi-Service Dissemination System Offered by EUMETSAT |
EUMETSAT | European Organization for the Exploitation of Meteorological Satellites |
FAA | Federal Aviation Administration |
FMI | Finnish Meteorological Institute |
GI | Geophysical Institute at UAF, home of GINA |
GINA | Geographic Information Network of Alaska |
GOES | Geosynchronous Operational Environmental Satellite |
GSFC | NASA Goddard Space Flight Center |
GUI | Graphical User Interface |
ICAO | International Civil Aviation Organization |
IFOV | Individual Field of View |
IPOPP | International Planetary Observation Processing Package, DRL |
JMA | Japan Meteorological Agency |
JPL | Jet Propulsion Laboratory |
JPSS | NASA/NOAA Joint Polar Satellite System |
L0 | Level 0 Reconstructed, Unprocessed instrument and Payload Data |
L1B | Level-1B Satellite Radiance Data Product |
L2 | Level-2 Pixel-Level Satellite Products |
LANCE | Land Atmosphere Near Real-Time Capability for EOS |
LUT | Look-Up Table |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NASA | National Aeronautics and Space Administration |
NM | Nadir Mapper of OMPS instrument |
NOAA | National Oceanic and Atmospheric Administration |
NRT | Near Real-Time |
NWS | US National Weather Service |
O3 | Ozone |
OLI | Landsat 8 Operational Land Imager |
OMI | Ozone Monitoring Instrument on NASA EOS Aura Satellite |
OMPS | Ozone Mapping Profiler Suite aboard SNPP and NOAA-20 Satellites |
PC | Principal Component |
PCA | Principal Component Analysis |
RT | Radiative Transfer |
SACS | Support to Aviation Control Service |
SIPS | NASA Science Investigator-Led Processing System |
SNPP | Suomi National Polar Orbiting Partnership, NASA–NOAA satellite |
SO2 | Sulfur Dioxide |
SPA | Science Processing Algorithm |
TIR | Thermal Infrared Part of the Electromagnetic Spectrum (~5–15 micron) |
TIRS | Landsat 8 Thermal Infrared Sensor |
UAF | University of Alaska Fairbanks |
USGS | United States Geological Survey |
UV | Ultraviolet Part of the Spectrum of Light (wavelengths from ~200–400 nm) |
VA | Volcanic Ash |
VAA | Volcanic Ash Advisories Issued by VAACs |
VAAC | Volcanic Ash Advisory Center, Part of the National Met Service (e.g., NWS) |
VONA | Volcano Observatory Notification for Aviation |
VIIRS | Visible Infrared Imaging Radiometer Suite |
References
- Robock, A. Volcanic eruptions and climate. Rev. Geophys. 2000, 38, 191–219. [Google Scholar] [CrossRef]
- Carn, S.A.; Krueger, A.J.; Krotkov, N.A.; Yang, K.; Evans, K. Tracking volcanic sulfur dioxide clouds for aviation hazard mitigation. Nat. Hazards 2009, 51, 325–343. [Google Scholar] [CrossRef]
- Brenot, H.; Theys, N.; Clarisse, L.; van Geffen, J.; van Gent, J.; Van Roozendael, M.; van der A, R.; Hurtmans, D.; Coheur, P.-F.; Clerbaux, C.; et al. Support to Aviation Control Service (SACS): An online service for near-real-time satellite monitoring of volcanic plumes. Nat. Hazards Earth Syst. Sci. 2014, 14, 1099–1123. [Google Scholar] [CrossRef] [Green Version]
- Brenot, H.; Theys, N.; Clarisse, L.; van Gent, J.; Hurtmans, D.R.; Vandenbussche, S.; Papagiannopoulos, N.; Mona, L.; Virtanen, T.; Uppstu, A.; et al. EUNADICS early warning system dedicated to support aviation in case of crisis from natural airborne hazard and radionuclide cloud. Nat. Hazards Earth Syst. Sci. Discuss. 2021. [Google Scholar] [CrossRef]
- Krotkov, N.A.; Habib, S.; da Silva, A.; Hughes, E.; Yang, K.; Brentzel, K.; Seftor, C.; Schneider, D.; Guffanti, M.; Hoffman, R.L.; et al. Real Time Volcanic Cloud Products and Predictions for Aviation Alerts. In Proceedings of the 6th AIAA Atmospheric and Space Environments Conference, Atlanta, GA, USA, 17–20 June 2014. [Google Scholar]
- Prata, F.; Rose, B. Volcanic Ash Hazards to Aviation. In The Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Ed.; Academic Press: Amsterdam, The Nerthlands, 2015; pp. 911–934. [Google Scholar] [CrossRef]
- Lechner, P.; Tupper, A.; Guffanti, M.; Loughlin, S.; Casadevall, T. Volcanic Ash and Aviation—The Challenges of Real-Time, Global Communication of a Natural Hazard. Adv. Volcanol. 2018, 69, 51–64. [Google Scholar] [CrossRef] [Green Version]
- ICAO (International Civil Aviation Organization). Manual on Volcanic ash, Radioactive Material and Toxic Chemical Clouds Doc. 9691. 2007. Available online: https://skybrary.aero/bookshelf/books/2997.pdf (accessed on 24 August 2021).
- Guffanti, M.; Casadevall, T.J.; Budding, K. Encounters of Aircraft with Volcanic Ash Clouds. A Compilation of Known Incidents, 1953–2009. U.S. Geological Survey Data Series 545, ver. 1.0, 12 p., plus 4 Appendixes Including the Compilation Database. Available online: https://pubs.usgs.gov/ds/545/ (accessed on 24 August 2021).
- Pavolonis, M.; Sieglaff, J.; Cintineo, J. Spectrally Enhanced Cloud Objects—A generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements: 1. Multispectral analysis. J. Geophys. Res.-Atmos. 2015, 120, 7813–7841. [Google Scholar] [CrossRef]
- Alexander, D. Volcanic ash in the atmosphere and risks for civil aviation: A study in European crisis management. Int. J. Disast. Risk Sci. 2013, 4, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Hirtl, M.; Arnold, D.; Baro, R.; Brenot, H.; Coltelli, M.; Eschbacher, K.; Hard-Stremayer, H.; Lipok, F.; Maurer, C.; Meinhard, D.; et al. A volcanic-hazard demonstration exercise to assess and mitigate the impacts of volcanic ash clouds on civil and military aviation. Nat. Hazards Earth Syst. Sci. 2020, 20, 1719–1739. [Google Scholar] [CrossRef]
- Hyman, D.M.; Pavolonis, M.J. Probabilistic retrieval of volcanic SO2 layer height and partial column density using the Cross-track Infrared Sounder (CrIS). Atmos. Meas. Tech. 2020, 13, 5891–5921. [Google Scholar] [CrossRef]
- Gorkavyi, N.; Krotkov, N.; Li, C.; Lait, L.; Colarco, P.; Carn, S.; DeLand, M.; Newman, P.; Schoeberl, M.; Taha, G.; et al. Tracking aerosols and SO2 clouds from the Raikoke eruption: 3D view from satellite observations. Atmos. Meas. Tech. Discuss. 2021. in review. [Google Scholar] [CrossRef]
- Thomas, H.E.; Prata, A.J. Sulphur dioxide as a volcanic ash proxy during the April–May 2010 eruption of Eyjafjallajökull Volcano, Iceland. Atmos. Chem. Phys. 2011, 11, 6871–6880. [Google Scholar] [CrossRef] [Green Version]
- Krueger, A.J. Sighting of El Chichón sulfur dioxide clouds with the Nimbus 7 Total Ozone Mapping Spectrometer. Science 1983, 220, 1377–1378. [Google Scholar] [CrossRef] [Green Version]
- Krotkov, N.A.; Krueger, A.J.; Bhartia, P.K. Ultraviolet optical model of volcanic clouds for remote sensing of ash and sulfur dioxide. J. Geophys. Res. 1997, 102, 21891–21904. [Google Scholar] [CrossRef]
- Yang, K.; Krotkov, N.; Krueger, A.J.; Carn, S.A.; Bhartia, P.; Levelt, P.F. Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: Comparison and limitations. J. Geophys. Res. 2007, 112, D24S43. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Krotkov, N.A.; Carn, S.; Zhang, Y.; Spurr, R.J.D.; Joiner, J. New-generation NASA Aura Ozone Monitoring Instrument (OMI) volcanic SO2 dataset: Algorithm description, initial results, and continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS). Atmos. Meas. Tech. 2017, 10, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Theys, N.; De Smedt, I.; Yu, H.; Danckaert, T.; van Gent, J.; Hörmann, C.; Wagner, T.; Hedelt, P.; Bauer, H.; Romahn, F.; et al. Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: Algorithm theoretical basis. Atmos. Meas. Tech. 2017, 10, 119–153. [Google Scholar] [CrossRef] [Green Version]
- Prata, A.J. Observations of volcanic ash clouds in the 10–12-micron window using AVHRR/2 data. Int. J. Remote Sens. 1989, 10, 751–761. [Google Scholar] [CrossRef]
- Realmuto, V.J. The potential use of Earth Observing System data to monitor the passive emission of sulfur dioxide from volcanoes. Geophys. Monogr. 2000, 116, 101–115. [Google Scholar]
- Leppelmeier, G.; Aulamo, O.; Hassinen, S.; Malkki, A.; Riihisaari, T.; Tajakka, R.; Tamminen, J.; Tanskanen, A. OMI Very Fast Delivery and the Sodankyla Satellite Data Centre. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1283–1287. [Google Scholar] [CrossRef]
- Hassinen, S. Description and validation of the OMI very fast delivery products. J. Geophys. Res. 2008, 113, D16S35. [Google Scholar] [CrossRef] [Green Version]
- Torres, O. Aerosols and surface UV products from OMI observations: An overview. J. Geophys. Res. 2007, 112, D24S47. [Google Scholar] [CrossRef] [Green Version]
- Krotkov, N.A.; Flittner, D.; Krueger, A.; Kostinski, A.; Riley, C.; Rose, W.; Torres, O. Effect of particle non-sphericity on satellite monitoring of drifting volcanic ash clouds. JQSRT 1999, 63, 613–630. [Google Scholar] [CrossRef] [Green Version]
- Carn, S.A.; Krotkov, N.A. UV Satellite Measurements of Volcanic Ash. In Volcanic Ash: Hazard Observation; Mackie, S., Cashman, K., Rust, A., Ricketts, H., Watson, L.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 217–231. [Google Scholar] [CrossRef] [Green Version]
- Krotkov, N.; Torres, O.; Seftor, C.; Krueger, A.J.; Kostinski, A.; Bluth, G.; Schaefer, S.J.; Rose, W.I.; Schneider, D. Comparison of TOMS and AVHRR volcanic ash retrievals from the August 1992 eruption of Mt. Spurr. Geophys. Res. Lett. 1999, 26, 455–458. [Google Scholar] [CrossRef] [Green Version]
- Realmuto, V.J.; Berk, A. Plume Tracker: Interactive mapping of volcanic sulfur dioxide emissions with high-performance radiative transfer modeling. J. Volcanol. Geotherm. Res. 2016, 327, 55–69. [Google Scholar] [CrossRef]
- Coombs, M.L.; Wech, A.G.; Haney, M.M.; Lyons, J.J.; Schneider, D.J.; Schwaiger, H.F.; Wallace, K.L.; Fee, D.; Freymueller, J.T.; Schaefer, J.R.; et al. Short-Term Forecasting and Detection of Explosions During the 2016–2017 Eruption of Bogoslof Volcano, Alaska. Front. Earth Sci. 2018, 6, 122. [Google Scholar] [CrossRef] [Green Version]
- Levelt, P.F.; Hilsenrath, E.; Leppelmeier, G.; Oord, G.V.D.; Bhartia, P.; Tamminen, J.; De Haan, J.; Veefkind, J. Science Objectives Of The Ozone Monitoring Instrument. IEEE Trans. Geosci. Rem. Sens. 2006, 44, 1199–1208. [Google Scholar] [CrossRef]
- Levelt, P.F.; Joiner, J.; Tamminen, J.; Veefkind, J.P.; Bhartia, P.K.; Zweers, D.C.S.; Duncan, B.N.; Streets, D.G.; Eskes, H.; Van Der A, R.; et al. The Ozone Monitoring Instrument: Overview of 14 years in space. Atmos. Chem. Phys. 2018, 18, 5699–5745. [Google Scholar] [CrossRef] [Green Version]
Volcano | Date | Latitude | Climate Zone | Plume Height (km) | Total Precipitable H2O (mm) |
---|---|---|---|---|---|
Raikoke | 22 June 2019 | 50°N | Subarctic | 10–13 | 22.4 |
Bardarbunga | 05 September 2014 | 62°N | Arctic | 5–6 | 12.6 |
Lewotolo | 29 November 2020 | 9°S | Tropical | 5–6 | 42.9 |
Kilauea | 22 December 2020 | 19°N | Subtropical | ~2 | 30.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krotkov, N.; Realmuto, V.; Li, C.; Seftor, C.; Li, J.; Brentzel, K.; Stuefer, M.; Cable, J.; Dierking, C.; Delamere, J.; et al. Day–Night Monitoring of Volcanic SO2 and Ash Clouds for Aviation Avoidance at Northern Polar Latitudes. Remote Sens. 2021, 13, 4003. https://doi.org/10.3390/rs13194003
Krotkov N, Realmuto V, Li C, Seftor C, Li J, Brentzel K, Stuefer M, Cable J, Dierking C, Delamere J, et al. Day–Night Monitoring of Volcanic SO2 and Ash Clouds for Aviation Avoidance at Northern Polar Latitudes. Remote Sensing. 2021; 13(19):4003. https://doi.org/10.3390/rs13194003
Chicago/Turabian StyleKrotkov, Nickolay, Vincent Realmuto, Can Li, Colin Seftor, Jason Li, Kelvin Brentzel, Martin Stuefer, Jay Cable, Carl Dierking, Jennifer Delamere, and et al. 2021. "Day–Night Monitoring of Volcanic SO2 and Ash Clouds for Aviation Avoidance at Northern Polar Latitudes" Remote Sensing 13, no. 19: 4003. https://doi.org/10.3390/rs13194003
APA StyleKrotkov, N., Realmuto, V., Li, C., Seftor, C., Li, J., Brentzel, K., Stuefer, M., Cable, J., Dierking, C., Delamere, J., Schneider, D., Tamminen, J., Hassinen, S., Ryyppö, T., Murray, J., Carn, S., Osiensky, J., Eckstein, N., Layne, G., & Kirkendall, J. (2021). Day–Night Monitoring of Volcanic SO2 and Ash Clouds for Aviation Avoidance at Northern Polar Latitudes. Remote Sensing, 13(19), 4003. https://doi.org/10.3390/rs13194003