Missing Burns in the High Northern Latitudes: The Case for Regionally Focused Burned Area Products
Abstract
:1. Introduction
2. Study Area
3. Datasets
4. Methodology
4.1. Direct Intercomparisons of Burned Area Products with Reference Datasets
4.2. Omission Error Assessment
4.3. Commission Error Assessment
5. Results
5.1. Intercomparisons of Burned Area Extent as Mapped by Different Products
5.2. Omission Error
5.3. Commission Error
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed]
- Walker, X.J.; Rogers, B.M.; Veraverbeke, S.; Johnstone, J.F.; Baltzer, J.L.; Barrett, K.; Bourgeau-Chavez, L.; Day, N.J.; de Groot, W.J.; Dieleman, C.M.; et al. Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nat. Clim. Chang. 2020, 10, 1130–1136. [Google Scholar] [CrossRef]
- Chuvieco, E.; Martínez, S.; Román, M.V.; Hantson, S.; Pettinari, M.L. Integration of ecological and socio-economic factors to assess global vulnerability to wildfire. Glob. Ecol. Biogeogr. 2014, 23, 245–258. [Google Scholar] [CrossRef]
- Liu, J.C.; Pereira, G.; Uhl, S.A.; Bravo, M.A.; Bell, M.L. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environ. Res. 2015, 136, 120–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Goulden, M.L.; Faivre, N.; Veraverbeke, S.; Sun, F.; Hall, A.; Hand, M.S.; Hook, S.; Randerson, J.T. Identification of two distinct fire regimes in Southern California: Implications for economic impact and future change. Environ. Res. Lett. 2015, 10, 094005. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Guan, D.; Zhu, S.; Kinnon, M.M.; Geng, G.; Zhang, Q.; Zheng, H.; Lei, T.; Shao, S.; Gong, P.; et al. Economic footprint of California wildfires in 2018. Nat. Sustain. 2020. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Calvo, L.; Fernández-García, V.; Marcos-Porras, E.; Taboada, Á.; Suárez-Seoane, S. Efficiency of remote sensing tools for post-fire management along a climatic gradient. Forest Ecol. Manag. 2019, 433, 553–562. [Google Scholar] [CrossRef]
- Chuvieco, E.; Kasischke, E.S. Remote sensing information for fire management and fire effects assessment. J. Geophys. Res. Biogeosci. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Giglio, L.; Justice, C. Global characterization of fire activity: Toward defining fire regimes from Earth observation data. Glob. Chang. Biol. 2008, 14, 1488–1502. [Google Scholar] [CrossRef]
- Cattau, M.E.; Wessman, C.; Mahood, A.; Balch, J.K. Anthropogenic and lightning-started fires are becoming larger and more frequent over a longer season length in the U.S.A. Glob. Ecol. Biogeogr. 2020, 29, 668–681. [Google Scholar] [CrossRef]
- Pechony, O.; Shindell, D.T. Fire parameterization on a global scale. J. Geophys. Res. Atmosph. 2009, 114. [Google Scholar] [CrossRef]
- Giglio, L.; Loboda, T.; Roy, D.P.; Quayle, B.; Justice, C.O. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens. Environ. 2009, 113, 408–420. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Andela, N.; Morton, D.C.; Giglio, L.; Paugam, R.; Chen, Y.; Hantson, S.; van der Werf, G.R.; Randerson, J.T. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 2019, 11, 529–552. [Google Scholar] [CrossRef] [Green Version]
- French, N.H.; McKenzie, D.; Erickson, T.; Koziol, B.; Billmire, M.; Endsley, K.A.; Yager Scheinerman, N.K.; Jenkins, L.; Miller, M.E.; Ottmar, R. Modeling regional-scale wildland fire emissions with the Wildland Fire Emissions Information System. Earth Interact. 2014, 18, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Andela, N.; van der Werf, G.R. Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nat. Clim. Chang. 2014, 4, 791–795. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, B.M.; Soja, A.J.; Goulden, M.L.; Randerson, J.T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 2015, 8, 228–234. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Peckham, S.D.; Ahl, D.E.; Gower, S.T. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 2007, 450, 89–92. [Google Scholar] [CrossRef] [Green Version]
- French, N.H.F.; Jenkins, L.K.; Loboda, T.V.; Flannigan, M.; Jandt, R.; Bourgeau-Chavez, L.L.; Whitley, M. Fire in arctic tundra of Alaska: Past fire activity, future fire potential, and significance for land management and ecology. Int. J. Wildland Fire 2015, 24, 1045–1061. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, C.J.A.; Warkentin, I.G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Chang. 2015, 128, 24–30. [Google Scholar] [CrossRef]
- Zimov, S.A.; Schuur, E.A.G.; Chapin, F.S. Permafrost and the Global Carbon Budget. Science 2006, 312, 1612–1613. [Google Scholar] [CrossRef] [PubMed]
- Tarnocai, C.; Canadell, J.G.; Schuur, E.A.G.; Kuhry, P.; Mazhitova, G.; Zimov, S. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycle 2009, 23. [Google Scholar] [CrossRef]
- Walker, X.J.; Baltzer, J.L.; Cumming, S.G.; Day, N.J.; Ebert, C.; Goetz, S.; Johnstone, J.F.; Potter, S.; Rogers, B.M.; Schuur, E.A.G.; et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 2019, 572, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Gibson, C.M.; Chasmer, L.E.; Thompson, D.K.; Quinton, W.L.; Flannigan, M.D.; Olefeldt, D. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 2018, 9, 3041. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Loboda, T.V.; He, T.; Zhang, Y.; Liang, S. Strong cooling induced by stand-replacing fires through albedo in Siberian larch forests. Sci. Rep. 2018, 8, 4821. [Google Scholar] [CrossRef]
- Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; et al. The impact of boreal forest fire on climate warming. Science 2006, 314, 1130–1132. [Google Scholar] [CrossRef] [Green Version]
- Conard, S.G.; Ivanova, G.A. Wildfire in Russian boreal forests - Potential impacts of fire regime characteristics on emissions and global carbon balance estimates. Environ. Pollut. 1997, 98, 305–313. [Google Scholar] [CrossRef]
- Balshi, M.S.; McGuire, A.D.; Duffy, P.; Flannigan, M.; Kicklighter, D.W.; Melillo, J. Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century. Glob. Chang. Biol. 2009, 15, 1491–1510. [Google Scholar] [CrossRef]
- French, N.H.F.; Goovaerts, P.; Kasischke, E.S. Uncertainty in estimating carbon emissions from boreal forest fires. J. Geophys. Res.-Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Logan, K.A.; Amiro, B.D.; Skinner, W.R.; Stocks, B.J. Future Area Burned in Canada. Clim. Chang. 2005, 72, 1–16. [Google Scholar] [CrossRef]
- Stocks, B.J.; Fosberg, M.A.; Lynham, T.J.; Mearns, L.; Wotton, B.M.; Yang, Q.; Jin, J.Z.; Lawrence, K.; Hartley, G.R.; Mason, J.A.; et al. Climate change and forest fire potential in Russian and Canadian boreal forests. Clim. Chang. 1998, 38, 1–13. [Google Scholar] [CrossRef]
- Hu, F.S.; Higuera, P.E.; Walsh, J.E.; Chapman, W.L.; Duffy, P.A.; Brubaker, L.B.; Chipman, M.L. Tundra burning in Alaska: Linkages to climatic change and sea ice retreat. J. Geophys. Res.-Biogeosci. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Grabinski, Z.; McFarland, H.R. Alaska’s Changing Wildfire Environment; Alaska Fire Science Consortium, International Arctic Research Center, University of Alaska Fairbanks: Fairbanks, AK, USA, 2020. [Google Scholar]
- Hope, A.S.; Pence, K.R.; Stow, D.A. NDVI from low altitude aircraft and composited NOAA AVHRR data for scaling Arctic ecosystem fluxes. Int. J. Remote Sens. 2004, 25, 4237–4250. [Google Scholar] [CrossRef]
- Stow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.; Tape, K.; et al. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens. Environ. 2004, 89, 281–308. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Fu, C.; Hall, J.V.; Hoy, E.E.; Loboda, T.V. Spatio-temporal patterns of optimal Landsat data for burn severity index calculations: Implications for high northern latitudes wildfire research. Remote Sens. Environ. 2021, 258, 112393. [Google Scholar] [CrossRef]
- Loboda, T.; O’Neal, K.J.; Csiszar, I. Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data. Remote Sens. Environ. 2007, 109, 429–442. [Google Scholar] [CrossRef]
- Carroll, M.; Loboda, T. Multi-Decadal Surface Water Dynamics in North American Tundra. Remote Sens. 2017, 9, 497. [Google Scholar] [CrossRef] [Green Version]
- Smol, J.P.; Douglas, M.S.V. Crossing the final ecological threshold in high Arctic ponds. Proc. Natl. Acad. Sci. USA 2007, 104, 12395–12397. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, L.; Roy, D.P.; Giglio, L.; Huang, H.; Zubkova, M.; Humber, M.L. Global validation of the collection 6 MODIS burned area product. Remote Sens. Environ. 2019, 235, 111490. [Google Scholar] [CrossRef]
- Ruiz, J.A.M.; Lázaro, J.R.G.; Cano, I.D.Á.; Leal, P.H. Burned Area Mapping in the North American Boreal Forest Using Terra-MODIS LTDR (2001–2011): A Comparison with the MCD45A1, MCD64A1 and BA GEOLAND-2 Products. Remote Sens. 2014, 6, 815–840. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Kobayashi, H.; Kanaya, Y.; Saito, M. Size-dependent validation of MODIS MCD64A1 burned area over six vegetation types in boreal Eurasia: Large underestimation in croplands. Sci. Rep. 2017, 7, 4181. [Google Scholar] [CrossRef] [PubMed]
- Loboda, T.V.; Hoy, E.E.; Giglio, L.; Kasischke, E.S. Mapping burned area in Alaska using MODIS data: A data limitations-driven modification to the regional burned area algorithm. Int. J. Wildland Fire 2011, 20, 487–496. [Google Scholar] [CrossRef]
- Roy, D.P.; Jin, Y.; Lewis, P.E.; Justice, C.O. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sens. Environ. 2005, 97, 137–162. [Google Scholar] [CrossRef]
- Lizundia-Loiola, J.; Otón, G.; Ramo, R.; Chuvieco, E. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sens. Environ. 2020, 236, 111493. [Google Scholar] [CrossRef]
- Loboda, T.V.; Hall, J.V.; Hall, A.H.; Shevade, V.S. ABoVE: Cumulative Annual Burned Area, Circumpolar High Northern Latitudes, 2001–2015; ORNL Distributed Active Archive Center: Oak Ridge, TN, USA, 2017. [Google Scholar] [CrossRef]
- Weller, G. The Weather and Climate of the Arctic. In The Arctic; Nuttall, M., Callaghan, T.V., Eds.; Routledge: London, UK, 2000. [Google Scholar] [CrossRef]
- Chapin, F.S.I.; Hollingsworth, T.; Murray, D.; Viereck, L.; Walker, M. Floristic Diversity and Vegetation Distribution in the Alaskan Boreal Forest. In Alaska’s Changing Boreal Forest; Chapin, F.S.I., Oswood, M.W., Van Cleve, K., Viereck, L., Verbyla, D.L., Eds.; Oxford University Press: Oxford, UK, 2006; pp. 332–338. [Google Scholar] [CrossRef]
- Larsen, J.A. The Boreal Ecosystem; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Kasischke, E.S. Boreal ecosystems in the global carbon cycle. In Fire, Climate Change and Carbon Cycling in the Boreal Forest; Kasischke, E.S., Stocks, B.J., Eds.; Springer: New York, NY, USA, 2000; pp. 19–30. [Google Scholar] [CrossRef]
- Wirth, C. Fire Regime and Tree Diversity in Boreal Forests: Implications for the Carbon Cycle. In Forest Diversity and Function; Scherer-Lorenzen, M., Körner, C., Schulze, E.-D., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 176, pp. 309–344. [Google Scholar]
- Bliss, L.C. Arctic tundra and polar desert biome. In North American Terrestrial Vegetation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2000; pp. 1–40. [Google Scholar]
- Masrur, A.; Petrov, A.N.; DeGroote, J. Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001–2015. Environ. Res. Lett. 2018, 13, 014019. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.S.; Higuera, P.E.; Duffy, P.; Chipman, M.L.; Rocha, A.V.; Young, A.M.; Kelly, R.; Dietze, M.C. Arctic tundra fires: Natural variability and responses to climate change. Front. Ecol. Environm. 2015, 13, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial ecoregions of the worlds: A new map of life on Earth. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Vermote, E.F.; El Saleous, N.Z.; Justice, C.O. Atmospheric correction of MODIS data in the visible to middle infrared: First results. Remote Sens. Environ. 2002, 83, 97–111. [Google Scholar] [CrossRef]
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Chuvieco, E.; Yue, C.; Heil, A.; Mouillot, F.; Alonso-Canas, I.; Padilla, M.; Pereira, J.M.; Oom, D.; Tansey, K. A new global burned area product for climate assessment of fire impacts. Glob. Ecol. Biogeogr. 2016, 25, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Lizundia-Loiola, J.; Pettinari, M.L.; Ramo, R.; Padilla, M.; Tansey, K.; Mouillot, F.; Laurent, P.; Storm, T.; Heil, A.; et al. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth Syst. Sci. Data 2018, 10, 2015–2031. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Eidenshink, J.C.; Schwind, B.; Brewer, K.; Zhu, Z.-L.; Quayle, B.; Howard, S.M. A project for monitoring trends in burn severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Williams, D.; Barry, D. Analysis of the patterns of large fires in the boreal forest region of Alaska. Int. J. Wildland Fire 2002, 11, 131–144. [Google Scholar] [CrossRef] [Green Version]
- Kasischke, E.S.; Hoy, E.E. Controls on carbon consumption during Alaskan wildland fires. Glob. Chang. Biol. 2012, 18, 685–699. [Google Scholar] [CrossRef]
- Stocks, B.J.; Mason, J.A.; Todd, J.B.; Bosch, E.M.; Wotton, B.M.; Amiro, B.D.; Flannigan, M.D.; Hirsch, K.G.; Logan, K.A.; Martell, D.L.; et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmosph. 2002, 107, FFR 5-1–FFR 5-12. [Google Scholar] [CrossRef]
- Parisien, M.-A.; Peters, V.S.; Wang, Y.; Little, J.M.; Bosch, E.M.; Stocks, B.J. Spatial patterns of forest fires in Canada, 19801999. Int. J. Wildland Fire 2006, 15, 361–374. [Google Scholar] [CrossRef]
- Murphy, P.J.; Mudd, J.P.; Stocks, B.J.; Kasischke, E.S.; Barry, D.; Alexander, M.E.; French, N.H.F. Historical fire records in the North American boreal forest. In Fire, Climate Change, and Carbon Cycling in the Boreal Forest; Kasischke, E.S., Stocks, B.J., Eds.; Springer: New York, NY, USA, 2000; pp. 274–288. [Google Scholar]
- Oliva, P.; Schroeder, W. Assessment of VIIRS 375m active fire detection product for direct burned area mapping. Remote Sens. Environ. 2015, 160, 144–155. [Google Scholar] [CrossRef]
- Kolden, C.A.; Lutz, J.A.; Key, C.H.; Kane, J.T.; van Wagtendonk, J.W. Mapped versus actual burned area within wildfire perimeters: Characterizing the unburned. Forest Ecol. Manag. 2012, 286, 38–47. [Google Scholar] [CrossRef]
- Eberhart, K.E.; Woodard, P.M. Distribution of residual vegetation associated with large fires in Alberta. Canad. J. Forest Res. 1987, 17, 1207–1212. [Google Scholar] [CrossRef]
- Burton, P.J.; Parisien, M.-A.; Hicke, J.A.; Hall, R.J.; Freeburn, J.T. Large fires as agents of ecological diversity in the North American boreal forest. Int. J. Wildland Fire 2008, 17, 754–767. [Google Scholar] [CrossRef]
- Hanes, C.C.; Wang, X.; Jain, P.; Parisien, M.-A.; Little, J.M.; Flannigan, M.D. Fire-regime changes in Canada over the last half century. Can. J. Forest Res. 2019, 49, 256–269. [Google Scholar] [CrossRef]
- Tsela, P.; Wessels, K.; Botai, J.; Archibald, S.; Swanepoel, D.; Steenkamp, K.; Frost, P. Validation of the Two Standard MODIS Satellite Burned-Area Products and an Empirically-Derived Merged Product in South Africa. Remote Sens. 2014, 6, 1275–1293. [Google Scholar] [CrossRef] [Green Version]
- Kukavskaya, E.A.; Soja, A.J.; Petkov, A.P.; Ponomarev, E.I.; Ivanova, G.A.; Conard, S.G. Fire emissions estimates in Siberia: Evaluation of uncertainties in area burned, land cover, and fuel consumption. Can. J. Forest Res. 2013, 43, 493–506. [Google Scholar] [CrossRef]
- Shi, Y.; Yamaguchi, Y. A high-resolution and multi-year emissions inventory for biomass burning in Southeast Asia during 2001–2010. Atmospher. Environ. 2014, 98, 8–16. [Google Scholar] [CrossRef]
- Valentini, R.; Arneth, A.; Bombelli, A.; Castaldi, S.; Cazzolla Gatti, R.; Chevallier, F.; Ciais, P.; Grieco, E.; Hartmann, J.; Henry, M.; et al. A full greenhouse gases budget of Africa: Synthesis, uncertainties, and vulnerabilities. Biogeosciences 2014, 11, 381–407. [Google Scholar] [CrossRef] [Green Version]
- Amiro, B.D.; Todd, J.B.; Wotton, B.M.; Logan, K.A.; Flannigan, M.D.; Stocks, B.J.; Mason, J.A.; Martell, D.L.; Hirsch, K.G. Direct carbon emissions from Canadian forest fires, 1959-1999. Can. J. Forest Res. 2001, 31, 512–525. [Google Scholar] [CrossRef]
Dataset | Source of Information | Type of Fire-Related Information | Spatial Coverage | Temporal Coverage | Spatial Resolution |
---|---|---|---|---|---|
MCD64A1 burned area product | MODIS (onboard Terra and Aqua) | Burned area (with timing of fire) | Global | 2000–present | 463 m (nominal: 500 m) |
ABBA burned area product | MODIS (onboard Terra and Aqua) | Burned area (without timing of fire) | Circumpolar (North of 60° N) | 2001–2015 | 463 m (nominal: 500 m) |
FireCCI51 burned area product | Multiple satellite platforms | Burned area (with timing of fire) | Global | 2001–2019 | 250 m |
VNP14IMG active fire product * | VIIRS (onboard Suomi NPP) | Active Fire Detections | Global | 2012–present | 375 m |
MTBS *,# | Landsat TM, ETM+, OLI imagery | Fire perimeter and burned area classification | US (including Alaska) | 1984–2018 | 30 m |
ALFD *,# | Multiple agencies at federal and state levels | Fire perimeter | Alaska | 1942–present | Various |
CNFDB *,# | Multiple agencies at various levels | Fire perimeter | Canada | 1917–2019 | Various |
Year | Confirmed Burned Area (km2) | Total Burn Perimeter Area (km2) | Burned Ratio (BR) |
---|---|---|---|
1984 | 277.4 | 350.4 | 79% |
1985 | 1108.3 | 1368.9 | 81% |
1986 | 1085.6 | 1271.6 | 85% |
1987 | 287.3 | 402.7 | 71% |
1988 | 2164.8 | 3312.6 | 65% |
1989 | 173.5 | 200.6 | 86% |
1990 | 4226.9 | 5772.3 | 73% |
1991 | 2464.7 | 3119.3 | 79% |
1992 | 92.7 | 114.5 | 81% |
1993 | 1361.3 | 1629.3 | 84% |
1994 | 828.1 | 985.8 | 84% |
1995 | 99.7 | 131.4 | 76% |
1996 | N/A | N/A | N/A |
1997 | 4.0 | 4.6 | 88% |
1998 | 455.4 | 714.7 | 64% |
1999 | 2933.0 | 3608.6 | 81% |
2000 | 2560.7 | 3151.9 | 81% |
2001 | 347.2 | 447.1 | 78% |
2002 | 6828.8 | 8641.6 | 79% |
Total | 27,299.4 | 35,227.8 | 77% |
Year | Atotal, ALFD (km2; 500 m) | Amapped, MCD64A1 (km2) | Amapped, ABBA (km2) | Atotal, ALFD (km2; 250 m) | Amapped, FireCCI51 (km2) | OEMCD64A1 | OEABBA | OEFireCCI51 | Amiss, MCD64A1 (km2) | Amiss, ABBA (km2) | Amiss, FireCCI51 (km2) |
---|---|---|---|---|---|---|---|---|---|---|---|
2001 | 896 | 0 | 5 | 892 | 4 | 100% | 99% | 100% | 690 | 686 | 684 |
2002 | 8492 | 4844 | 7510 | 8492 | 5096 | 43% | 12% | 40% | 2809 | 756 | 2615 |
2003 | 2423 | 1308 | 2230 | 2392 | 1755 | 46% | 8% | 27% | 859 | 149 | 490 |
2004 | 26,896 | 16,866 | 24,236 | 26,888 | 18,310 | 37% | 10% | 32% | 7723 | 2048 | 6605 |
2005 | 19,554 | 12,935 | 17,785 | 19,435 | 10,055 | 34% | 9% | 48% | 5097 | 1362 | 7223 |
2006 | 1078 | 185 | 779 | 1074 | 391 | 83% | 28% | 64% | 688 | 230 | 526 |
2007 | 2686 | 1393 | 2186 | 2606 | 1818 | 48% | 19% | 30% | 996 | 385 | 607 |
2008 | 385 | 110 | 310 | 386 | 210 | 71% | 19% | 46% | 212 | 58 | 136 |
2009 | 11,865 | 6152 | 10,679 | 11,862 | 9043 | 48% | 10% | 24% | 4399 | 913 | 2171 |
2010 | 4633 | 1436 | 3573 | 4599 | 2452 | 69% | 23% | 47% | 2462 | 816 | 1653 |
2011 | 1209 | 119 | 897 | 1208 | 532 | 90% | 26% | 56% | 839 | 240 | 521 |
2012 | 1202 | 492 | 783 | 1133 | 580 | 59% | 35% | 49% | 547 | 323 | 426 |
2013 | 5278 | 1981 | 4340 | 5275 | 3107 | 62% | 18% | 41% | 2539 | 722 | 1669 |
2014 | 1162 | 449 | 867 | 1160 | 741 | 61% | 25% | 36% | 549 | 227 | 323 |
2015 | 20,698 | 10,883 | 18,373 | 20,512 | 11,991 | 47% | 11% | 42% | 7558 | 1790 | 6561 |
Total | 108,457 | 59,153 | 94,553 | 107,914 | 66,085 | 45% | 13% | 39% | 37,964 | 10,706 | 32,208 |
Year | Atotal, CNFDB (km2; 500 m) | Amapped, MCD64A1 (km2) | Amapped, ABBA (km2) | Atotal, CNFDB (km2; 250 m) | Amapped, FireCCI51 (km2) | OEMCD64A1 | OEABBA | OEFireCCI51 | Amiss, MCD64A1 (km2) | Amiss, ABBA (km2) | Amiss, FireCCI51 (km2) |
---|---|---|---|---|---|---|---|---|---|---|---|
2001 | 1128 | 238 | 180 | 1131 | 263 | 79% | 84% | 77% | 685 | 730 | 668 |
2002 | 600 | 221 | 313 | 594 | 270 | 63% | 48% | 55% | 292 | 221 | 249 |
2003 | 1618 | 1002 | 1413 | 1621 | 1090 | 38% | 13% | 33% | 474 | 158 | 409 |
2004 | 22,090 | 12,289 | 19,566 | 22,097 | 15,413 | 44% | 11% | 30% | 7547 | 1943 | 5147 |
2005 | 4015 | 1997 | 3495 | 4025 | 2631 | 50% | 13% | 35% | 1554 | 400 | 1073 |
2006 | 1478 | 1069 | 1287 | 1483 | 754 | 28% | 13% | 49% | 315 | 147 | 561 |
2007 | 4542 | 1936 | 3592 | 4538 | 2387 | 57% | 21% | 47% | 2007 | 732 | 1656 |
2008 | 4229 | 2578 | 3085 | 4229 | 2575 | 39% | 27% | 39% | 1271 | 881 | 1274 |
2009 | 2324 | 1311 | 2092 | 2326 | 1149 | 44% | 10% | 51% | 780 | 179 | 906 |
2010 | 4867 | 1509 | 3572 | 4871 | 2482 | 69% | 27% | 49% | 2586 | 997 | 1840 |
2011 | 3284 | 1121 | 2491 | 3290 | 1625 | 66% | 24% | 51% | 1666 | 611 | 1282 |
2012 | 3489 | 1365 | 2500 | 3498 | 1685 | 61% | 28% | 52% | 1635 | 762 | 1396 |
2013 | 6426 | 3777 | 5646 | 6413 | 4117 | 41% | 12% | 36% | 2040 | 601 | 1768 |
2014 | 35,185 | 21,611 | 31,926 | 35,179 | 24,224 | 39% | 9% | 31% | 10,452 | 2509 | 8435 |
2015 | 8342 | 3796 | 7232 | 8348 | 5009 | 54% | 13% | 40% | 3500 | 855 | 2571 |
Total | 103,617 | 55,820 | 88,390 | 103,643 | 65,674 | 46% | 15% | 37% | 36,804 | 11,725 | 29,236 |
Region | Data | Year | Confirmed Burned Pixel Count | Confirmed Unburned Pixel Count | Total Examined Pixel Count | Total Candidate Pixel Count | Total Candidate Area (km2) | CE |
---|---|---|---|---|---|---|---|---|
Alaska | MCD64A1 | 2003 | 0 | 100 | 100 | 2934 | 630 | 100% |
2004 | 0 | 100 | 100 | 5372 | 1153 | 100% | ||
ABBA | 2003 | 4 | 35 | 39 | 39 | 8 | 90% | |
2004 | 16 | 56 | 72 | 72 | 15 | 78% | ||
FireCCI51 | 2003 | 0 | 100 | 100 | 128 | 4 | 100% | |
2004 | 7 | 93 | 100 | 1569 | 49 | 93% | ||
Canada | MCD64A1 | 2013 | 42 | 58 | 100 | 7761 | 1666 | 58% |
2015 | 64 | 36 | 100 | 3173 | 681 | 36% | ||
ABBA | 2013 | 27 | 73 | 100 | 4583 | 984 | 73% | |
2015 | 57 | 43 | 100 | 3442 | 739 | 43% | ||
FireCCI51 | 2013 | 94 | 6 | 100 | 25,261 | 788 | 6% | |
2015 | 26 | 74 | 100 | 39,689 | 1237 | 74% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Shevade, V.; Baer, A.; Loboda, T.V. Missing Burns in the High Northern Latitudes: The Case for Regionally Focused Burned Area Products. Remote Sens. 2021, 13, 4145. https://doi.org/10.3390/rs13204145
Chen D, Shevade V, Baer A, Loboda TV. Missing Burns in the High Northern Latitudes: The Case for Regionally Focused Burned Area Products. Remote Sensing. 2021; 13(20):4145. https://doi.org/10.3390/rs13204145
Chicago/Turabian StyleChen, Dong, Varada Shevade, Allison Baer, and Tatiana V. Loboda. 2021. "Missing Burns in the High Northern Latitudes: The Case for Regionally Focused Burned Area Products" Remote Sensing 13, no. 20: 4145. https://doi.org/10.3390/rs13204145
APA StyleChen, D., Shevade, V., Baer, A., & Loboda, T. V. (2021). Missing Burns in the High Northern Latitudes: The Case for Regionally Focused Burned Area Products. Remote Sensing, 13(20), 4145. https://doi.org/10.3390/rs13204145