When a Generalized Linear Model Meets Bayesian Maximum Entropy: A Novel Spatiotemporal Ground-Level Ozone Concentration Retrieval Method
Abstract
:1. Introduction
2. Study Areas
3. Hybrid Model: GLM + BME
3.1. Materials
3.2. GLM Module
3.3. BME Module
3.4. Hybrid Module
3.5. Accuracy Evaluation
4. Experimental Results
4.1. Model Validation
4.2. Mapping of GOCs across China
5. Discussion
5.1. Major Findings
5.2. Spatiotemporal Heterogeneity
5.3. Ozone Exposure Analysis Based on the GOCs
- (a)
- The monthly average GOCs tended to be higher than 100 µg/m3 from May to August in 2018.
- (b)
- About 28% of the Chinese population lived in areas (mainly distributed in Northeast, North, and Northwest China) with monthly average GOCs higher than 100 µg/m3 during the above periods.
5.4. Advantages and Possible Problems of the Proposed Model
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Javanmardi, P.; Morovati, P.; Farhadi, M.; Geravandi, S.; Khaniabadi, Y.O.; Angali, K.A.; Taiwo, A.M.; Sicard, P.; Goudarzi, G.; Valipour, A.; et al. Monitoring the impact of ambient ozone on human health using time series analysis and air quality model approaches. Fresenius Environ. Bull. 2018, 27, 533–544. [Google Scholar]
- Sicard, P.; Anav, A.; De Marco, A.; Paoletti, E. Projected global ground-level ozone impacts on vegetation under different emission and climate scenarios. Atmos. Chem. Phys. 2017, 17, 12177–12196. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, S.; Chattopadhyay, G. Modeling and Prediction of Monthly Total Ozone Concentrations by Use of an Artificial Neural Network Based on Principal Component Analysis. Pure Appl. Geophys. 2012, 169, 1891–1908. [Google Scholar] [CrossRef]
- Gao, M.; Gao, J.; Zhu, B.; Kumar, R.; Lu, X.; Song, S.; Zhang, Y.; Jia, B.; Wang, P.; Beig, G.; et al. Ozone pollution over China and India: Seasonality and sources. Atmos. Chem. Phys. 2020, 20, 4399–4414. [Google Scholar] [CrossRef] [Green Version]
- Jaber, S.M.; Abu-Allaban, M.M. Mapping the spatial distribution of tropospheric ozone and exploring its association with elevation and land cover over North Jordan. J. Spat. Sci. 2017, 62, 307–322. [Google Scholar] [CrossRef]
- Christakos, G.; Kolovos, A.; Serre, M.L.; Vukovich, F. Total ozone mapping by integrating databases from remote sensing instruments and empirical models. IEEE Trans. Geosci. Remote Sens. 2004, 42, 991–1008. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.A.; Al-Alawi, S.M. Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environ. Model. Softw. 2002, 17, 219–228. [Google Scholar] [CrossRef]
- Castellano, M.; Franco, A.; Cartelle, D.; Febrero, M.; Roca, E. Identification of NOx and Ozone Episodes and Estimation of Ozone by Statistical Analysis. Water Air Soil Pollut. 2009, 198, 95–110. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, S.; Gong, Z.; Li, H.; Yang, Q.; Wang, Y. Regionalization based on spatial and seasonal variation in ground-level ozone concentrations across China. J. Environ. Sci. 2018, 67, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Grigoras, G.; Stefan, S.; Rada, C.; Grigoras, C. Assessing of surface-ozone concentration in Bucharest, Romania, using OML and satellite data. Atmos. Pollut. Res. 2016, 7, 567–576. [Google Scholar] [CrossRef]
- Zunckel, M.; Koosailee, A.; Yarwood, G.; Maure, G.; Venjonoka, K.; Van Tienhoven, A.M.; Otter, L. Modelled surface ozone over southern Africa during the Cross Border Air Pollution Impact Assessment Project. Environ. Model. Softw. 2006, 21, 911–924. [Google Scholar] [CrossRef]
- Camalier, L.; Cox, W.; Dolwick, P. The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmos. Environ. 2007, 41, 7127–7137. [Google Scholar] [CrossRef]
- Gong, X.; Kaulfus, A.; Nair, U.; Jaffe, D.A. Quantifying O3 Impacts in Urban Areas Due to Wildfires Using a Generalized Additive Model. Environ. Sci. Technol. 2017, 51, 13216–13223. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhang, H.; Palazoglu, A. Prediction of 8 h-average ozone concentration using a supervised hidden Markov model combined with generalized linear models. Atmos. Environ. 2013, 81, 199–208. [Google Scholar] [CrossRef]
- Adam-Poupart, A.; Brand, A.; Fournier, M.; Jerrett, M.; Smargiassi, A. Spatiotemporal Modeling of Ozone Levels in Quebec (Canada): A Comparison of Kriging, Land-Use Regression (LUR), and Combined Bayesian Maximum Entropy–LUR Approaches. Environ. Health Perspect. 2014, 122, 970–976. [Google Scholar] [CrossRef]
- Bogaert, P.; Christakos, G.; Jerrett, M.; Yu, H.-L. Spatiotemporal modelling of ozone distribution in the State of California. Atmos. Environ. 2009, 43, 2471–2480. [Google Scholar] [CrossRef]
- Ren, X.; Mi, Z.; Georgopoulos, P.G. Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States. Environ. Int. 2020, 142, 105827. [Google Scholar] [CrossRef]
- Biancofiore, F.; Verdecchia, M.; Di Carlo, P.; Tomassetti, B.; Aruffo, E.; Busilacchio, M.; Bianco, S.; Di Tommaso, S.; Colangeli, C. Analysis of surface ozone using a recurrent neural network. Sci. Total Environ. 2015, 514, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Ma, Z.; Liu, Y.; Shao, Y.; Zhao, W.; Bi, J. Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: A machine learning approach. Environ. Int. 2020, 142, 105823. [Google Scholar] [CrossRef]
- Chaloulakou, A.; Saisana, M.; Spyrellis, N. Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens. Sci. Total Environ. 2003, 313, 1–13. [Google Scholar] [CrossRef]
- Spellman, G. An application of artificial neural networks to the prediction of surface ozone concentrations in the United Kingdom. Appl. Geogr. 1999, 19, 123–136. [Google Scholar] [CrossRef]
- Gorai, A.K.; Tchounwou, P.B.; Mitra, G. Spatial Variation of Ground Level Ozone Concentrations and its Health Impacts in an Urban Area in India. Aerosol Air Qual. Res. 2017, 17, 951–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solaiman, T.A.; Coulibaly, P.; Kanaroglou, P. Ground-level ozone forecasting using data-driven methods. Air Qual. Atmos. Health 2008, 1, 179–193. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wen, Y.; Wang, Y.; Zhang, S.; Pinto, J.P.; Pennington, E.A.; Wang, Z.; Wu, Y.; Sander, S.P.; Jiang, J.H.; et al. From COVID-19 to future electrification: Assessing traffic impacts on air quality by a machine-learning model. Proc. Natl. Acad. Sci. USA 2021, 118, e2102705118. [Google Scholar] [CrossRef]
- Pak, U.; Kim, C.; Ryu, U.; Sok, K.; Pak, S. A hybrid model based on convolutional neural networks and long short-term memory for ozone concentration prediction. Air Qual. Atmos. Health 2018, 11, 883–895. [Google Scholar] [CrossRef]
- Lu, X.; Hong, J.; Zhang, L.; Cooper, O.R.; Schultz, M.G.; Xu, X.; Wang, E.T.; Galo, M.; Zhao, Y.; Zhang, Y. Severe Surface Ozone Pollution in China: A Global Perspective. Environ. Sci. Technol. Lett. 2018, 5, 487–494. [Google Scholar] [CrossRef]
- Wang, X.; Manning, W.; Feng, Z.; Zhu, Y. Ground-level ozone in China: Distribution and effects on crop yields. Environ. Pollut. 2007, 147, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Ozbay, B.; Keskin, G.A.; Dogruparmak, S.C.; Ayberk, S. Predicting tropospheric ozone concentrations in different temporal scales by using multilayer perceptron models. Ecol. Inform. 2011, 6, 242–247. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, Y.; Li, T.; Wei, L.; Guan, Q. Temporal and Spatial Variation in, and Population Exposure to, Summertime Ground-Level Ozone in Beijing. Int. J. Environ. Res. Public Health 2018, 15, 628. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Y.; Luo, Y.; Deng, X.; Grieneisen, M.L.; Zhang, M.; Di, B. Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment. Environ. Pollut. 2018, 233, 464–473. [Google Scholar] [CrossRef]
- Al-Alawi, S.M.; Abdul-Wahab, S.A.; Bakheit, C.S. Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone. Environ. Model. Softw. 2008, 23, 396–403. [Google Scholar] [CrossRef]
- Zheng, J.; Swall, J.L.; Cox, W.M.; Davis, J.M. Interannual variation in meteorologically adjusted ozone levels in the eastern United States: A comparison of two approaches. Atmos. Environ. 2007, 41, 705–716. [Google Scholar] [CrossRef]
- Chen, L.; Gao, S.; Zhang, H.; Sun, Y.; Ma, Z.; Vedal, S.; Mao, J.; Bai, Z. Spatiotemporal modeling of PM 2.5 concentrations at the national scale combining land use regression and Bayesian maximum entropy in China. Environ. Int. 2018, 116, 300–307. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.; Xue, B.; Lv, Z.; Meng, Z.; Yang, X.; Xue, T.; Yu, Q.; He, K. Ground-level ozone pollution and its health impacts in China. Atmos. Environ. 2018, 173, 223–230. [Google Scholar] [CrossRef]
- Mo, Y.; Li, Q.; Karimian, H.; Zhang, S.; Kong, X.; Fang, S.; Tang, B. Daily spatiotemporal prediction of surface ozone at the national level in China: An improvement of CAMS ozone product. Atmos. Pollut. Res. 2021, 12, 391–402. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Leng, P. A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data. Remote Sens. Environ. 2017, 195, 107–117. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-L.; Kolovos, A.; Christakos, G.; Chen, J.-C.; Warmerdam, S.; Dev, B. Interactive spatiotemporal modelling of health systems: The SEKS–GUI framework. Stoch. Environ. Res. Risk Assess. 2007, 21, 555–572. [Google Scholar] [CrossRef]
- Yang, Y.; Christakos, G. Spatiotemporal Characterization of Ambient PM2.5 Concentrations in Shandong Province (China). Environ. Sci. Technol. 2015, 49, 13431–13438. [Google Scholar] [CrossRef]
- Rao, S.T.; Zurbenko, I.G.; Neagu, R.; Porter, P.S.; Ku, J.Y.; Henry, R.F. Space and time scales in ambient ozone data. Bull. Am. Meteorol. Soc. 1997, 78, 2153–2166. [Google Scholar] [CrossRef]
- Lee, S.J.; Serre, M.L.; van Donkelaar, A.; Martin, R.V.; Burnett, R.T.; Jerrett, M. Comparison of Geostatistical Interpolation and Remote Sensing Techniques for Estimating Long-Term Exposure to Ambient PM(2.5) Concentrations across the Continental United States. Environ. Health Perspect. 2012, 120, 1727–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhang, Y.; Hao, J.; Luo, M. Seasonal and spatial variability of surface ozone over China: Contributions from background and domestic pollution. Atmos. Chem. Phys. 2011, 11, 3511–3525. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.; Solmon, F.; Deng, X.; Zou, Y.; Deng, T.; Wang, N.; Li, F.; Mai, B.; Liu, L. Geographical distribution of ozone seasonality over China. Sci. Total Environ. 2019, 689, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Anenberg, S.C.; Horowitz, L.W.; Tong, D.Q.; West, J.J. An Estimate of the Global Burden of Anthropogenic Ozone and Fine Particulate Matter on Premature Human Mortality Using Atmospheric Modeling. Environ. Health Perspect. 2010, 118, 1189–1195. [Google Scholar] [CrossRef]
- Levy, J.I.; Chemerynski, S.M.; Sarnat, J.A. Ozone exposure and mortality: An empiric Bayes metaregression analysis. Epidemiology 2005, 16, 458–468. [Google Scholar] [CrossRef]
- Li, L.; An, J.; Shi, Y.; Zhou, M.; Yan, R.; Huang, C.; Wang, H.; Lou, S.; Wang, Q.; Lu, Q.; et al. Source apportionment of surface ozone in the Yangtze River Delta, China in the summer of 2013. Atmos. Environ. 2016, 144, 194–207. [Google Scholar] [CrossRef]
- Wu, R.R.; Xie, S.D. Spatial Distribution of Ozone Formation in China Derived from Emissions of Speciated Volatile Organic Compounds. Environ. Sci. Technol. 2017, 51, 2574–2583. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Liu, Y.; Li, X. Spatiotemporal distribution of ground-level ozone in China at a city level. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, F.; Zhao, J.; Zhu, G.; He, X.; Ma, X.; Li, S.; Sabel, C.E.; Wang, H. Impacts of O-3 on premature mortality and crop yield loss across China. Atmos. Environ. 2018, 194, 41–47. [Google Scholar] [CrossRef]
Model | Study Area | Temporal/ Spatial Resolution | R2 | RMSE (µg/m3) | Reference | |
---|---|---|---|---|---|---|
Deterministic model | Site-specific | Daily/- | - | - | [8] | |
National | Annual/- | - | - | [9] | ||
City | Daily/750 m | - | - | [10] | ||
City | Daily/50 km | - | - | [11] | ||
Statistical model | GLM | Site-specific | - | 0.56–0.80 | - | [12] |
Site-specific | - | 0.35–0.81 | - | [13] | ||
Site-specific | - | 0.34–0.71 | 8.07–14.24 | [14] | ||
BME | City | Monthly/1 km | 0.65 | 7.06 | [15] | |
City | Monthly/- | - | - | [16] | ||
City | Daily/- | - | - | [6] | ||
Others | National | Daily/- | 0.74 | 7.2 | [17] | |
Site-specific | Seasonal/- | - | - | [18] | ||
National | Monthly/0.1° | 0.60–0.87 | - | [19] | ||
Site-specific | Daily/- | - | 18.4–42.7 | [20] |
Explanatory Variable | Unit | Spatial Resolution | Temporal Resolution | Preprocessing Method |
---|---|---|---|---|
LST | 1 km × 1 km | Day | Spatial overlay | |
BCTP | 0.667° × 0.5° | Day | Nearest-neighbor interpolation | |
TCPP | 0.667° × 0.5° | Day | Nearest-neighbor interpolation | |
SH | kgkg−1 | 0.667° × 0.5° | Day | Nearest-neighbor interpolation |
RHAM | 1 | 0.667° × 0.5° | Day | Nearest-neighbor interpolation |
RD | km/km2 | Polyline | Year | |
LON | ° | NA | NA | NA |
LAT | ° | NA | NA | NA |
DNS | NA | NA | NA | NA |
Spatial Resolution | R2 | RMSE | |
---|---|---|---|
Liu et al. (2018) | >0.1° | >0.6 | - |
Lin et al. (2018) | 36 km | >0.5 | - |
Liu et al. (2020) | 0.1° | 0.60 to 0.87 | - |
Zhan et al. (2018) | 0.1° | 0.71 | 19 µg/m3 |
Proposed hybrid model | 1 km | 0.67 | 15.26 µg/m3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, Y.; Li, J.; Xiang, D.; Zhang, J. When a Generalized Linear Model Meets Bayesian Maximum Entropy: A Novel Spatiotemporal Ground-Level Ozone Concentration Retrieval Method. Remote Sens. 2021, 13, 4324. https://doi.org/10.3390/rs13214324
Mei Y, Li J, Xiang D, Zhang J. When a Generalized Linear Model Meets Bayesian Maximum Entropy: A Novel Spatiotemporal Ground-Level Ozone Concentration Retrieval Method. Remote Sensing. 2021; 13(21):4324. https://doi.org/10.3390/rs13214324
Chicago/Turabian StyleMei, Yingying, Jiayi Li, Deping Xiang, and Jingxiong Zhang. 2021. "When a Generalized Linear Model Meets Bayesian Maximum Entropy: A Novel Spatiotemporal Ground-Level Ozone Concentration Retrieval Method" Remote Sensing 13, no. 21: 4324. https://doi.org/10.3390/rs13214324
APA StyleMei, Y., Li, J., Xiang, D., & Zhang, J. (2021). When a Generalized Linear Model Meets Bayesian Maximum Entropy: A Novel Spatiotemporal Ground-Level Ozone Concentration Retrieval Method. Remote Sensing, 13(21), 4324. https://doi.org/10.3390/rs13214324