Acquisition of the Wide Swath Significant Wave Height from HY-2C through Deep Learning
Abstract
:1. Introduction
2. Data and Method
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guenaydin, K. The estimation of monthly mean significant wave heights by using artificial neural network and regression methods. Ocean Eng. 2008, 35, 1406–1415. [Google Scholar] [CrossRef]
- Lin, Y.P.; Huang, C.J.; Chen, S.H. Variations in directional wave parameters obtained from data measured using a GNSS buoy. Ocean Eng. 2020, 209, 107513. [Google Scholar] [CrossRef]
- Kang, J.; Mao, R.; Chang, Y.; Fu, H. Comparative analysis of significant wave height between a new Southern Ocean buoy and satellite altimeter. Atmos. Ocean. Sci. Lett. 2021, 14, 100044. [Google Scholar] [CrossRef]
- Dobson, E.; Monaldo, F.; Goldhirsh, J. Validation of Geosat altimeter-derived wind speeds and significant wave heights using buoy data. J. Geophys. Res. Ocean. 1987, 92, 10719–10731. [Google Scholar] [CrossRef]
- Durrant, T.H.; Greenslade, D.J.M.; Simmonds, I. Validation of Jason-1 and Envisat Remotely Sensed Wave Heights. J. Atmos. Ocean. Technol. 2009, 26, 123–134. [Google Scholar] [CrossRef]
- Bhowmick, S.A.; Sharma, R.; Babu, K.N.; Shukla, A.K.; Kumar, R.; Venkatesan, R.; Gairola, R.M.; Bonnefond, P.; Picot, N. Validation of SWH and SSHA from SARAL/AltiKa Using Jason-2 and In-Situ Observations. Mar. Geod. 2015, 38, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Kumar, U.M.; Swain, D.; Sasamal, S.K.; Reddy, N.N.; Ramanjappa, T. Validation of SARAL/AltiKa significant wave height and wind speed observations over the North Indian Ocean. J. Atmos. Sol.-Terr. Phys. 2015, 135, 174–180. [Google Scholar] [CrossRef]
- Sepulveda, H.H.; Queffeulou, P.; Ardhuin, F. Assessment of SARAL/AltiKa Wave Height Measurements Relative to Buoy, Jason-2, and Cryosat-2 Data. Mar. Geod. 2015, 38, 449–465. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, J. Validation of Sentinel-3A/3B Satellite Altimetry Wave Heights with Buoy and Jason-3 Data. Sensors 2019, 19, 2914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Zhang, J.; Jia, Y.; Fan, C.; Cui, W. Validation of Sentinel-3A/3B and Jason-3 Altimeter Wind Speeds and Significant Wave Heights Using Buoy and ASCAT Data. Remote Sens. 2020, 12, 2079. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, J.; Lin, M.; Zhao, Y.; Huang, X.; Wang, H.; Zhang, Y.; Peng, H. The validation of the significant wave height product of HY-2 altimeter–primary results. Acta Oceanol. Sin. 2013, 32, 82–86. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Yang, J. The validation of HY-2 altimeter measurements of a significant wave height based on buoy data. Acta Oceanol. Sin. 2013, 32, 87–90. [Google Scholar] [CrossRef]
- Zhang, H.; Qing, W.U.; Chen, G. Validation of HY-2A Remotely Sensed Wave Heights against Buoy Data and Jason-2 Altimeter Measurements. J. Atmos. Ocean. Technol. 2015, 32, 150402094232008. [Google Scholar] [CrossRef]
- Wang, J.; Aouf, L.; Jia, Y.; Zhang, Y. Validation and Calibration of Significant Wave Height and Wind Speed Retrievals from HY2B Altimeter Based on Deep Learning. Remote Sens. 2020, 12, 2858. [Google Scholar] [CrossRef]
- Liang, G.; Yang, J.; Wang, J. Accuracy Evaluation of CFOSAT SWIM L2 Products Based on NDBC Buoy and Jason-3 Altimeter Data. Remote Sens. 2021, 13, 887. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Liu, B.; Lin, W.; He, Y.; Liu, J. Validation and calibration of Nadir SWH Products from CFOSAT and HY-2B with satellites and in situ observations. J. Geophys. Res. Ocean. 2021, 126, e2020JC016689. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Bentes, C.; Velotto, D.; Lehner, S. Target classification in oceanographic SAR images with deep neural networks: Architecture and initial results. IEEE Int. Geosci. Remote Sens. Symp. 2015, 3703–3706. [Google Scholar]
- Shen, D.; Liu, B.; Li, X. Sea Surface Wind Retrieval from Synthetic Aperture Radar Data by Deep Convolutional Neural Networks. IEEE Int. Geosci. Remote Sens. Symp. 2019, 8035–8038. [Google Scholar]
- Qin, T.; Jia, T.; Feng, Q.; Li, X. Sea surface wind speed retrieval from Sentinel-1 HH polarization data using conventional and neural network methods. Acta Oceanol. Sin. 2021, 40, 13–21. [Google Scholar] [CrossRef]
- Wang, J.K.; Aouf, L.; Dalphinet, A.; Li, B.X.; Xu, Y.; Liu, J.Q. Acquisition of the significant wave height from CFOSAT SWIM spectra through a deep neural network and its impact on wave model assimilation. J. Geophys. Res. Ocean. 2021, 126, e2020JC016885. [Google Scholar] [CrossRef]
- Li, X.; Yang, D.; Yang, J.; Zheng, G.; Han, G.; Nan, Y.; Li, W. Analysis of coastal wind speed retrieval from CYGNSS mission using artificial neural network. Remote Sens. Environ. 2021, 260, 112454. [Google Scholar] [CrossRef]
- Wang, J.K.; Aouf, L.; Badulin, S. Retrieval of wave period from altimetry: Deep learning accounting for random wave field dynamics. Remote Sens. Environ. 2021, 265, 112629. [Google Scholar] [CrossRef]
- Wang, J.K.; Aouf, L.; Dalphinet, A.; Zhang, Y.G.; Xu, Y.; Hauser, D.; Liu, J.Q. The Wide Swath Significant Wave Height: An Innovative Reconstruction of Significant Wave Heights from CFOSAT’s SWIM and Scatterometer Using Deep Learning. Geophys. Res. Lett. 2021, 48, e2020GL091276. [Google Scholar]
- Pang, D.; Tao, W. HY-2B and HY-2C Operational Satellites under Development. Aerosp. China 2016, 17, 69. [Google Scholar]
- Ren, Y. LM-4B Successfully Launched HY-2C Satellite. Aerosp. China 2020, 21, 56. [Google Scholar]
- Jia, Y.; Lin, M.; Zhang, Y. Evaluations of the Significant Wave Height Products of HY-2B Satellite Radar Altimeters. Mar. Geod. 2020, 43, 396–413. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, J.; Stoffelen, A.; Lin, W.; Verhoef, A.; Li, X.; He, Y.; Zhang, Y.; Lin, M. Scatterometer Sea Surface Wind Product Validation for HY-2C. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6156–6164. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
Input Features of Experiments 1–3 | RMSE | SI | Bias | R |
---|---|---|---|---|
Experiment 1: Wind and SWH simultaneously acquired by HY-2C, latitude, and longitude | 0.4056 | 0.1528 | 0.0154 | 0.9428 |
Experiment 2: Wind and SWH simultaneously acquired by HY-2C, latitude; longitude, and swell obtained from ERA5 | 0.3696 | 0.1381 | −0.0069 | 0.9530 |
Experiment 3: Wind and SWH simultaneously acquired by HY-2C, latitude, longitude, and wind wave collected from ERA5 | 0.4344 | 0.1629 | 0.0032 | 0.9353 |
Segmented Data in the Test Set | RMSE | SI | Bias | R | |
---|---|---|---|---|---|
Interval 1: 1–300 | The leftmost column | 0.6785 | 0.2633 | 0.0210 | 0.8449 |
The center column | 0.6023 | 0.2319 | −0.0079 | 0.8931 | |
The rightmost column | 0.7392 | 0.2813 | −0.0524 | 0.8280 | |
Interval 2: 301–600 | The leftmost column | 0.4650 | 0.1740 | −0.0277 | 0.9280 |
The center column | 0.2577 | 0.0966 | 0.0351 | 0.9797 | |
The rightmost column | 0.5155 | 0.1928 | −0.0018 | 0.9041 | |
Interval 3: 601–900 | The leftmost column | 0.4632 | 0.1725 | −0.0038 | 0.9335 |
The center column | 0.2862 | 0.1064 | 0.0323 | 0.9779 | |
The rightmost column | 0.4687 | 0.1716 | −0.0160 | 0.9333 | |
Interval 4: 901–1200 | The leftmost column | 0.4623 | 0.1734 | 0.0580 | 0.9293 |
The center column | 0.2420 | 0.0891 | −0.0137 | 0.9820 | |
The rightmost column | 0.4484 | 0.1623 | −0.0239 | 0.9453 | |
Interval 5: 1201–1500 | The leftmost column | 0.4289 | 0.1680 | 0.0244 | 0.9180 |
The center column | 0.2554 | 0.0996 | 0.0221 | 0.9731 | |
The rightmost column | 0.4155 | 0.1591 | 0.0197 | 0.9279 | |
Interval 6: 1501–1800 | The leftmost column | 0.4712 | 0.1776 | 0.0426 | 0.9037 |
The center column | 0.2844 | 0.1072 | 0.0308 | 0.9688 | |
The rightmost column | 0.4954 | 0.1843 | −0.0100 | 0.9100 | |
Interval 7: 1800–2100 | The leftmost column | 0.4438 | 0.1711 | 0.0528 | 0.9128 |
The center column | 0.2673 | 0.1034 | 0.0175 | 0.9662 | |
The rightmost column | 0.5030 | 0.1906 | −0.0454 | 0.8819 | |
Interval 8: 2101–2400 | The leftmost column | 0.5086 | 0.1875 | 0.0737 | 0.9323 |
The center column | 0.2798 | 0.1026 | 0.0610 | 0.9763 | |
The rightmost column | 0.4834 | 0.1758 | 0.0446 | 0.9268 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Yu, T.; Deng, F.; Ruan, Z.; Jia, Y. Acquisition of the Wide Swath Significant Wave Height from HY-2C through Deep Learning. Remote Sens. 2021, 13, 4425. https://doi.org/10.3390/rs13214425
Wang J, Yu T, Deng F, Ruan Z, Jia Y. Acquisition of the Wide Swath Significant Wave Height from HY-2C through Deep Learning. Remote Sensing. 2021; 13(21):4425. https://doi.org/10.3390/rs13214425
Chicago/Turabian StyleWang, Jichao, Ting Yu, Fangyu Deng, Zongli Ruan, and Yongjun Jia. 2021. "Acquisition of the Wide Swath Significant Wave Height from HY-2C through Deep Learning" Remote Sensing 13, no. 21: 4425. https://doi.org/10.3390/rs13214425
APA StyleWang, J., Yu, T., Deng, F., Ruan, Z., & Jia, Y. (2021). Acquisition of the Wide Swath Significant Wave Height from HY-2C through Deep Learning. Remote Sensing, 13(21), 4425. https://doi.org/10.3390/rs13214425