High-Resolution Polar Low Winds Obtained from Unsupervised SAR Wind Retrieval
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sentinel-1 Synthetic Aperture Radar
2.2. AROME-Arctic Numerical Weather Forecasting Model
2.3. In Situ Observations
2.4. Wind Retrieval Techniques
3. Results
3.1. Example Polar Low
3.2. Information Content of SAR
4. Discussion
5. Conclusions
- Current wind retrieval methods that retrieve wind from a single product, copol or crosspol, or rely on auxiliary wind information form numerical models are not suitable to derive a surface wind field from SAR observations of highly variable wind environments, such as polar lows, due to potentially large errors caused by the use of incorrect auxiliary wind direction information or high instrument noise.
- Comprehensive utilisation of, thus far, neglected wind direction information gathered from a combination of copol and crosspol backscatter, and the Doppler centroid anomaly can replace the need for auxiliary wind direction information during wind vector retrieval and minimise the effect of instrument noise. The resulting new SAR-only wind retrieval yields a wind field with a directional ambiguity that is independent of a priori information from NWP models. Thereby, the SAR-only wind retrieval is free from errors caused by incorrect auxiliary wind direction provided by models that are likely to misrepresent the details of complex wind structures.
- High-resolution surface wind fields of dynamically changing weather events, such as polar lows obtained from this unsupervised wind retrieval can potentially improve weather predictions of these events by providing small-scale observations for the data assimilation process of mesoscale NWP models.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SAR | synthetic aperture radar |
GMF | geophysical model function |
copol | co-polarised; same polarisation plane for transmitted and received signal |
HH (VV) | horizontally (vertically) polarised transmitted and received radiation |
crosspol | cross-polarised; 90° different polarisation planes for transmission and reception |
HV (VH) | horizontal and vertical polarisation for transmission and reception (or opposite) |
NWP | numerical weather prediction |
ECMWF | European Centre for Medium-Range Weather Forecasts |
References
- Donnelly, W.J.; Carswell, J.R.; McIntosh, R.E.; Chang, P.S.; Wilkerson, J.; Marks, F.; Black, P.G. Revised ocean backscatter models at C and Ku band under high-wind conditions. J. Geophys. Res. Ocean. 1999, 104, 11485–11497. [Google Scholar] [CrossRef]
- Wackerman, C.C.; Rufenach, C.L.; Shuchman, R.A.; Johannessen, J.A.; Davidson, K.L. Wind vector retrieval using ERS-1 synthetic aperture radar imagery. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1343–1352. [Google Scholar] [CrossRef]
- Lehner, S.; Horstmann, J.; Koch, W.; Rosenthal, W. Mesoscale wind measurements using recalibrated ERS SAR images. J. Geophys. Res. Ocean. 1998, 103, 7847–7856. [Google Scholar] [CrossRef]
- Horstmann, J.; Schiller, H.; Schulz-Stellenfleth, J.; Lehner, S. Global wind speed retrieval from SAR. IEEE Trans. Geosci. Remote. Sens. 2003, 41, 2277–2286. [Google Scholar] [CrossRef] [Green Version]
- Vachon, P.W.; Wolfe, J. C-band cross-polarization wind speed retrieval. IEEE Geosci. Remote. Sens. Lett. 2010, 8, 456–459. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W. Cross-polarized synthetic aperture radar: A new potential measurement technique for hurricanes. Bull. Am. Meteorol. Soc. 2012, 93, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Mouche, A.A.; Chapron, B.; Zhang, B.; Husson, R. Combined co-and cross-polarized SAR measurements under extreme wind conditions. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6746–6755. [Google Scholar] [CrossRef]
- Zhang, B.; Fan, S.; Mouche, A.; Zhang, G.; Perrie, W. Synergistic Measurements of Hurricane Wind Speeds and Directions from C-band Dual-Polarization Synthetic Aperture Radar. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 4618–4621. [Google Scholar]
- Koch, W. Directional analysis of SAR images aiming at wind direction. IEEE Trans. Geosci. Remote Sens. 2004, 42, 702–710. [Google Scholar] [CrossRef]
- Lin, H.; Xu, Q.; Zheng, Q. An overview on SAR measurements of sea surface wind. Prog. Nat. Sci. 2008, 18, 913–919. [Google Scholar] [CrossRef]
- Mouche, A.A.; Collard, F.; Chapron, B.; Dagestad, K.F.; Guitton, G.; Johannessen, J.A.; Kerbaol, V.; Hansen, M.W. On the use of Doppler shift for sea surface wind retrieval from SAR. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2901–2909. [Google Scholar] [CrossRef]
- Rasmussen, E.A. Polar lows. In A Half Century of Progress in Meteorology: A Tribute to Richard Reed; Springer: Berlin/Heidelberg, Germany, 2003; pp. 61–78. [Google Scholar]
- Mile, M.; Randriamampianina, R.; Marseille, G.J.; Stoffelen, A. Supermodding—A special footprint operator for mesoscale data assimilation using scatterometer winds. Q. J. R. Meteorol. Soc. 2021, 147, 1382–1402. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, B.; Perrie, W.; Mouche, A.; Zhang, G. CMODH Validation for C-Band Synthetic Aperture Radar HH Polarization Wind Retrieval Over the Ocean. IEEE Geosci. Remote Sens. Lett. 2020, 18, 102–106. [Google Scholar] [CrossRef]
- Said, F.; Johnsen, H.; Chapron, B.; Engen, G. An ocean wind Doppler model based on the generalized curvature ocean surface scattering model. IEEE Trans. Geosci. Remote. Sens. 2015, 53, 6632–6638. [Google Scholar] [CrossRef] [Green Version]
- ESA. Sentiel-1 Technical Guide. 2021. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-1 (accessed on 18 May 2021).
- Müller, M.; Batrak, Y.; Kristiansen, J.; Køltzow, M.A.; Noer, G.; Korosov, A. Characteristics of a convective-scale weather forecasting system for the European Arctic. Mon. Weather. Rev. 2017, 145, 4771–4787. [Google Scholar] [CrossRef]
- Seity, Y.; Brousseau, P.; Malardel, S.; Hello, G.; Bénard, P.; Bouttier, F.; Lac, C.; Masson, V. The AROME-France convective-scale operational model. Mon. Weather. Rev. 2011, 139, 976–991. [Google Scholar] [CrossRef] [Green Version]
- Stoll, P.J.; Valkonen, T.M.; Graversen, R.G.; Noer, G. A well-observed polar low analysed with a regional and a global weather-prediction model. Q. J. R. Meteorol. Soc. 2020, 146, 1740–1767. [Google Scholar] [CrossRef]
- Müller, M.; Homleid, M.; Ivarsson, K.I.; Køltzow, M.A.; Lindskog, M.; Midtbø, K.H.; Andrae, U.; Aspelien, T.; Berggren, L.; Bjørge, D.; et al. AROME-MetCoOp: A Nordic convective-scale operational weather prediction model. Weather. Forecast. 2017, 32, 609–627. [Google Scholar] [CrossRef]
- Zhang, B.; Mouche, A.; Lu, Y.; Perrie, W.; Zhang, G.; Wang, H. A geophysical model function for wind speed retrieval from C-band HH-polarized synthetic aperture radar. IEEE Geosci. Remote. Sens. Lett. 2019, 16, 1521–1525. [Google Scholar] [CrossRef]
- Portabella, M.; Stoffelen, A.; Johannessen, J.A. Toward an optimal inversion method for synthetic aperture radar wind retrieval. J. Geophys. Res. Ocean. 2002, 107, 1. [Google Scholar] [CrossRef]
- Adamo, M.; Rana, F.M.; De Carolis, G.; Pasquariello, G. Assessing the Bayesian inversion technique of C-band synthetic aperture radar data for the retrieval of wind fields in marine coastal areas. J. Appl. Remote Sens. 2014, 8, 083531. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Mouche, A.; Shao, W.; Zhu, J.; Ren, L.; Xie, C. GF-3 SAR ocean wind retrieval: The first view and preliminary assessment. Remote Sens. 2017, 9, 694. [Google Scholar] [CrossRef] [Green Version]
- Moiseev, A.; Johnsen, H.; Johannessen, J.; Collard, F.; Guitton, G. On Removal of Sea State Contribution to Sentinel-1 Doppler Shift for Retrieving Reliable Ocean Surface Current. J. Geophys. Res. Ocean. 2020, 125, e2020JC016288. [Google Scholar] [CrossRef]
- Engen, G.; Johnsen, H.; Larsen, Y. Sentinel-1 geophysical doppler product-performance and application. In Proceedings of the EUSAR 2014, 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014; pp. 1–4. [Google Scholar]
- Engen, G.; Johnsen, H. Sentinel-1 Doppler and Ocean Radial Velocity Algorithm Definition. Image 2015, 19, 62. [Google Scholar]
- Chapron, B.; Collard, F.; Ardhuin, F. Direct measurements of ocean surface velocity from space: Interpretation and validation. J. Geophys. Res. Ocean. 2005, 110. [Google Scholar] [CrossRef]
- Saïd, F.; Johnsen, H. Ocean surface wind retrieval from dual-polarized SAR data using the polarization residual Doppler frequency. IEEE Trans. Geosci. Remote. Sens. 2013, 52, 3980–3990. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.W.; Collard, F.; Dagestad, K.F.; Johannessen, J.A.; Fabry, P.; Chapron, B. Retrieval of sea surface range velocities from Envisat ASAR Doppler centroid measurements. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3582–3592. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, J.; Zhang, J.; Guan, C. Extreme Wind Speeds Retrieval Using Sentinel-1 IW Mode SAR Data. Remote Sens. 2021, 13, 1867. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tollinger, M.; Graversen, R.; Johnsen, H. High-Resolution Polar Low Winds Obtained from Unsupervised SAR Wind Retrieval. Remote Sens. 2021, 13, 4655. https://doi.org/10.3390/rs13224655
Tollinger M, Graversen R, Johnsen H. High-Resolution Polar Low Winds Obtained from Unsupervised SAR Wind Retrieval. Remote Sensing. 2021; 13(22):4655. https://doi.org/10.3390/rs13224655
Chicago/Turabian StyleTollinger, Mathias, Rune Graversen, and Harald Johnsen. 2021. "High-Resolution Polar Low Winds Obtained from Unsupervised SAR Wind Retrieval" Remote Sensing 13, no. 22: 4655. https://doi.org/10.3390/rs13224655
APA StyleTollinger, M., Graversen, R., & Johnsen, H. (2021). High-Resolution Polar Low Winds Obtained from Unsupervised SAR Wind Retrieval. Remote Sensing, 13(22), 4655. https://doi.org/10.3390/rs13224655