Mapping European Spruce Bark Beetle Infestation at Its Early Phase Using Gyrocopter-Mounted Hyperspectral Data and Field Measurements
Abstract
:1. Introduction
1.1. Motivation
1.2. State-of-the-Art
1.3. Scope of This Study
- Is it possible to record early spruce infestation with a high accuracy of estimation using high resolution hyperspectral RS data?
- Can particular hyperspectral indices be defined that detect and record early infestation phases, and can those be transferred on other study sites?
- Is it possible to combine field spectrometer measurements and airborne hyperspectral measurements for the detection of early infestation?
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Instrumentation
2.2.1. Field Measurements
Sampling Strategies
Field Spectra Acquisition
GNSS Measurements
2.2.2. Gyrocopter Measurements
2.3. Methodology
2.3.1. Methodological Design
2.3.2. Processing of the Field Measurements
Data Preprocessing
Laboratory Indices (Field Data)
2.3.3. Processing of the Hyperspectral Data
Processing Atmospheric Correction with Py6S Algorithm
HySpex Indices (Airborne Data)
2.3.4. Classification
Masking
Threshold Based Classification Approach
3. Results
3.1. Indices
3.1.1. Field Measurements
3.1.2. Hyperspectral Data
3.2. Classification for HySpex Index 1
3.2.1. Threshold Estimation (Study Area 1)
3.2.2. Classification Results (Study Area 1)
3.3. Transfer of HySpex Index 1
3.3.1. Investigation of Other Suitable Indices
3.3.2. Comparison of HySpex Index 1 with Other Suitable Indices (Study Area 1)
3.3.3. Comparison of HySpex Index 1 with Other Suitable Indices (Study Area 2)
3.3.4. Long-Term Validation of HySpex Index 1 and Other Indices (Study Area 2)
4. Discussion
4.1. Comparison of the Laboratory and HySpex Indices
4.2. Composition of the Crown Structure
4.3. Comparison of HySpex Index 1 with Other Suitable Indices
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Scenario | Index | T2 | T3 | T1 | T4 | T5 | T1,T4–T2,T3 | T1,T4,T5–T2,T3 |
---|---|---|---|---|---|---|---|---|
Scenario I | LI 1 | 0.45 | 0.00 | 0.86 | 1.00 | 0.59 | 0.41 | 0.14 |
LI 2 | 0.52 | 1.00 | 0.14 | 0.00 | 0.64 | 0.37 | 0.13 | |
LI 3 | 0.59 | 1.00 | 0.03 | 0.00 | 0.18 | 0.55 | 0.41 | |
Scenario II | LI 1 | 0.44 | 0.00 | 0.81 | 1.00 | 0.71 | 0.37 | 0.26 |
LI 2 | 0.53 | 1.00 | 0.21 | 0.00 | 0.49 | 0.32 | 0.04 | |
LI 3 | 0.56 | 1.00 | 0.07 | 0.00 | 0.09 | 0.49 | 0.48 | |
Scenario III | LI 1 | 0.43 | 0.00 | 0.81 | 1.00 | 0.64 | 0.38 | 0.21 |
LI 2 | 0.54 | 1.00 | 0.21 | 0.00 | 0.57 | 0.33 | 0.02 | |
LI 3 | 0.59 | 1.00 | 0.07 | 0.00 | 0.16 | 0.52 | 0.43 |
Index | Numerical Measurements | T1 | T2 | T3 | T1–T2,T3 |
---|---|---|---|---|---|
HI 1 | P5th–P95th Range | 0.00–0.31 | 0.57–0.87 | 0.66–1.00 | 0.26 |
HI 2 | P5th–P95th Range | 0.00–0.37 | 0.58–0.91 | 0.66–1.00 | 0.21 |
References
- Thüringer Landesamt für Umwelt, Bergbau und Naturschutz. Niederschlagsanomalie. Available online: https://tlubn.thueringen.de/klima/aktuelles (accessed on 21 October 2021).
- FFK Gotha. Forstlicher Witterungsbericht (III. Quartal 2020). 2020. Available online: https://www.thueringenforst.de/fileadmin/user_upload/Download_FFK_Mediathek/Witterungsberichte/FFK-Gotha-Witterungsbericht-2020-3.pdf (accessed on 4 July 2021).
- Sprintsin, M.; Chen, J.M.; Czurylowicz, P. Combining land surface temperature and shortwave infrared reflectance for early detection of mountain pine beetle infestations in western Canada. J. Appl. Remote Sens. 2011, 5, 53566. [Google Scholar] [CrossRef]
- Edburg, S.L.; Hicke, J.A.; Brooks, P.D.; Pendall, E.G.; Ewers, B.E.; Norton, U.; Gochis, D.; Gutmann, E.D.; Meddens, A.J.H. Cascading impacts of bark beetle-caused tree mortality on coupled biogeophysical and biogeochemical processes. Front. Ecol. Environ. 2012, 10, 416–424. [Google Scholar] [CrossRef] [Green Version]
- Mikkelson, K.M.; Bearup, L.A.; Maxwell, R.M.; Stednick, J.D.; McCray, J.E.; Sharp, J.O. Bark beetle infestation impacts on nutrient cycling, water quality and interdependent hydrological effects. Biogeochemistry 2013, 115, 1–21. [Google Scholar] [CrossRef]
- Wermelinger, B. Ecology and management of the spruce bark beetle Ips typographus—A review of recent research. For. Ecol. Manag. 2004, 202, 67–82. [Google Scholar] [CrossRef]
- Ortiz, S.; Breidenbach, J.; Kändler, G. Early Detection of Bark Beetle Green Attack Using TerraSAR-X and RapidEye Data. Remote Sens. 2013, 5, 1912–1931. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, J.; Adler, P.; Hoffmann, K.; Hurling, R.; John, R.; Otto, L.-F.; Sagischewski, H.; Seitz, R.; Straub, C.; Stürtz, M. Früherkennung von Buchdrucker- befall durch Drohnen. AFZ—Der Wald 2018, 73, 50–53. Available online: https://www.nw-fva.de/fileadmin/user_upload/Verwaltung/Publikationen/2018/Ackermann_et_al_2018_Frueherkennung_Buchdruckerbefall_Drohnen_AFZ_pdf (accessed on 30 June 2021).
- Hlásny, T.; Krokene, P.; Liebhold, A.; Montagné-Huck, C.; Müller, J.; Qin, H.; Raffa, K.; Schelhaas, M.-J.; Seidl, R.; Svoboda, M.; et al. Living with bark beetles: Impacts, outlook and management options. Sci. Policy 2019, 8, 6–11. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Ghosh, A.; Joshi, P.K.; Koch, B. Assessing the potential of hyperspectral imagery to map bark beetle-induced tree mortality. Remote Sens. Environ. 2014, 140, 533–548. [Google Scholar] [CrossRef]
- Fahse, L.; Heurich, M. Simulation and analysis of outbreaks of bark beetle infestations and their management at the stand level. Ecol. Model. 2011, 222, 1833–1846. [Google Scholar] [CrossRef]
- Lausch, A.; Fahse, L.; Heurich, M. Factors affecting the spatio-temporal dispersion of Ips typographus (L.) in Bavarian Forest National Park: A long-term quantitative landscape-level analysis. For. Ecol. Manag. 2011, 261, 233–245. [Google Scholar] [CrossRef]
- Marx, A. Detection and Classification of Bark Beetle Infestation in Pure Norway Spruce Stands with Multi-temporal RapidEye Imagery and Data Mining Techniques. PFG 2010, 2010, 243–252. [Google Scholar] [CrossRef]
- Pause, M.; Schweitzer, C.; Rosenthal, M.; Keuck, V.; Bumberger, J.; Dietrich, P.; Heurich, M.; Jung, A.; Lausch, A. In Situ/Remote Sensing Integration to Assess Forest Health—A Review. Remote Sens. 2016, 8, 471. [Google Scholar] [CrossRef] [Green Version]
- Sukovata, L.; Jaworski, T.; Plewa, R. Effectiveness of different lures for attracting Ips acuminatus (Coleoptera: Curculionidae: Scolytinae). Agric. For. Entomol. 2021, 23, 154–162. [Google Scholar] [CrossRef]
- Zumr, V.; Starý, P. Baited pitfall and flight traps in monitoring Hylobius abietis (L.) (Col., Curculionidae). J. Appl. Entomol. 1993, 115, 454–461. [Google Scholar] [CrossRef]
- Kamińska, A.; Lisiewicz, M.; Stereńczak, K.; Kraszewski, B.; Sadkowski, R. Species-related single dead tree detection using multi-temporal ALS data and CIR imagery. Remote Sens. Environ. 2018, 219, 31–43. [Google Scholar] [CrossRef]
- Lausch, A.; Erasmi, S.; King, D.; Magdon, P.; Heurich, M. Understanding Forest Health with Remote Sensing -Part I—A Review of Spectral Traits, Processes and Remote-Sensing Characteristics. Remote Sens. 2016, 8, 1029. [Google Scholar] [CrossRef] [Green Version]
- Verrelst, J.; Schaepman, M.E.; Malenovský, Z.; Clevers, J.G.P.W. Effects of woody elements on simulated canopy reflectance: Implications for forest chlorophyll content retrieval. Remote Sens. Environ. 2010, 114, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Dymond, C.C.; White, J.C.; Leckie, D.G.; Carroll, A.L. Surveying mountain pine beetle damage of forests: A review of remote sensing opportunities. For. Ecol. Manag. 2006, 221, 27–41. [Google Scholar] [CrossRef]
- Stereńczak, K.; Mielcarek, M.; Modzelewska, A.; Kraszewski, B.; Fassnacht, F.E.; Hilszczański, J. Intra-annual Ips typographus outbreak monitoring using a multi-temporal GIS analysis based on hyperspectral and ALS data in the Białowieża Forests. For. Ecol. Manag. 2019, 442, 105–116. [Google Scholar] [CrossRef]
- Lausch, A.; Heurich, M.; Gordalla, D.; Dobner, H.-J.; Gwillym-Margianto, S.; Salbach, C. Forecasting potential bark beetle outbreaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales. For. Ecol. Manag. 2013, 308, 76–89. [Google Scholar] [CrossRef]
- Abdullah, H.; Skidmore, A.K.; Darvishzadeh, R.; Heurich, M. Sentinel-2 accurately maps green-attack stage of European spruce bark beetle (Ips typographus, L.) compared with Landsat-8. Remote Sens. Ecol. Conserv. 2019, 5, 87–106. [Google Scholar] [CrossRef] [Green Version]
- Brockmann, T.; Schmulius, C. Abschlussbericht Möglichkeiten der spektrographischen Früherkenung des Borkenkäfer—bzw. Kupferstecherbefalls.; Unpublished Project Report; 2015. [Google Scholar]
- Honkavaara, E.; Näsi, R.; Oliveira, R.; Viljanen, N.; Suomalainen, J.; Khoramshahi, E.; Hakala, T.; Nevalainen, O.; Markelin, L.; Vuorinen, M.; et al. Using Multitemporal Hyper- And Multispectral Uav Imaging For Detecting Bark Beetle Infestation On Norway Spruce. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, XLIII-B3-2020, 429–434. [Google Scholar] [CrossRef]
- Näsi, R.; Honkavaara, E.; Blomqvist, M.; Lyytikäinen-Saarenmaa, P.; Hakala, T.; Viljanen, N.; Kantola, T.; Holopainen, M. Remote sensing of bark beetle damage in urban forests at individual tree level using a novel hyperspectral camera from UAV and aircraft. Urban For. Urban Green. 2018, 30, 72–83. [Google Scholar] [CrossRef]
- Stych, P.; Jerabkova, B.; Lastovicka, J.; Riedl, M.; Paluba, D. A Comparison of WorldView-2 and Landsat 8 Images for the Classification of Forests Affected by Bark Beetle Outbreaks Using a Support Vector Machine and a Neural Network: A Case Study in the Sumava Mountains. Geosciences 2019, 9, 396. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, H. Remote Sensing of European Spruce (Ips Typographus, L.) Bark Beetle Green Attack. Ph.D. Thesis, University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC), Enschede, The Netherlands, 2019. Available online: https://research.utwente.nl/en/publications/remote-sensing-of-european-spruce-ips-typographus-l-bark-beetle-g (accessed on 30 June 2021). [CrossRef] [Green Version]
- Abdullah, H.; Darvishzadeh, R.; Skidmore, A.; Heurich, M. Sensitivity of Landsat-8 OLI and TIRS Data to Foliar Properties of Early Stage Bark Beetle (Ips typographus, L.) Infestation. Remote Sens. 2019, 11, 398. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; White, J.C.; Carroll, A.L.; Coops, N.C. Challenges for the operational detection of mountain pine beetle green attack with remote sensing. For. Chron. 2009, 85, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.J.; Castilla, G.; White, J.C.; Cooke, B.J.; Skakun, R.S. Remote sensing of forest pest damage: A review and lessons learned from a Canadian perspective. Can. Entomol. 2016, 148, S296–S356. [Google Scholar] [CrossRef]
- Kycko, M.; Stereńczak, K.; Bałazy, R. Detekcja posuszu kornikowego z wykorzystaniem zobrazowań BlackBridge na przykładzie drzewostanów Sudetów i Beskidów. Sylwan 2016, 160, 707–719. [Google Scholar] [CrossRef]
- Lausch, A.; Erasmi, S.; King, D.; Magdon, P.; Heurich, M. Understanding Forest Health with Remote Sensing-Part II—A Review of Approaches and Data Models. Remote Sens. 2017, 9, 129. [Google Scholar] [CrossRef] [Green Version]
- Bochenek, Z.; Ziolkowski, D.; Bartold, M.; Orlowska, K.; Ochtyra, A. Monitoring forest biodiversity and the impact of climate on forest environment using high-resolution satellite images. Eur. J. Remote Sens. 2018, 51, 166–181. [Google Scholar] [CrossRef] [Green Version]
- Lausch, A.; Borg, E.; Bumberger, J.; Dietrich, P.; Heurich, M.; Huth, A.; Jung, A.; Klenke, R.; Knapp, S.; Mollenhauer, H.; et al. Understanding Forest Health with Remote Sensing, Part III: Requirements for a Scalable Multi-Source Forest Health Monitoring Network Based on Data Science Approaches. Remote Sens. 2018, 10, 1120. [Google Scholar] [CrossRef] [Green Version]
- Gomez, D.F.; Ritger, H.M.W.; Pearce, C.; Eickwort, J.; Hulcr, J. Ability of Remote Sensing Systems to Detect Bark Beetle Spots in the Southeastern US. Forests 2020, 11, 1167. [Google Scholar] [CrossRef]
- Huo, L.; Persson, H.J.; Lindberg, E. Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS). Remote Sens. Environ. 2021, 255, 112240. [Google Scholar] [CrossRef]
- Abdullah, H.; Darvishzadeh, R.; Skidmore, A.K.; Groen, T.A.; Heurich, M. European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Näsi, R.; Honkavaara, E.; Lyytikäinen-Saarenmaa, P.; Blomqvist, M.; Litkey, P.; Hakala, T.; Viljanen, N.; Kantola, T.; Tanhuanpää, T.; Holopainen, M. Using UAV-Based Photogrammetry and Hyperspectral Imaging for Mapping Bark Beetle Damage at Tree-Level. Remote Sens. 2015, 7, 15467–15493. [Google Scholar] [CrossRef] [Green Version]
- Analytical Spectral Devices. FieldSpec 3 User Manual, ASD-Document 600510 Rev. C; ASD Inc.: Boulder, CO, USA, 2005; p. 90. Available online: https://www.manualslib.com/manual/1431971/Asd-Fieldspec-3.html (accessed on 10 November 2021).
- R Core Team. A Language and Environment for Statistical Computing. 2013. Available online: https://www.r-project.org/ (accessed on 10 November 2021).
- Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.V. Reflectance quantities in optical remote sensing—definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Wilson, R.T. Py6S: A Python interface to the 6S radiative transfer model. Comput. Geosci. 2013, 51, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcette, J.-J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef] [Green Version]
- NOAA. National Oceanic and Atmospheric Administration—Solar Calculator. Available online: https://gml.noaa.gov/grad/solcalc (accessed on 25 May 2021).
Tree Number | Condition | Study Area | Acquisition Date HySpex (Airborne) | Logging Date | Acquisition Date FS3 (Field) |
---|---|---|---|---|---|
T1 | infested (green attack) | 1 | 08/07/2019 | 09/07/2019 | 10/07/2019 |
T2 | healthy | 1 | 08/07/2019 | 10/07/2019 | 10/07/2019 |
T3 | healthy | 1 | 08/07/2019 | 10/07/2019 | 10/07/2019 |
T4 | infested (green attack) | 2 | 08/07/2019 | 10/07/2019 | 10/07/2019 |
T5 | infested (brown crown) | 1 | 08/07/2019 | 09/07/2019 | 10/07/2019 |
Index | Formula | Range for T1–3 | Reference |
---|---|---|---|
Laboratory Index 1 (LI 1) | –5.3–14.8 | New Index, Section 2.3.2 | |
Laboratory Index 2 (LI 2) | –24.3–4.7 | New Index, Section 2.3.2 | |
Laboratory Index 3 (LI 3) | –7–10.4 | New Index, Section 2.3.2 | |
HySpex Index 1 (HI 1) | 1516–2816 | New Index, Section 2.3.3 | |
HySpex Index 2 (HI 2) | 2277–3971 | New Index, Section 2.3.3. | |
Hyperspectral Vegetation Index 1 (HVI 1) | 870–1680 | [22] Section 3.3.1 | |
Hyperspectral Vegetation Index 2 (HVI 2) | –2420.3–−1731.2 | [22] Section 3.3.1 |
Scenarios | OA | OJ | UA | UJ |
---|---|---|---|---|
Scenario I | 25% | 25% | 25% | 25% |
Scenario II | 40% | 40% | 10% | 10% |
Scenario III | 33% | 27% | 22% | 18% |
Scenario | Index | T2 | T3 | T1 | T4 | T1,T4–T2,T3 |
---|---|---|---|---|---|---|
Scenario I | HI 1 | 0.64 | 1.00 | 0.00 | 0.24 | 0.40 |
HI 2 | 0.63 | 1.00 | 0.93 | 0.00 | –0.30 | |
Scenario II | HI 1 | 0.52 | 1.00 | 0.00 | 0.25 | 0.27 |
HI 2 | 0.63 | 1.00 | 0.93 | 0.00 | –0.51 | |
Scenario III | HI 1 | 0.62 | 1.00 | 0.00 | 0.24 | 0.38 |
HI 2 | 0.60 | 1.00 | 0.95 | 0.00 | –0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hellwig, F.M.; Stelmaszczuk-Górska, M.A.; Dubois, C.; Wolsza, M.; Truckenbrodt, S.C.; Sagichewski, H.; Chmara, S.; Bannehr, L.; Lausch, A.; Schmullius, C. Mapping European Spruce Bark Beetle Infestation at Its Early Phase Using Gyrocopter-Mounted Hyperspectral Data and Field Measurements. Remote Sens. 2021, 13, 4659. https://doi.org/10.3390/rs13224659
Hellwig FM, Stelmaszczuk-Górska MA, Dubois C, Wolsza M, Truckenbrodt SC, Sagichewski H, Chmara S, Bannehr L, Lausch A, Schmullius C. Mapping European Spruce Bark Beetle Infestation at Its Early Phase Using Gyrocopter-Mounted Hyperspectral Data and Field Measurements. Remote Sensing. 2021; 13(22):4659. https://doi.org/10.3390/rs13224659
Chicago/Turabian StyleHellwig, Florian M., Martyna A. Stelmaszczuk-Górska, Clémence Dubois, Marco Wolsza, Sina C. Truckenbrodt, Herbert Sagichewski, Sergej Chmara, Lutz Bannehr, Angela Lausch, and Christiane Schmullius. 2021. "Mapping European Spruce Bark Beetle Infestation at Its Early Phase Using Gyrocopter-Mounted Hyperspectral Data and Field Measurements" Remote Sensing 13, no. 22: 4659. https://doi.org/10.3390/rs13224659
APA StyleHellwig, F. M., Stelmaszczuk-Górska, M. A., Dubois, C., Wolsza, M., Truckenbrodt, S. C., Sagichewski, H., Chmara, S., Bannehr, L., Lausch, A., & Schmullius, C. (2021). Mapping European Spruce Bark Beetle Infestation at Its Early Phase Using Gyrocopter-Mounted Hyperspectral Data and Field Measurements. Remote Sensing, 13(22), 4659. https://doi.org/10.3390/rs13224659