Factors Driving Changes in Vegetation in Mt. Qomolangma (Everest): Implications for the Management of Protected Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Pre-Processing
2.3. Methods
2.3.1. Trend Analysis and Partial Correlation Analysis
2.3.2. Break Point Detection
2.3.3. Factors Driving Changes in Vegetation
3. Results
3.1. Spatial Distributions of Tendency and Shift in NDVI in QNNP in 2000–2018
3.2. Climate Change and Its Impact on Variations in NDVI
3.3. Impact of Human Activities on NDVI in QNNP
4. Discussion
4.1. Variation in Vegetation in the Reserve
4.2. Response of NDVI to Climatic Variables
4.3. The Effectiveness of Conservation
4.4. The Impact of Livestock Decreasing
4.5. Future Protection of Vegetation in the QNNP
4.6. Shortcomings of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Margules, C.R.; Pressey, R.L. Systematic conservation planning. Nature 2000, 405, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Kolahi, M.; Sakai, T.; Moriya, K.; Makhdoum, M.F.; Koyama, L. Assessment of the effectiveness of protected areas management in Iran: Case study in Khojir national park. Environ. Manag. 2013, 52, 514–530. [Google Scholar] [CrossRef]
- UNEP-WCMC; IUCN; NGS. Protected Planet Report 2018; UNEP-WCMC: Cambridge, UK; IUCN: Gland, Switzerland; NGS: Washington, DC, USA, 2018; pp. 5–6. [Google Scholar]
- Leverington, F.; Costa, K.L.; Pavese, H.; Lisle, A.; Hockings, M. A global analysis of protected area management effectiveness. Environ. Manag. 2010, 46, 685–698. [Google Scholar] [CrossRef]
- Laurance, W.F.; Carolina Useche, D.; Rendeiro, J.; Kalka, M.; Bradshaw, C.J.A.; Sloan, S.P.; Laurance, S.G.; Campbell, M.; Abernethy, K.; Alvarez, P.; et al. Averting biodiversity collapse in tropical forest protected areas. Nature 2012, 489, 290–294. [Google Scholar] [CrossRef] [Green Version]
- Mishra, N.B.; Mainali, K.P. Greening and browning of the Himalaya: Spatial patterns and the role of climatic change and human drivers. Sci. Total Environ. 2017, 587–588, 326–339. [Google Scholar] [CrossRef] [PubMed]
- Tegler, B.; Sharp, M.; Johnson, M.A. Ecological monitoring and assessment network’s proposed core monitoring variables: An early warning of environmental change. Environ. Monit. Assess. 2001, 67, 29–56. [Google Scholar] [CrossRef] [PubMed]
- Townsend, P.A.; Lookingbill, T.R.; Kingdon, C.C.; Gardner, R.H. Spatial pattern analysis Protected Planet Report 2018 for monitoring protected areas. Remote Sens. Environ. 2009, 113, 1410–1420. [Google Scholar] [CrossRef]
- Tang, Z.; Fang, J.; Sun, J.; Gaston, K.J. Effectiveness of protected areas in maintaining plant production. PLoS ONE 2011, 6, e99116. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Z.; Qi, W.; Wu, X.; Bai, W.; Li, L.; Ding, M.; Liu, L.; Wang, Z.; Zheng, D. Assessment of protection effectiveness of nature reserves on the Tibetan Plateau based on net primary production and the large-sample-comparison method. Acta Geogr. Sin. 2015, 70, 1027–1040. [Google Scholar]
- Huang, C.; Goward, S.N.; Schleeweis, K.; Thomas, N.; Masek, J.G.; Zhu, Z. Dynamics of national forests assessed using the Landsat record: Case studies in eastern United States. Remote Sens. Environ. 2009, 113, 1430–1442. [Google Scholar] [CrossRef]
- Brink, A.B.; Martínez-López, J.; Szantoi, Z.; Moreno-Atencia, P.; Lupi, A.; Bastin, L.; Dubois, G. Indicators for assessing habitat values and pressures for protected areas—An integrated habitat and land cover change approach for the Udzungwa mountains national park in Tanzania. Remote Sens. 2016, 8, 862. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.R.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. In NASA/GFSC Type III Final Report; NASA: Greenbelt, MD, USA, 1974. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Alcaraz-Segura, D.; Cabello, J.; Paruelo, J.M.; Delibes, M. Use of descriptors of ecosystem functioning for monitoring a national park network: A remote sensing approach. Environ. Manag. 2009, 43, 38–48. [Google Scholar] [CrossRef]
- Nemani, R.; Hashimoto, H.; Votava, P.; Melton, F.; Wang, W.; Michaelis, A.; Mutch, L.; Milesi, C.; Hiatt, S.; White, M. Monitoring and forecasting ecosystem dynamics using the Terrestrial Observation and Prediction System (TOPS). Remote Sens. Environ. 2009, 113, 1497–1509. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, T.; Yao, X.; Chen, W. Do Protected Areas Improve Ecosystem Services? A Case Study of Hoh Xil Nature Reserve in Qinghai-Tibetan Plateau. Remote Sens. 2020, 12, 471. [Google Scholar] [CrossRef] [Green Version]
- Duran, A.P.; Casalegno, S.; Marquet, P.A.; Gaston, K.J. Representation of Ecosystem Services by Terrestrial Protected Areas: Chile as a Case Study. PLoS ONE 2013, 8, e82643. [Google Scholar]
- Zhang, Y.; Peng, C.; Li, W.; Tian, L.; Zhu, Q.; Chen, H.; Fang, X.; Zhang, G.; Liu, G.; Mu, X.; et al. Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecol. Indic. 2016, 61, 404–412. [Google Scholar] [CrossRef]
- Liu, M.; Dries, L.; Heijman, W.; Huang, J.; Zhu, X.; Hu, Y.; Chen, H. The Impact of Ecological Construction Programs on Grassland Conservation in Inner Mongolia, China. Land Degrad. Dev. 2018, 29, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Geng, L.; Che, T.; Wang, X.; Wang, H. Detecting Spatiotemporal Changes in Vegetation with the BFAST Model in the Qilian Mountain Region during 2000–2017. Remote Sens. 2019, 11, 103. [Google Scholar] [CrossRef] [Green Version]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Jamali, S.; Jönsson, P.; Eklundh, L.; Ardö, J.; Seaquist, J. Detecting changes in vegetation trends using time series segmentation. Remote Sens. Environ. 2015, 156, 182–195. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Watts, L.M.; Laffan, S.W. Effectiveness of the BFAST algorithm for detecting vegetation response patterns in a semi-arid region. Remote Sens. Environ. 2014, 154, 234–245. [Google Scholar] [CrossRef]
- Saatchi, S.; Asefi-Najafabady, S.; Malhi, Y.; Aragao, L.E.O.C.; Anderson, L.O.; Myneni, R.B.; Nemani, R. Persistent effects of a severe drought on Amazonian forest canopy. Proc. Natl. Acad. Sci. USA 2013, 110, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Zhu, Q.; Ren, L.; Chen, H.; Wang, K.; Peng, C. Large-scale detection of vegetation dynamics and their potential drivers using MODIS images and BFAST: A case study in Quebec, Canada. Remote Sens. Environ. 2018, 206, 391–402. [Google Scholar] [CrossRef]
- Devries, B.; Verbesselt, J.; Kooistra, L.; Herold, M. Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series. Remote Sens. Environ. 2015, 161, 107–121. [Google Scholar] [CrossRef]
- Sun, H.; Zheng, D.; Yao, T.; Zhang, Y. Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geogr. Sin. 2012, 67, 3–12. [Google Scholar]
- Zhang, D.; Huang, J.; Guan, X.; Chen, B.; Zhang, L. Long-term trends of precipitable water and precipitation over the Tibetan Plateau derived from satellite and surface measurements. J. Quant. Spectrosc. Radiat. Transf. 2013, 122, 64–71. [Google Scholar] [CrossRef]
- Li, S.; Wu, J.; Gong, J.; Li, S. Human footprint in Tibet: Assessing the spatial layout and effectiveness of nature reserves. Sci. Total Environ. 2018, 621, 18–29. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; Qi, W.; Li, S.; Bai, W. Characteristics and protection effectiveness of nature reserves on the Tibetan Plateau, China. Resour. Sci. 2015, 37, 1455–1464. [Google Scholar]
- Tsetan, L. Overview of mount Qomolangma nature reserve. China Tibetol. 1997, 10, 3–22. [Google Scholar]
- Ramachandran, R.M.; Roy, P.S. Vegetation response to climate change in Himalayan hill ranges: A remote sensing perspective. Plant Divers. Himalaya Hotspot Reg. 2018, I, 369–392. [Google Scholar]
- Li, B. A preliminary evaluation of the mount Qomolangma nature reserve. J. Nat. Resour. 1993, 8, 97–104. [Google Scholar]
- Anderson, K.; Fawcett, D.; Cugulliere, A.; Benford, S.; Jones, D.; Leng, R. Vegetation expansion in the subnival Hindu Kush Himalaya. Glob. Chang. Biol. 2020, 26, 1608–1625. [Google Scholar] [CrossRef] [Green Version]
- Kan, A.; Wang, X.; Gao, Z.; Li, G.; Luo, Y. Vegetation spatio-temporal changes and driving factors in the Mt. Qomolangma nature reserve in 2000–2007. Ecol. Environ. Sci. 2010, 19, 1261–1271. [Google Scholar]
- Chen, Y. A Research into Vegetation Changes of the Mt. Qomolangma National Nature Reserve. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2012. [Google Scholar]
- Nie, Y.; Liu, L.; Zhang, Y.; Ding, M. NDVI change analysis in the mount Qomolangma (Everest) national nature preserve during 1982–2009. Prog. Geogr. 2012, 31, 895–903. [Google Scholar]
- Zhang, W.; Zhang, Y.; Wang, Z.; Ding, M.; Yang, X.; Lin, X.; Yan, Y. Analysis of vegetation change in Mt. Qomolangma nature reserve. Prog. Geogr. 2006, 25, 12–21+137. [Google Scholar]
- Zhang, W.; Zhang, Y.; Wang, Z.; Ding, M.; Yang, X.; Lin, X.; Liu, L. Vegetation change in the Mt. Qomolangma Nature Reserve from 1981 to 2001. J. Geogr. Sci. 2007, 17, 152–164. [Google Scholar] [CrossRef]
- Ma, F.; Kan, A.; Li, J.; Guan, L.; Chen, X. Distribution and potential degradation risk evaluation of marsh wetland in the Mt. Qomolangma national nature reserve. J. Geo-Inf. Sci. 2011, 13, 594–600. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Liu, L.; Zheng, D. Redetermine the region and boundaries of Tibetan Plateau. Geogr. Res. 2021, 40, 1543–1553. [Google Scholar]
- Nie, Y. Land Cover Changes in Mt. Qomolangma Region. Ph.D. Thesis, Chinese Academy of Science, Beijing, China, 2010. [Google Scholar]
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Dai, Y.; Xiao, Z.; Ji, D.; Wei, S. Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling. Remote Sens. Environ. 2011, 115, 1171–1187. [Google Scholar] [CrossRef]
- Alcantara, C.; Kuemmerle, T.; Prishchepov, A.V.; Radeloff, V.C. Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sens. Environ. 2012, 124, 334–347. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, L.; Nie, Y.; Zhang, J.; Zhang, X. Land Cover Mapping in the Qomolangma (Everest) National Nature Preserve. In Land Use & Land Cover Change and the Climate Change Adaptation in Tibetan Plateau; Zhang, Y., Ed.; China Meteorological Press: Beijing, China, 2012; pp. 129–158. [Google Scholar]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Zhe, M.; Zhang, X. Time-lag effects of NDVI responses to climate change in the Yamzhog Yumco Basin, South Tibet. Ecol. Indic. 2021, 124, 107431. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Liu, L.; Wu, J.; Wang, Z.; Li, S.; Zhang, H.; Zu, J.; Ding, M.; Paudel, B. Spatiotemporal patterns of vegetation greenness change and associated climatic and anthropogenic drivers on the Tibetan Plateau during 2000–2015. Remote Sens. 2018, 10, 1525. [Google Scholar] [CrossRef] [Green Version]
- Horion, S.; Prishchepov, A.V.; Verbesselt, J.; de Beurs, K.; Tagesson, T.; Fensholt, R. Revealing turning points in ecosystem functioning over the Northern Eurasian agricultural frontier. Glob. Chang. Biol. 2016, 22, 2801–2817. [Google Scholar] [CrossRef]
- Chu, C.J.; Homik, K.; Kuan, C. MOSUM tests for parameter constancy. Biometrika 1995, 82, 603–617. [Google Scholar] [CrossRef]
- De Jong, R.; Verbesselt, J.; Zeileis, A.; Schaepman, M.E. Shifts in global vegetation activity trends. Remote Sens. 2013, 5, 1117. [Google Scholar] [CrossRef] [Green Version]
- Bailey, K.M.; Mccleery, R.A.; Binford, M.W.; Zweig, C. Land-cover change within and around protected areas in a biodiversity hotspot. J. Land Use Sci. 2016, 11, 154–176. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Z.; Peng, S. Global analysis of time-lag and -accumulation effects of climate on vegetation growth. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102179. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, J.; Liu, L.; Wang, Z.; Ding, M.; Yang, X. NDVI-based vegetation changes and their responses to climate change from 1982 to 2011: A case study in the Koshi River Basin in the middle Himalayas. Glob. Planet. Chang. 2013, 108, 139–148. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, L.; Wang, Z.; Bai, W.; Ding, M.; Wang, X.; Yan, J.; Xu, E.; Wu, X.; Zhang, B.; et al. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau. Chin. Sci. Bull. 2019, 64, 2865–2875. [Google Scholar]
- Li, L.; Zhang, Y.; Wu, J.; Li, S.; Zhang, B.; Zu, J.; Zhang, H.; Ding, M.; Paudel, B. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau. Sci. Total Environ. 2019, 678, 21–29. [Google Scholar] [CrossRef]
- Ma, F.; Li, J.; Peng, P.; Gao, Z.; Kan, A. Vegetation changes on Southern and Northern slopes of the Mt. Qomolangma National Nature Reserve. Prog. Geogr. 2010, 29, 1427–1432. [Google Scholar]
- Gao, Y.; Zhou, X.; Wang, Q.; Wang, C.; Zhan, Z.; Chen, L.; Yan, J.; Qu, R. Vegetation net primary productivity and its response to climate change during 2001–2008 in the Tibetan Plateau. Sci. Total Environ. 2013, 444, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Piao, S.; Chen, X.; An, S.; Fu, Y.H.; Wang, S.; Cong, N.; Janssens, I.A. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Glob. Chang. Biol. 2016, 22, 3057–3066. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- An, S.; Zhu, X.; Shen, M.; Wang, Y.; Cao, R.; Chen, X.; Yang, W.; Chen, J.; Tang, Y. Mismatch in elevational shifts between satellite observed vegetation greenness and temperature isolines during 2000–2016 on the Tibetan Plateau. Glob. Chang. Biol. 2018, 24, 5411–5425. [Google Scholar] [CrossRef] [PubMed]
- Liang, E.; Leuschner, C.; Dulamsuren, C.; Wagner, B.; Hauck, M. Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau. Clim. Chang. 2016, 134, 163–176. [Google Scholar] [CrossRef]
- Shen, B.; Fang, S.; Li, G. Vegetation Coverage Changes and Their Response to Meteorological Variables from 2000 to 2009 in Naqu, Tibet, China. Can. J. Remote Sens. 2014, 40, 67–74. [Google Scholar] [CrossRef]
- Chen, J.; Yan, F.; Lu, Q. Spatiotemporal Variation of Vegetation on the Qinghai–Tibet Plateau and the Influence of Climatic Factors and Human Activities on Vegetation Trend (2000–2019). Remote Sens. 2020, 12, 3150. [Google Scholar] [CrossRef]
- Li, P.; Hu, Z.; Liu, Y. Shift in the trend of browning in Southwestern Tibetan Plateau in the past two decades. Agric. For. Meteorol. 2020, 287, 107950. [Google Scholar] [CrossRef]
- Li, J.; Cong, N.; Zu, J.; Xin, Y.; Huang, K.; Zhou, Q.; Liu, Y.; Zhou, L.; Wang, L.; Liu, Y.; et al. Longer conserved alpine forests ecosystem exhibits higher stability to climate change on the Tibetan Plateau. J. Plant Ecol. 2019, 12, 645–652. [Google Scholar] [CrossRef]
- Long, R.J. Alpine rangeland ecosystem and their management in the Qinghai-Tibetan plateau. In The Yak, 2nd ed.; Wiener, G., Han, J.L., Long, R.J., Eds.; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2003; pp. 359–388. [Google Scholar]
- Shang, Z.H.; Gibb, M.J.; Leiber, F.; Ismail, M.; Ding, L.M.; Guo, X.S.; Long, R.J. The sustainable development of grassland-livestock systems on the Tibetan plateau: Problems, strategies and prospects. Rangel. J. 2014, 36, 267–296. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Zhang, Y.; Claus, H.; Zeng, R.; Zhang, X.; Wang, J. Ecological and Environmental Issues Faced by a Developing Tibet. Environ. Sci. Technol. 2012, 46, 1979–1980. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.B. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. J. Arid. Environ. 2010, 74, 1–12. [Google Scholar] [CrossRef]
- Sun, J.; Liu, M.; Fu, B.; Kemp, D.; Zhao, W.; Liu, G.; Han, G.; Wilkes, A.; Lu, X.; Chen, Y.; et al. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Sci. Bull. 2020, 65, 1405–1414. [Google Scholar] [CrossRef]
- Li, W.; Cao, W.; Wang, J.; Li, X.; Xu, C.; Shi, S. Effects of grazing regime on vegetation structure, productivity, soil quality, carbon and nitrogen storage of alpine meadow on the Qinghai-Tibetan Plateau. Ecol. Eng. 2017, 98, 123–133. [Google Scholar] [CrossRef]
- Niu, Y.; Yang, S.; Wang, G.; Liu, L.; Hua, L. Effects of grazing disturbance on plant diversity, community structure and direction of succession in an alpine meadow on Tibet Plateau, China. Acta Ecol. Sin. 2018, 38, 274–280. [Google Scholar] [CrossRef]
- Lu, Q.; Ning, J.; Liang, F.; Bi, X. Evaluating the effects of government policy and drought from 1984 to 2009 on rangeland in the Three Rivers Source region of the Qinghai-Tibet Plateau. Sustainability 2017, 9, 1033. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Gao, Q.; Dong, S.; Liu, S.; Wang, X.; Su, X.; Li, Y.; Tang, L.; Wu, X.; Zhao, H. Effects of grazing and climate warming on plant diversity, productivity and living state in the alpine rangelands and cultivated grasslands of the Qinghai-Tibetan Plateau. Rangel. J. 2015, 37, 57–65. [Google Scholar] [CrossRef]
- Wang, S.; Duan, J.; Xu, G.; Wang, Y.; Zhang, Z.; Rui, Y.; Luo, C.; Xu, B.; Zhu, X.; Chang, X.; et al. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology 2012, 93, 2365–2376. [Google Scholar] [CrossRef]
- Cui, Y.; Li, S.; Yu, C.; Tian, Y.; Zhong, Z.; Wu, J. Effects of the award-allowance payment policy for natural grassland conservation on income of farmer and herdsman families in Tibet. Acta Pratacult. Sin. 2017, 26, 22–32. [Google Scholar]
- Chen, B.; Zhang, X.; Tao, J.; Wu, J.; Wang, J.; Shi, P.; Zhang, Y.; Yu, C. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189–190, 11–18. [Google Scholar] [CrossRef]
- Cai, H.; Yang, X.; Xu, X. Human-induced grassland degradation/restoration in the central Tibetan Plateau: The effects of ecological protection and restoration projects. Ecol. Eng. 2015, 83, 112–119. [Google Scholar] [CrossRef]
- Jones, D.A.; Hansen, A.J.; Bly, K.; Doherty, K.; Verschuyl, J.P.; Paugh, J.I.; Carle, R.; Story, S.J. Monitoring land use and cover around parks: A conceptual approach. Remote Sens. Environ. 2009, 113, 1346–1356. [Google Scholar] [CrossRef]
- Hansen, A.J.; Davis, C.R.; Piekielek, N.; Gross, J.; Theobald, D.M.; Goetz, S.; Melton, F.; Defries, R. Delineating the ecosystems containing protected areas for monitoring and management. BioScience 2011, 61, 363–373. [Google Scholar] [CrossRef]
- Wittemyer, G.; Elsen, P.; Bean, W.T.; Burton, A.C.O.; Brashares, J.S. Accelerated human population growth at protected area edges. Science 2008, 321, 121–123. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Kan, A.; Wang, X.; Li, G.; Gao, Z.; Wang, H.; Yong, Z. Distribution of degraded wetland and their influence factors in Qomolangma national nature reserve. Wetl. Sci. 2010, 8, 110–114. [Google Scholar]
- Ma, J.; Pan, M.; Wu, Y.; Xue, W. Geomorphological pattern and its change of aeolian landform in Dingjie area of Tibet from 1996 to 2016. Arid Land Geogr. 2018, 41, 1035–1042. [Google Scholar]
- Naudiyal, N.; Schmerbeck, J. Impacts of anthropogenic disturbances on forest succession in the mid-montane forests of Central Himalaya. Plant Ecol. 2018, 219, 169–183. [Google Scholar] [CrossRef]
- Davis, D.S.; Buffa, D.; Rasolondrainy, T.; Creswell, E.; Anyanwu, C.; Ibirogba, A.; Randolph, C.; Ouarghidi, A.; Phelps, L.N.; Lahiniriko, F.; et al. The Aerial Panopticon and the Ethics of Archaeological Remote Sensing Sacred Cultural Spaces. Archaeol. Prospect. 2021, 28, 303–318. [Google Scholar] [CrossRef]
Temperature | Precipitation | Radiation | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A-0 | A-16 | A-32 | A-48 | A-64 | A-80 | A-96 | A-0 | A-16 | A-32 | A-48 | A-64 | A-80 | A-96 | A-0 | A-16 | A-32 | A-48 | A-64 | A-80 | A-96 | |
L-0 | 0.61 ** | 0.71 ** | 0.79 ** | 0.82 ** | 0.78 ** | 0.67 ** | 0.48 ** | 0.16 * | 0.39 ** | 0.57 ** | 0.62 ** | 0.57 ** | 0.48 ** | 0.41 ** | −0.59 ** | −0.64 ** | −0.45 ** | 0.26 ** | 0.64 ** | 0.70 ** | 0.70 ** |
L-16 | 0.77 ** | 0.82 ** | 0.79 ** | 0.72 ** | 0.60 ** | 0.44 ** | 0.53 ** | 0.70 ** | 0.66 ** | 0.52 ** | 0.37 ** | 0.26 ** | −0.32 ** | 0.29 ** | 0.63 ** | 0.68 ** | 0.67 ** | 0.65 ** | |||
L-32 | 0.77 ** | 0.73 ** | 0.67 ** | 0.58 ** | 0.45 ** | 0.62 ** | 0.55 ** | 0.37 ** | 0.18 ** | 0.06 | 0.50 ** | 0.63 ** | 0.63 ** | 0.60 ** | 0.58 ** | ||||||
L-48 | 0.66 ** | 0.64 ** | 0.58 ** | 0.47 ** | 0.33 ** | 0.15 * | −0.03 | −0.13 | 0.51 ** | 0.54 ** | 0.53 ** | 0.54 ** | |||||||||
L-64 | 0.61 ** | 0.56 ** | 0.39 ** | −0.02 | −0.15 * | −0.2 ** | 0.51 ** | 0.54 ** | 0.58 ** | ||||||||||||
L-80 | 0.39 ** | 0.15 | −0.12 | −0.14 | 0.58 ** | 0.64 ** | |||||||||||||||
L-96 | −0.14 | −0.02 | 0.66 ** |
Slope | Annual Rate of Change | Total Change Rate | |||||||
---|---|---|---|---|---|---|---|---|---|
Test | Buffer | Core | Test | Buffer | Core | Test | Buffer | Core | |
Vegetation | 0.0005 | 0.0012 ** | 0.0012 ** | 0.16% | 0.37% | 0.42% | 3.01% | 7.77% | 6.85% |
Forest | - | 0.0026 * | 0.0024 * | - | 0.56% | 0.54% | - | 10.64% | 10.23% |
Shrubland | 0.0004 | 0.0019 ** | 0.002 * | 0.06% | 0.37% | 0.49% | 1.06% | 6.83% | 9.11% |
Grassland | 0.0005 | 0.0008 * | 0.001 * | 0.09% | 0.22% | 0.28% | 1.66% | 3.98% | 5.20% |
Sparse vegetation | 0.0006 ** | 0.001 ** | 0.0008 ** | 0.39% | 0.62% | 0.47% | 7.29% | 11.81% | 8.76% |
Wetland | 0.0005 | 0.0019 ** | 0.0011 | 0.14% | 0.80% | 0.12% | 2.56% | 15.51% | 2.19% |
Cropland | 0.0014 * | 0.0013 ** | 0.001 | 0.42% | 0.30% | 0.35% | 7.91% | 5.47% | 6.46% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Zhang, Y.; Wang, Z.; Ding, M.; Liu, L.; Li, L.; Li, S.; Liu, Q.; Paudel, B.; Zhang, H. Factors Driving Changes in Vegetation in Mt. Qomolangma (Everest): Implications for the Management of Protected Areas. Remote Sens. 2021, 13, 4725. https://doi.org/10.3390/rs13224725
Zhang B, Zhang Y, Wang Z, Ding M, Liu L, Li L, Li S, Liu Q, Paudel B, Zhang H. Factors Driving Changes in Vegetation in Mt. Qomolangma (Everest): Implications for the Management of Protected Areas. Remote Sensing. 2021; 13(22):4725. https://doi.org/10.3390/rs13224725
Chicago/Turabian StyleZhang, Binghua, Yili Zhang, Zhaofeng Wang, Mingjun Ding, Linshan Liu, Lanhui Li, Shicheng Li, Qionghuan Liu, Basanta Paudel, and Huamin Zhang. 2021. "Factors Driving Changes in Vegetation in Mt. Qomolangma (Everest): Implications for the Management of Protected Areas" Remote Sensing 13, no. 22: 4725. https://doi.org/10.3390/rs13224725
APA StyleZhang, B., Zhang, Y., Wang, Z., Ding, M., Liu, L., Li, L., Li, S., Liu, Q., Paudel, B., & Zhang, H. (2021). Factors Driving Changes in Vegetation in Mt. Qomolangma (Everest): Implications for the Management of Protected Areas. Remote Sensing, 13(22), 4725. https://doi.org/10.3390/rs13224725