Assessing the Utility of Sentinel-1 Coherence Time Series for Temperate and Tropical Forest Mapping
Abstract
:1. Introduction
2. Study Area and Data Employed
- 2016 global urban footprint (GUF), generated at 12 m resolution with texture and intensity of TanDEM-X imagery, with an accuracy of 85–88% [38].
- 2011–2015 TanDEM-X forest non-forest map (TFNF), generated with 50 m resolution from TanDEM-X bistatic coherence data, with an estimated accuracy of 85–93% [13].
- 2017 Advanced land observing satellite phased array type L-band synthetic aperture radar forest/non-forest map (ALOS PALSAR FNF, shortened to AFNF) generated at 25 m resolution using backscatter data, with an accuracy of 85–95% [11].
3. Methods
3.1. SAR Data Processing
3.2. Land Cover Reference Dataset
3.3. Training Data Preparation
3.4. Classification Scheme
3.5. Validation
4. Results
4.1. Data Distribution
4.2. Classification with Feature Sets
4.3. Classification Stability
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
- Sentinel-1 and -2 data: https://scihub.copernicus.eu/dhus/ (accessed on 20 November 2021)
- High-resolution TanDEM-X DEM request: https://tandemx-science.dlr.de/cgi-bin/wcm.pl?page=TDM-Proposal-Submission-Procedure (accessed on 20 November 2021)
- NASADEM data: https://lpdaac.usgs.gov/products/nasadem_hgtv001 (accessed on 20 November 2021)
- Corine Land Cover data: https://land.copernicus.eu/pan-european/corine-land-cover/ (accessed on 20 November 2021)
- CCI Land cover data: https://www.esa-landcover-cci.org/ (accessed on 20 November 2021)
- TanDEM-X forest/non-forest map: https://download.geoservice.dlr.de/FNF50/ (accessed on 20 November 2021)
- Global urban footprint data can be requested following the instructions outlined in https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-11725/20508_read-47944/ (accessed on 20 November 2021)
- ALOS forest/non-forest map: https://www.eorc.jaxa.jp/ALOS/en/dataset/fnf_e.htm (accessed on 20 November 2021)
- GEDI L2B data: https://lpdaac.usgs.gov/products/gedi02_bv001/ (accessed on 20 November 2021)
Acknowledgments
Conflicts of Interest
Appendix A
Backscatter Statistics (B00) | Backscatter Statistics, Long-Term Coherence (B0C) | Backscatter and Short-Term Coherence Statistics, Long-Term Coherence (BCC) | |||||||||||||||||
Ur, urban | LV, low vegetation | Fo, forest | Wa, water | Comm. error | Ur, urban | LV, low vegetation | Fo, forest | Wa, water | Comm. error | Ur, urban | LV, low vegetation | Fo, forest | Wa, water | Comm. error | |||||
2017 | Urban | 156,219 | 55,550 | 715,668 | 658 | 83 | 162,320 | 37,453 | 55,637 | 488 | 37 | 167,829 | 29,648 | 3342 | 130 | 16 | |||
Low vegetation | 3657 | 16,924,371 | 176,319 | 5994 | 1 | 1439 | 17,010,367 | 78,215 | 5904 | 1 | 605 | 17,455,162 | 71,215 | 3200 | 0 | ||||
Forest | 8643 | 592,541 | 6,284,942 | 1474 | 9 | 4874 | 524,324 | 7,042,834 | 1764 | 7 | 240 | 96,711 | 7,101,180 | 3769 | 1 | ||||
Water | 200 | 11,807 | 774 | 80,258 | 14 | 86 | 12,125 | 1017 | 80,228 | 14 | 45 | 2748 | 1966 | 81,285 | 6 | ||||
Omission error | 7 | 4 | 12 | 9 | 4 | 3 | 2 | 9 | 1 | 1 | 1 | 8 | |||||||
2018 | Urban | 145,629 | 46,935 | 168,236 | 1173 | 60 | 161,350 | 33,984 | 35,227 | 723 | 30 | 167,339 | 23224 | 2067 | 84 | 13 | |||
Low vegetation | 3767 | 16,918,692 | 145,035 | 5343 | 1 | 1667 | 16,981,859 | 93,019 | 5574 | 1 | 1072 | 17,458,751 | 146,454 | 3239 | 1 | ||||
Forest | 19,092 | 609,823 | 6,863,700 | 1502 | 8 | 5594 | 560,937 | 7,048,591 | 1712 | 7 | 245 | 99,990 | 7,027,733 | 4110 | 1 | ||||
Water | 230 | 8826 | 732 | 80,366 | 11 | 107 | 7496 | 866 | 80,375 | 10 | 62 | 2311 | 1449 | 80,951 | 5 | ||||
Omission error | 14 | 4 | 4 | 9 | 4 | 3 | 2 | 9 | 1 | 1 | 2 | 8 | |||||||
2019 | Urban | 149,579 | 49,470 | 258,754 | 1242 | 67 | 158,263 | 27,764 | 34,328 | 654 | 28 | 167,557 | 32,022 | 2929 | 106 | 17 | |||
Low vegetation | 3492 | 16,927,829 | 143,335 | 5639 | 1 | 1972 | 17,020,180 | 103,283 | 5730 | 1 | 887 | 17,464,510 | 140,887 | 3525 | 1 | ||||
Forest | 15,427 | 592,422 | 6,774,737 | 1371 | 8 | 8365 | 524,202 | 7,039,024 | 1863 | 7 | 220 | 85,246 | 7,031,885 | 3936 | 1 | ||||
Water | 217 | 14,549 | 874 | 80,132 | 16 | 115 | 12,124 | 1065 | 80,137 | 14 | 51 | 2492 | 1999 | 80,817 | 5 | ||||
Omission error | 11 | 4 | 6 | 9 | 6 | 3 | 2 | 9 | 1 | 1 | 2 | 9 |
Backscatter Statistics (B00) | Backscatter Statistics, Long-Term Coherence (B0C) | Backscatter and Short-Term Coherence Statistics, Long-Term Coherence (BCC) | |||||||||||
Forest | Other | Commission error | Forest | Other | Commission error | Forest | Other | Commission error | |||||
2017 | Forest | 132,335 | 20,733 | 14 | 153,689 | 16,252 | 10 | 144,063 | 3162 | 2 | |||
Other | 28,749 | 412,269 | 7 | 7308 | 416,645 | 2 | 16,934 | 429,735 | 4 | ||||
Omission error | 18 | 5 | 5 | 4 | 11 | 1 | |||||||
2018 | Forest | 148,331 | 25,887 | 15 | 155,003 | 21,617 | 12 | 143,374 | 3911 | 3 | |||
Other | 12,753 | 407,116 | 3 | 5994 | 411,281 | 1 | 17,623 | 428,987 | 4 | ||||
Omission error | 8 | 6 | 4 | 5 | 11 | 1 | |||||||
2019 | Forest | 144,210 | 25,552 | 15 | 154,712 | 19,966 | 11 | 140,655 | 2581 | 2 | |||
Other | 16,874 | 407,451 | 4 | 6372 | 413,037 | 2 | 20,429 | 430,422 | 5 | ||||
Omission error | 10 | 6 | 4 | 5 | 13 | 1 |
Backscatter Statistics (B00) | Backscatter Statistics, Long-Term Coherence (B0C) | Backscatter and Short-Term Coherence Statistics, Long-Term Coherence (BCC) | |||||||||||||||||
Ur, Urban | LV, Low vegetation | Fo, forest | Wa, Water | Comm. error | Ur, Urban | LV, Low vegetation | Fo, forest | Wa, Water | Comm. error | Ur, Urban | LV, Low vegetation | Fo, forest | Wa, Water | Comm. error | |||||
2018 | Urban | 238 | 8677 | 32,889 | 0 | 99 | 634 | 18,288 | 207,037 | 15 | >99 | 775 | 5743 | 618 | 14 | 89 | |||
Low vegetation | 248 | 2,072,595 | 437,681 | 278 | 17 | 96 | 2,069,778 | 357,844 | 313 | 15 | 57 | 2,086,317 | 247,654 | 221 | 11 | ||||
Forest | 345 | 84,345 | 22,139,966 | 0 | <1 | 103 | 75,279 | 22,041,792 | 0 | <1 | 2 | 71,001 | 22,357,746 | 0 | <1 | ||||
Water | 4 | 770 | 5734 | 33,914 | 16 | 2 | 1124 | 8265 | 33,863 | 22 | 1 | 1356 | 8176 | 33,924 | 22 | ||||
Omission error | 71 | 4 | 2 | 1 | 24 | 4 | 3 | 1 | 7 | 4 | 1 | 1 | |||||||
2019 | Urban | 316 | 15310 | 29671 | 0 | 99 | 606 | 22,379 | 125,915 | 9 | >99 | 760 | 5903 | 372 | 12 | 89 | |||
Low vegetation | 219 | 2,079,824 | 187,958 | 275 | 8 | 125 | 2,074,418 | 142,987 | 311 | 6 | 72 | 2,097,155 | 106,030 | 234 | 5 | ||||
Forest | 293 | 70,427 | 22,393,056 | 0 | <1 | 97 | 68,317 | 22,336,185 | 0 | <1 | 0 | 61,805 | 22,499,246 | 0 | <1 | ||||
Water | 5 | 826 | 5585 | 33,917 | 16 | 5 | 1273 | 6785 | 33,871 | 19 | 1 | 1472 | 5491 | 33,913 | 17 | ||||
Omission error | 62 | 4 | 1 | 1 | 27 | 4 | 1 | 1 | 9 | 3 | <1 | 1 |
Backscatter Statistics (B00) | Backscatter Statistics, Long-Term Coherence (B0C) | Backscatter and Short-Term Coherence Statistics, Long-Term Coherence (BCC) | |||||||||||
Forest | Other | Commission error | Forest | Other | Commission error | Forest | Other | Commission error | |||||
2018 | Forest | 377,770 | 2298 | 1 | 376,550 | 2096 | 1 | 383,515 | 1957 | 1 | |||
Other | 20,381 | 43,775 | 32 | 21,548 | 43,946 | 33 | 14,572 | 44,083 | 25 | ||||
Omission error | 5 | 5 | 5 | 5 | 4 | 4 | |||||||
2019 | Forest | 379,793 | 1839 | <1 | 379,675 | 1842 | <1 | 384,333 | 1727 | <1 | |||
Other | 18,359 | 44,236 | 29 | 18,201 | 44,219 | 29 | 13,532 | 44,332 | 23 | ||||
Omission error | 5 | 4 | 5 | 4 | 3 | 4 |
References
- Food and Agriculture Organization Forest Resources Assessment. On Definitions of Forest and Forest Change; Working Papers; Food and Agriculture Organization of the United Nations, Forest Resources Assessment: Rome, Italy, 2000; Volume 33. [Google Scholar]
- United Nations. Convention on Biological Diversity; UNST/LEG(092)/B4; United Nations Secretariat: New York, NY, USA, 1992. [Google Scholar]
- United Nations. Framework Convention on Climate Change (UNFCC); FCC/INFORMAL/84/Rev.1 GE.14-20481 (E); United Nations Secretariat: Kyoto, Japan, 1992. [Google Scholar]
- United Nations. Kyoto Protocol to the United Nations Framework Convention on Climate Change; FCCC/CP/1997/L.7/Add.1; United Nations Secretariat: Kyoto, Japan, 1997. [Google Scholar]
- United Nations. Paris Agreement; FCCC/CP/2015/L.9/Rev.1; United Nations Secretariat: Paris, France, 2015. [Google Scholar]
- International Union for Conservation of Nature. The Bonn Challenge. Available online: https://www.iucn.org/theme/forests/our-work/forest-landscape-restoration/bonn-challenge (accessed on 28 October 2020).
- United Nations. Forests: Action Statements and Action Plans; United Nations Secretariat: New York, NY, USA, 2014. [Google Scholar]
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Goetz, S.J.; Hansen, M.; Houghton, R.A.; Walker, W.; Laporte, N.; Busch, J. Measurement and Monitoring Needs, Capabilities and Potential for Addressing Reduced Emissions from Deforestation and Forest Degradation under REDD+. Environ. Res. Lett. 2015, 10, 123001. [Google Scholar] [CrossRef]
- Hansen, J.N.; Mitchard, E.T.A.; King, S. Assessing Forest/Non-Forest Separability Using Sentinel-1 C-Band Synthetic Aperture Radar. Remote Sens. 2020, 12, 1899. [Google Scholar] [CrossRef]
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New Global Forest/Non-Forest Maps from ALOS PALSAR Data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Baron, D.; Erasmi, S. High Resolution Forest Maps from Interferometric TanDEM-X and Multitemporal Sentinel-1 SAR Data. PFG 2017, 85, 389–405. [Google Scholar] [CrossRef]
- Martone, M.; Rizzoli, P.; Wecklich, C.; González, C.; Bueso-Bello, J.-L.; Valdo, P.; Schulze, D.; Zink, M.; Krieger, G.; Moreira, A. The Global Forest/Non-Forest Map from TanDEM-X Interferometric SAR Data. Remote Sens. Environ. 2018, 205, 352–373. [Google Scholar] [CrossRef]
- Sica, F.; Pulella, A.; Nannini, M.; Pinheiro, M.; Rizzoli, P. Repeat-Pass SAR Interferometry for Land Cover Classification: A Methodology Using Sentinel-1 Short-Time-Series. Remote Sens. Environ. 2019, 232, 111277. [Google Scholar] [CrossRef]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Dostálová, A.; Wagner, W.; Milenković, M.; Hollaus, M. Annual Seasonality in Sentinel-1 Signal for Forest Mapping and Forest Type Classification. Int. J. Remote Sens. 2018, 39, 7738–7760. [Google Scholar] [CrossRef]
- Quegan, S.; Le Toan, T.; Yu, J.J.; Ribbes, F.; Floury, N. Multitemporal ERS SAR Analysis Applied to Forest Mapping. IEEE Trans. Geosci. Remote Sens. 2000, 38, 741–753. [Google Scholar] [CrossRef]
- Rüetschi, M.; Schaepman, M.; Small, D. Using Multitemporal Sentinel-1 C-Band Backscatter to Monitor Phenology and Classify Deciduous and Coniferous Forests in Northern Switzerland. Remote Sens. 2017, 10, 55. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, A.L.; Tapley, I.; Milne, A.K.; Williams, M.L.; Zhou, Z.-S.; Lehmann, E.; Caccetta, P.; Lowell, K.; Held, A. C- and L-Band SAR Interoperability: Filling the Gaps in Continuous Forest Cover Mapping in Tasmania. Remote Sens. Environ. 2014, 155, 58–68. [Google Scholar] [CrossRef]
- Woodhouse, I.H. Introduction to Microwave Remote Sensing; Taylor & Francis: Boca Raton, FL, USA, 2006; ISBN 978-0-415-27123-3. [Google Scholar]
- Ulaby, F.T.; Long, D.G. Microwave Radar and Radiometric Remote Sensing; The University of Michigan Press: Ann Arbor, MI, USA, 2014; ISBN 978-0-472-11935-6. [Google Scholar]
- Olesk, A.; Voormansik, K.; Pohjala, M.; Noorma, M. Forest Change Detection from Sentinel-1 and ALOS-2 Satellite Images. In Proceedings of the 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 1–4 September 2015; IEEE: Singapore, 2015; pp. 522–527. [Google Scholar]
- Dostálová, A.; Hollaus, M.; Milenković, M.; Wagner, W. Forest Area Derivation from Sentinel-1 Data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, III–7, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Canty, M.J.; Nielsen, A.A.; Conradsen, K.; Skriver, H. Statistical Analysis of Changes in Sentinel-1 Time Series on the Google Earth Engine. Remote Sens. 2019, 12, 46. [Google Scholar] [CrossRef] [Green Version]
- Doblas, J.; Shimabukuro, Y.; Sant’Anna, S.; Carneiro, A.; Aragão, L.; Almeida, C. Optimizing Near Real-Time Detection of Deforestation on Tropical Rainforests Using Sentinel-1 Data. Remote Sens. 2020, 12, 3922. [Google Scholar] [CrossRef]
- Bruzzone, L.; Marconcini, M.; Wegmuller, U.; Wiesmann, A. An Advanced System for the Automatic Classification of Multitemporal SAR Images. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1321–1334. [Google Scholar] [CrossRef]
- Wegmuller, U.; Werner, C.L. SAR Interferometric Signatures of Forest. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1153–1161. [Google Scholar] [CrossRef]
- Thiel, C.J.; Thiel, C.; Schmullius, C.C. Operational Large-Area Forest Monitoring in Siberia Using ALOS PALSAR Summer Intensities and Winter Coherence. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3993–4000. [Google Scholar] [CrossRef]
- Jacob, A.W.; Vicente-Guijalba, F.; Lopez-Martinez, C.; Lopez-Sanchez, J.M.; Litzinger, M.; Kristen, H.; Mestre-Quereda, A.; Ziolkowski, D.; Lavalle, M.; Notarnicola, C.; et al. Sentinel-1 InSAR Coherence for Land Cover Mapping: A Comparison of Multiple Feature-Based Classifiers. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 535–552. [Google Scholar] [CrossRef] [Green Version]
- Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Borla Tridon, D.; Bräutigam, B.; Bachmann, M.; Schulze, D.; Fritz, T.; Huber, M.; et al. Generation and Performance Assessment of the Global TanDEM-X Digital Elevation Model. ISPRS J. Photogramm. Remote Sens. 2017, 132, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Crippen, R.; Buckley, S.; Agram, P.; Belz, E.; Gurrola, E.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.; Neumann, M.; et al. NASADEM Global Elevation Model: Methods and Progress. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B4, 125–128. [Google Scholar] [CrossRef] [Green Version]
- NASA Jet Propulsion Laboratory. NASADEM Merged DEM Global 1 Arc Second V001. Available online: https://lpdaac.usgs.gov/products/nasadem_hgtv001 (accessed on 6 April 2021).
- Büttner, G.; Kosztra, B.; Soukup, T.; Sousa, A.; Langanke, T. CLC2018 Technical Guidelines. Available online: https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html (accessed on 8 April 2021).
- Kosztra, B.; Büttner, G. Updated CLC Illustrated Nomenclature Guidelines. Available online: https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/docs/pdf/CLC2018_Nomenclature_illustrated_guide_20190510.pdf (accessed on 8 April 2021).
- Moiret-Guigand, A.; Jaffrain, G.; Pennec, A.; Dufourmont, H. CLC2018/CLCC1218 Validation Report. Available online: https://land.copernicus.eu/user-corner/technical-library/clc-2018-and-clc-change-2012-2018-validation-report (accessed on 8 April 2021).
- Kirches, G.; Brockmann, C.; Boettcher, M.; Peters, M.; Bontemps, S.; Lamarche, C.; Schlerf, M.; Santoro, M.; Defourny, P. Land Cover Cci-Product User Guide-Version 2. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 24 November 2021).
- Achard, F.; Bontemps, S.; Lamarche, C.; Da Maet, T.; Mayaux, P.; Van Bogaert, E.; Defourny, P. Quality Assessment of the CCI Land Cover Maps. In Proceedings of the First CCI Land Cover User Workshop, Frascati, Italy, 31 August 2017. [Google Scholar]
- Esch, T.; Heldens, W.; Hirner, A.; Keil, M.; Marconcini, M.; Roth, A.; Zeidler, J.; Dech, S.; Strano, E. Breaking New Ground in Mapping Human Settlements from Space—The Global Urban Footprint. ISPRS J. Photogramm. Remote Sens. 2017, 134, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Wegmüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A. Automated and Precise Image Registration Procedures. In Proceedings of the Analysis of Multi-Temporal Remote Sensing Images, Ispra, Italy, 16–18 July 2002; World scientific: Trento, Italy, 2002; pp. 37–49. [Google Scholar]
- Wegmüller, U.; Werner, C. Land Applications Using ERS-1/2 Tandem Data. In Proceedings of the Fringe Workshop: ERS SAR Interferometry, Zurich, Switzerland, 30 October 1996; European Space Agency: Zurich, Switzerland, 1996; pp. 97–112. [Google Scholar]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Gamma SAR and Interferometric Processing Software. In Proceedings of the ERS-Envisat symposium, Gothenburg, Sweden, 15–20 October 2000; ESA Publications Division: Noordwijk, The Netherlands, 2000. [Google Scholar]
- Castel, T.; Beaudoin, A.; Stach, N.; Stussi, N.; Le Toan, T.; Durand, P. Sensitivity of Space-Borne SAR Data to Forest Parameters over Sloping Terrain. Theory and Experiment. Int. J. Remote Sens. 2001, 22, 2351–2376. [Google Scholar] [CrossRef]
- Small, D. SAR Backscatter Multitemporal Compositing via Local Resolution Weighting. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; IEEE: Munich, Germany, July 2012; pp. 4521–4524. [Google Scholar]
- Frey, O.; Santoro, M.; Werner, C.L.; Wegmuller, U. DEM-Based SAR Pixel-Area Estimation for Enhanced Geocoding Refinement and Radiometric Normalization. IEEE Geosci. Remote Sens. Lett. 2013, 10, 48–52. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Small, D.; Rohner, C.; Miranda, N.; Ruetschi, M.; Schaepman, M.E. Wide-Area Analysis-Ready Radar Backscatter Composites. IEEE Trans. Geosci. Remote Sens. 2021, 1–14. [Google Scholar] [CrossRef]
- Borlaf-Mena, I.; Badea, O.; Tanase, M.A. Influence of the Mosaicking Algorithm on Sentinel-1 Land Cover Classification over Rough Terrain. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11–16 July 2021; IEEE: Brussels, Belgium, 2021; pp. 4521–4524. [Google Scholar]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159. [Google Scholar] [CrossRef] [Green Version]
- ESA. Sentinel-1 New Product Format Operational on 13 March 2018. Available online: https://sentinel.esa.int/web/sentinel/-/sentinel-1-new-product-format-operational-on-13-march-2018 (accessed on 7 June 2021).
- Vincent, P.; Bourbigot, M.; Hajduch, G. Release Note of S-1 IPF for End Users of Sentinel-1 Products. Available online: https://sentinel.esa.int/documents/247904/2142675/S-1-IPF-Sentinel-1-products-Release-Note.pdf (accessed on 24 November 2021).
- Vincent, P.; Bourbigot, M.; Johnsen, H.; Piantanida, R. Sentinel-1 Product Specification. Available online: https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Product-Specification (accessed on 24 November 2021).
- Borlaf-Mena, I.; Santoro, M.; Villard, L.; Badea, O.; Tanase, M.A. Investigating the Impact of Digital Elevation Models on Sentinel-1 Backscatter and Coherence Observations. Remote Sens. 2020, 12, 3016. [Google Scholar] [CrossRef]
- Santoro, M.; Askne, J.I.H.; Wegmuller, U.; Werner, C.L. Observations, Modeling, and Applications of ERS-ENVISAT Coherence over Land Surfaces. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2600–2611. [Google Scholar] [CrossRef]
- Ranson, K.J.; Sun, G. Effects of Environmental Conditions on Boreal Forest Classification and Biomass Estimates with SAR. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1242–1252. [Google Scholar] [CrossRef]
- Sharma, R.; Leckie, D.; Hill, D.; Crooks, B.; Bhogal, A.S.; Arbour, P.; D’eon, S. Hyper-Temporal Radarsat SAR Data of a Forested Terrain. In Proceedings of the International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Biloxi, MS, USA, 16–18 May 2005; IEEE: Biloxi, MS, USA, 2005; pp. 71–75. [Google Scholar]
- Santoro, M.; Shvidenko, A.; Mccallum, I.; Askne, J.; Schmullius, C. Properties of ERS-1/2 Coherence in the Siberian Boreal Forest and Implications for Stem Volume Retrieval. Remote Sens. Environ. 2007, 106, 154–172. [Google Scholar] [CrossRef]
- Strozzi, T.; Wegmuller, U.; Luckman, A.; Balzter, H. Mapping Deforestation in Amazon with ERS SAR Interferometry. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99, Hamburg, Germany, 28 June–2 July 1999; IEEE: Hamburg, Germany, 1999; Volume 2, pp. 767–769. [Google Scholar]
- Luckman, A.; Baker, J.; Wegmüller, U. Repeat-Pass Interferometric Coherence Measurements of Disturbed Tropical Forest from JERS and ERS Satellites. Remote Sens. Environ. 2000, 73, 350–360. [Google Scholar] [CrossRef]
- Gaboardi, C. Utilização de Imagem de Coerência SAR para Classificação do uso da Terra: Floresta Nacional do Tapajós. Available online: http://mtc-m12.sid.inpe.br/col/sid.inpe.br/marciana/2003/04.10.08.52/doc/publicacao.pdf (accessed on 24 November 2021).
- Diniz, J.M.F.d.S. Avaliação do Potencial dos Dados Polarimétricos Sentinel-1A para Mapeamento do uso e Cobertura da Terra na Região de Ariquemes—RO. Available online: http://mtc-m21c.sid.inpe.br/col/sid.inpe.br/mtc-m21c/2019/01.28.12.01/doc/publicacao.pdf (accessed on 24 November 2021).
- Pulella, A.; Aragão Santos, R.; Sica, F.; Posovszky, P.; Rizzoli, P. Multi-Temporal Sentinel-1 Backscatter and Coherence for Rainforest Mapping. Remote Sens. 2020, 12, 847. [Google Scholar] [CrossRef] [Green Version]
Class | Subclass | CLC 2018 | CCI LC 2015 | AFNF 2017 | TFNF 2018 |
---|---|---|---|---|---|
Urban | Artificial | 1xx: Artificial surfaces | 190: Urban areas | - | 0: Urban |
Low vegetation | Crops | 211: Non-irrigated Arable land | 10: Cropland 11: Herbaceous | !=1: Other (not forest) | 2: Not forest |
Pasture | 231: Pastures | 11: Herbaceous 130: Grassland | |||
Grassland | 321: Grassland | ||||
Permanent crops | 222: orchards 242: agriculture mix | 12: Tree or shrub | |||
Transitional woodland-shrub | 324: transitional Woodland-shrub | 40–153: natural vegetation | - | ||
Forest | Broadleaf | 311: broadleaf | 50–62: broadleaf | 1: Forest | 1: Forest |
Needleleaf | 312: needleleaf | 70–82: needleleaf | |||
Mixed | 313: mixed | 90: mixed | |||
Water | Water | - | 210: Water | !=1: Other | !=1: Other |
Class | Subclass, CCI LC 2015 | AFNF 2017 | TFNF 2018 | Sentinel-1 2018, 2019 | Sentinel-2 2020 |
---|---|---|---|---|---|
Urban | 190: Urban areas | !=1: Other | 0: Urban | - | NDVI < 0.6 NDWI < 0 |
Low vegetation | 30: Mosaic of cropland with natural vegetation | 2: Not forest | VV < −8 | NDMI < 0.05 NDVI < 0.6 NDWI < 0 | |
40: Mosaic of natural vegetation with cropland | |||||
100: Mosaic tree/shrub and herbaceous | |||||
120: Shrubland | |||||
Forest | 50–62: broadleaf | 1: Forest | 1: Forest | - | NDVI > 0.6 NDWI < 0 |
Water | 210: Water | !=1: Other | !=1: Other | VH < −20 dB VV < −15 dB | NDWI > 0 |
Temperate | Tropical | |||||||||||||||
Overall accuracy | Kappa statistic | Overall accuracy | Kappa statistic | |||||||||||||
B00 | B0C | BCC | B00 | B0C | BCC | B00 | B0C | BCC | B00 | B0C | BCC | |||||
LC | 2017 | 94 | 97 | 99 | 0.86 | 0.93 | 0.98 | |||||||||
2018 | 96 | 97 | 99 | 0.91 | 0.93 | 0.97 | 98 | 97 | 99 | 0.87 | 0.85 | 0.92 | ||||
2019 | 96 | 97 | 99 | 0.90 | 0.93 | 0.97 | 99 | 99 | 99 | 0.93 | 0.91 | 0.96 | ||||
GEDI | 2017 | 92 | 96 | 97 | 0.79 | 0.90 | 0.91 | |||||||||
2018 | 93 | 95 | 96 | 0.84 | 0.89 | 0.91 | 95 | 95 | 96 | 0.77 | 0.76 | 0.82 | ||||
2019 | 93 | 96 | 96 | 0.82 | 0.89 | 0.90 | 95 | 95 | 97 | 0.79 | 0.79 | 0.83 |
2017 | 2018 | 2019 | |||||||||||||
Ur | LV | Fo | Wa | Ur | LV | Fo | Wa | Ur | LV | Fo | Wa | ||||
Commission error | B00 | 83 | 1 | 9 | 14 | 60 | 1 | 8 | 11 | 67 | 1 | 8 | 16 | ||
B0C | 37 | 1 | 7 | 14 | 30 | 1 | 7 | 10 | 28 | 1 | 7 | 14 | |||
BCC | 16 | <1 | 1 | 6 | 13 | 1 | 1 | 5 | 17 | 1 | 1 | 5 | |||
Omission error | B00 | 7 | 4 | 12 | 9 | 14 | 4 | 4 | 9 | 11 | 4 | 6 | 9 | ||
B0C | 4 | 3 | 2 | 9 | 4 | 3 | 2 | 9 | 6 | 3 | 2 | 9 | |||
BCC | 1 | 1 | 1 | 8 | 1 | 1 | 2 | 8 | 1 | 1 | 2 | 9 |
2017 | 2018 | 2019 | ||||||||||
B00 | B0C | BCC | B00 | B0C | BCC | B00 | B0C | BCC | ||||
Commission error | Forest | 14 | 10 | 2 | 15 | 12 | 3 | 15 | 11 | 2 | ||
Other | 7 | 2 | 4 | 3 | 1 | 4 | 4 | 2 | 5 | |||
Omission error | Forest | 18 | 5 | 11 | 8 | 4 | 11 | 10 | 4 | 13 | ||
Other | 5 | 4 | 1 | 6 | 5 | 1 | 6 | 5 | 1 |
2018 | 2019 | |||||||||
Ur | LV | Fo | Wa | Ur | LV | Fo | Wa | |||
Commission error | B00 | 99 | 17 | <1 | 16 | 99 | 8 | <1 | 16 | |
B0C | >99 | 15 | <1 | 22 | >99 | 6 | <1 | 19 | ||
BCC | 89 | 11 | <1 | 22 | 89 | 5 | <1 | 17 | ||
Omission error | B00 | 71 | 4 | 2 | 1 | 62 | 4 | 1 | 1 | |
B0C | 24 | 4 | 3 | 1 | 27 | 4 | 1 | 1 | ||
BCC | 7 | 4 | 1 | 1 | 9 | 3 | <1 | 1 |
2018 | 2019 | |||||||
B00 | B0C | BCC | B00 | B0C | BCC | |||
Commission error | Forest | 1 | 1 | 1 | <1 | <1 | <1 | |
Other | 32 | 33 | 25 | 29 | 29 | 23 | ||
Omission error | Forest | 5 | 5 | 4 | 5 | 5 | 3 | |
Other | 5 | 5 | 4 | 4 | 4 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borlaf-Mena, I.; Badea, O.; Tanase, M.A. Assessing the Utility of Sentinel-1 Coherence Time Series for Temperate and Tropical Forest Mapping. Remote Sens. 2021, 13, 4814. https://doi.org/10.3390/rs13234814
Borlaf-Mena I, Badea O, Tanase MA. Assessing the Utility of Sentinel-1 Coherence Time Series for Temperate and Tropical Forest Mapping. Remote Sensing. 2021; 13(23):4814. https://doi.org/10.3390/rs13234814
Chicago/Turabian StyleBorlaf-Mena, Ignacio, Ovidiu Badea, and Mihai Andrei Tanase. 2021. "Assessing the Utility of Sentinel-1 Coherence Time Series for Temperate and Tropical Forest Mapping" Remote Sensing 13, no. 23: 4814. https://doi.org/10.3390/rs13234814
APA StyleBorlaf-Mena, I., Badea, O., & Tanase, M. A. (2021). Assessing the Utility of Sentinel-1 Coherence Time Series for Temperate and Tropical Forest Mapping. Remote Sensing, 13(23), 4814. https://doi.org/10.3390/rs13234814