Quantifying Crown Morphology of Mixed Pine-Oak Forests Using Terrestrial Laser Scanning
Abstract
:1. Introduction
- (1)
- Have pines and oaks different Diameter Breast Height (DBH) and Total Height of the tree (HT) growing in pure vs. mixed stands?
- (2)
- Have the explanatory variables of size, density, competition, and mixture a positive or negative relationship in their crown variables (Response variables)?
2. Material and Method
2.1. Study Area and Experimental Setup
2.2. Field Data Collection
2.2.1. Conventional Measurements
2.2.2. Terrestrial Laser Scanning
2.3. Data Processing
2.3.1. Tree Segmentation
2.3.2. Tree Metrics
2.4. Data Analysis
2.5. Explanatory Models
3. Results
3.1. Data Analyst
3.2. Explanatory Models
4. Discussion
4.1. Mixing Affects Tree Size
4.2. Effect of Size, Density, Competition and Mixture on Species Crown Size
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauhus, J.; Forrester, D.I.; Pretzsch, H. Mixed-species forests: The development of a forest management paradigm. In Mixed-Species Forests: Ecology and Management; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–25. ISBN 9783662545539. [Google Scholar]
- Bravo, F.; Ariza, A.M.; Dugarsuren, N.; Ordóñez, C. Disentangling the Relationship between Tree Biomass Yield and Tree Diversity in Mediterranean Mixed Forests. Forests 2021, 12, 848. [Google Scholar] [CrossRef]
- Pretzsch, H.; Forrester, D.I. Stand Dynamics of Mixed-Species Stands Compared with Monocultures. In Mixed-Species Forests: Ecology and Management; Pretzsch, H., Forrester, D.I., Bauhus, J., Eds.; Springer Nature: Berlin, Germany, 2017; pp. 117–209. ISBN 9783662545515. [Google Scholar]
- Steckel, M.; del Río, M.; Heym, M.; Aldea, J.; Bielak, K.; Brazaitis, G.; Černý, J.; Coll, L.; Collet, C.; Ehbrecht, M.; et al. Species mixing reduces drought susceptibility of Scots pine (Pinus sylvestris L.) and oak (Quercus robur L., Quercus petraea (Matt.) Liebl.)—Site water supply and fertility modify the mixing effect. For. Ecol. Manag. 2020, 461, 117908. [Google Scholar] [CrossRef]
- Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 2019, 221, 50–66. [Google Scholar] [CrossRef] [Green Version]
- Gough, C.M.; Atkins, J.W.; Fahey, R.T.; Hardiman, B.S. High rates of primary production in structurally complex forests. Ecology 2019, 100, e02864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo-Oviedo, A.; Pretzsch, H.; Ammer, C.; Andenmatten, E.; Barbati, A.; Barreiro, S.; Brang, P.; Bravo, F.; Coll, L.; Corona, P.; et al. European Mixed Forests: Definition and research perspectives. For. Syst. 2014, 23, 518–533. [Google Scholar] [CrossRef]
- Pretzsch, H.; Forrester, D.I.; Bauhus, J. Modelling Mixed-Species Forest Stands. In Mixed-Species Forests: Ecology and Management; Pretzsch, H., Forrester, D.I., Bauhus, J., Eds.; Springer: Berlin, Germany, 2017; ISBN 9783662545515. [Google Scholar]
- Bayer, D.; Seifert, S.; Pretzsch, H. Structural crown properties of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in mixed versus pure stands revealed by terrestrial laser scanning. Trees Struct. Funct. 2013, 27, 1035–1047. [Google Scholar] [CrossRef]
- Forrester, D.I.; Bauhus, J. A Review of Processes Behind Diversity—Productivity Relationships in Forests. Curr. For. Rep. 2016, 2, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.-D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; et al. Positive biodiversity-productivity relationship predominant in global forests. Science 2016, 354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pretzsch, H.; Schütze, G. Size-structure dynamics of mixed versus pure forest stands. For. Syst. 2014, 23, 560–572. [Google Scholar] [CrossRef] [Green Version]
- Riofrío, J.; Del Río, M.; Bravo, F. Mixing effects on growth efficiency in mixed pine forests. Forestry 2017, 90, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For. Ecol. Manag. 2014, 327, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Metz, J.Ô.; Seidel, D.; Schall, P.; Scheffer, D.; Schulze, E.D.; Ammer, C. Crown modeling by terrestrial laser scanning as an approach to assess the effect of aboveground intra- and interspecific competition on tree growth. For. Ecol. Manag. 2013, 310, 275–288. [Google Scholar] [CrossRef]
- Pretzsch, H. Forest Dynamics, Growth and Yield; Springer: Berlin, Germany, 2009; ISBN 9783540883067. [Google Scholar]
- Luoma, V.; Saarinen, N.; Kankare, V.; Tanhuanpää, T.; Kaartinen, H.; Kukko, A.; Holopainen, M.; Hyyppä, J.; Vastaranta, M. Examining changes in stem taper and volume growth with two-date 3D point clouds. Forests 2019, 10, 382. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Meng, Y.; Qiu, Z.; Zhang, S.; Wu, J. Measurement and calculation of crown projection area and crown volume of individual trees based on 3D laser-scanned point-cloud data. Int. J. Remote Sens. 2017, 38, 1083–1100. [Google Scholar] [CrossRef]
- Barbeito, I.; Dassot, M.; Bayer, D.; Collet, C.; Drössler, L.; Löf, M.; Del Rio, M.; Ruiz-Peinado, R.; Forrester, D.I.; Bravo-Oviedo, A.; et al. Terrestrial laser scanning reveals differences in crown structure of Fagus sylvatica in mixed vs. pure European forests. For. Ecol. Manag. 2017, 405, 381–390. [Google Scholar] [CrossRef]
- Cattaneo, N.; Bravo-Oviedo, A.; Bravo, F. Analysis of tree interactions in a mixed Mediterranean pine stand using competition indices. Eur. J. For. Res. 2018, 137, 109–120. [Google Scholar] [CrossRef]
- Pretzsch, H. The Effect of Tree Crown Allometry on Community Dynamics in Mixed-Species Stands versus Monocultures. A Review and Perspectives for Modeling and Silvicultural Regulation. Forests 2019, 10, 810. [Google Scholar] [CrossRef] [Green Version]
- Disney, M.I.; Boni Vicari, M.; Burt, A.; Calders, K.; Lewis, S.L.; Raumonen, P.; Wilkes, P. Weighing trees with lasers: Advances, challenges and opportunities. Interface Focus 2018, 8, 20170048. [Google Scholar] [CrossRef] [Green Version]
- McElhinny, C.; Gibbons, P.; Brack, C.; Bauhus, J. Forest and woodland stand structural complexity: Its definition and measurement. For. Ecol. Manag. 2005, 218, 1–24. [Google Scholar] [CrossRef]
- Kern, C.C.; Montgomery, R.A.; Reich, P.B.; Strong, T.F. Canopy gap size influences niche partitioning of the ground-layer plant community in a northern temperate forest. J. Plant Ecol. 2013, 6, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Seidel, D.; Beyer, F.; Hertel, D.; Fleck, S.; Leuschner, C. 3D-laser scanning: A non-destructive method for studying above- ground biomass and growth of juvenile trees. Agric. For. Meteorol. 2011, 151, 1305–1311. [Google Scholar] [CrossRef]
- Cattaneo, N.; Schneider, R.; Bravo, F.; Bravo-Oviedo, A. Inter-specific competition of tree congeners induces changes in crown architecture in Mediterranean pine mixtures. For. Ecol. Manag. 2020, 476, 118471. [Google Scholar] [CrossRef]
- Ehbrecht, M.; Schall, P.; Ammer, C.; Seidel, D. Quantifying stand structural complexity and its relationship with forest management, tree species diversity and microclimate. Agric. For. Meteorol. 2017, 242, 1–9. [Google Scholar] [CrossRef]
- Forrester, D.I.; Ammer, C.; Annighöfer, P.J.; Barbeito, I.; Bielak, K.; Bravo-Oviedo, A.; Coll, L.; del Río, M.; Drössler, L.; Heym, M.; et al. Effects of crown architecture and stand structure on light absorption in mixed and monospecific Fagus sylvatica and Pinus sylvestris forests along a productivity and climate gradient through Europe. J. Ecol. 2018, 106, 746–760. [Google Scholar] [CrossRef] [Green Version]
- Höwler, K.; Annighöfer, P.; Ammer, C.; Seidel, D. Competition improves quality-related external stem characteristics of Fagus sylvatica. Can. J. For. Res. 2017, 47, 1603–1613. [Google Scholar] [CrossRef]
- Jacobs, M.; Rais, A.; Pretzsch, H. How drought stress becomes visible upon detecting tree shape using terrestrial laser scanning (TLS). For. Ecol. Manag. 2021, 489, 118975. [Google Scholar] [CrossRef]
- Juchheim, J.; Ehbrecht, M.; Schall, P.; Ammer, C.; Seidel, D. Effect of tree species mixing on stand structural complexity. For. Int. J. For. Res. 2020, 93, 75–83. [Google Scholar] [CrossRef]
- Seidel, D.; Leuschner, C.; Müller, A.; Krause, B. Crown plasticity in mixed forests-Quantifying asymmetry as a measure of competition using terrestrial laser scanning. For. Ecol. Manag. 2011, 261, 2123–2132. [Google Scholar] [CrossRef]
- Weiskittel, A.R.; Hann, D.W.; Kershaw, J.A.J.; Vanclay, J.K. Forest Growth and Yield Modeling, 1st ed.; John Wiley & Sons: Hoboken, NY, USA, 2011; ISBN 9780470665008. [Google Scholar]
- Montero, G.; del Río, M.; Roig, S.; Rojo, A. Selvicultura de Pinus sylvestris L. In Compendio de Selvicultura Aplicada en España; MMA-INIA: Madrid, Spain, 2008; pp. 503–534. [Google Scholar]
- Aldea Mallo, J. Tree Growth Dynamic and Thinning response in Mediterranean Pine-Oak Forest Stands. PhD Thesis, Universidad de Valladolid, Valladolid, Spain, April 2018. [Google Scholar]
- Bauhus, J.; Forrester, D.I.; Pretzsch, H. From Observations to Evidence About Effects of Mixed-Species Stands. In Mixed-Species Forests: Ecology and Management; Pretzsch, H., Forrester, D.I., Bauhus, J., Eds.; Springer Nature: Berlin, Germany, 2017; pp. 27–72. ISBN 9783662545515. [Google Scholar]
- Del Río, M.; Pretzsch, H.; Ruíz-Peinado, R.; Ampoorter, E.; Annighöfer, P.; Barbeito, I.; Bielak, K.; Brazaitis, G.; Coll, L.; Drössler, L.; et al. Species interactions increase the temporal stability of community productivity in Pinus sylvestris–Fagus sylvatica mixtures across Europe. J. Ecol. 2017, 105, 1032–1043. [Google Scholar] [CrossRef] [Green Version]
- Heym, M.; Ruíz-Peinado, R.; Del Río, M.; Bielak, K.; Forrester, D.I.; Dirnberger, G.; Barbeito, I.; Brazaitis, G.; Ruškytkė, I.; Coll, L.; et al. EuMIXFOR empirical forest mensuration and ring width data from pure and mixed stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) through Europe. Ann. For. Sci. 2017, 74, 9. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, M.; Rais, A.; Pretzsch, H. Analysis of stand density effects on the stem form of Norway spruce trees and volume miscalculation by traditional form factor equations using terrestrial laser scanning (TLS). Can. J. For. Res. 2020, 50, 51–64. [Google Scholar] [CrossRef]
- Del Río, M.; Sterba, H. Comparing volume growth in pure and mixed stands of Pinus sylvestris and Quercus pyrenaica. Ann. For. Sci. 2009. [Google Scholar] [CrossRef]
- Pretzsch, H.; Steckel, M.; Heym, M.; Biber, P.; Ammer, C.; Ehbrecht, M.; Bielak, K.; Bravo, F.; Ordóñez, C.; Collet, C.; et al. Stand growth and structure of mixed-species and monospecific stands of Scots pine (Pinus sylvestris L.) and oak (Q. robur L., Quercus petraea (Matt.) Liebl.) analysed along a productivity gradient through Europe. Eur. J. For. Res. 2020, 139, 349–367. [Google Scholar] [CrossRef] [Green Version]
- Stimm, K.; Heym, M.; Uhl, E.; Tretter, S.; Pretzsch, H. Height growth-related competitiveness of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) under climate change in Central Europe. Is silvicultural assistance still required in mixed-species stands? For. Ecol. Manag. 2021, 482. [Google Scholar] [CrossRef]
- Clevenger, A.P.; Purroy, F.J.; Pelton, M.R. Food habits of brown bears (Ursus arctos) in the Cantabrian Mountains, Spain. J. Mammal. 1992, 73, 415–421. [Google Scholar] [CrossRef]
- Reque, J.A. Selvicultura de Quercus petraea L. y Quercus robur L. In Compendio de Selvicultura Aplicada en España; Serrada, R., Montero, G., Reque, J.A., Eds.; MMA-INIA: Madrid, Spain, 2008; pp. 745–772. [Google Scholar]
- Ruiz-Villar, H.; Morales-González, A.; Bombieri, G.; Zarzo-Arias, A.; Penteriani, V. Characterization of a brown bear aggregation during the hyperphagia period in the Cantabrian Mountains, NW Spain. Ursus 2019, 29, 93–100. [Google Scholar] [CrossRef]
- Vallet, P.; Perot, T. Coupling transversal and longitudinal models to better predict Quercus petraea and Pinus sylvestris stand growth under climate change. Agric. For. Meteorol. 2018, 263, 258–266. [Google Scholar] [CrossRef]
- Ferrarese, J.; Affleck, D.; Seielstad, C. Conifer crown profile models from terrestrial laser scanning. Silva Fenn. 2015, 49, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Hackenberg, J.; Wassenberg, M.; Spiecker, H.; Sun, D. Non Destructive Method for Biomass Prediction Combining TLS Derived Tree Volume and Wood Density. Forests 2015, 6, 1274–1300. [Google Scholar] [CrossRef]
- Hahsler, M.; Piekenbrock, M.; Doran, D. CRAN—Package dbscan. Available online: https://cran.r-project.org/web/packages/dbscan/index.html (accessed on 3 December 2021).
- Hadley, W.; Romain, F.; Lionel, H.; Kirill, M. CRAN—Package dplyr. Available online: https://cran.r-project.org/web/packages/dplyr/index.html (accessed on 3 December 2021).
- Dowle, M.; Srinivasan, A. CRAN—Package Data Table. Available online: https://cran.r-project.org/web/packages/data.table/index.html (accessed on 3 December 2021).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. CRAN—Package lme4. Available online: https://cran.r-project.org/web/packages/lme4/index.html (accessed on 3 December 2021).
- Robinson, D.; Hayes, A.; Couch, S. CRAN—Package Broom. Available online: https://cran.r-project.org/web/packages/broom/index.html (accessed on 3 December 2021).
- Wickham, H. CRAN—Package ggplot2. Available online: https://cran.r-project.org/web/packages/ggplot2/index.html (accessed on 3 December 2021).
- Revelle, W. CRAN—Package Psych. Available online: https://cran.r-project.org/web/packages/psych/index.html (accessed on 3 December 2021).
- Grosjean, P.; Ibanez, F. CRAN—Package Pastecs. Available online: https://cran.r-project.org/web/packages/pastecs/index.html (accessed on 3 December 2021).
- Fox, J.; Weisberg, S. CRAN—Package Car. Available online: https://cran.r-project.org/web/packages/car/index.html (accessed on 3 December 2021).
- Auguie, B. CRAN—Package gridExtra. Available online: https://cran.r-project.org/web/packages/gridExtra/index.html (accessed on 3 December 2021).
- Grothendieck, G. CRAN—Package nls2. Available online: https://cran.r-project.org/web/packages/nls2/index.html (accessed on 3 December 2021).
- Müller, K.; Wickham, H. CRAN—Package Tibble. Available online: https://cran.r-project.org/web/packages/tibble/index.html (accessed on 3 December 2021).
- Lin, L.I. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 1989, 45, 255–268. Available online: http://www.jstor.org/stable/2532051 (accessed on 8 September 2021). [CrossRef]
- Hegyi, F. A simulation model for managing jack-pine stands. In Growth Models for Tree and Stand Simulation: Proceedings of Meetings in 1973. International Union of Forestry Research Organizations. Working Party S4.01; Fries, J., Ed.; Skogshögskolan: Stockholm, Sweden, 1974; pp. 74–99. [Google Scholar]
- Ritter, T.; Nothdurft, A. Automatic assessment of crown projection area on single trees and stand-level, based on three-dimensional point clouds derived from terrestrial laser-scanning. Forests 2018, 9, 237. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.B.; Omland, K.S. Model selection in ecology and evolution. Trends Ecol. Evol. 2004, 19, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Himes, A.; Puettmann, K. Tree species diversity and composition relationship to biomass, understory community, and crown architecture in intensively managed plantations of the coastal Pacific Northwest, USA. Can. J. For. Res. 2020, 50, 1–12. [Google Scholar] [CrossRef]
- Toïgo, M.; Perot, T.; Courbaud, B.; Castagneyrol, B.; Gégout, J.C.; Longuetaud, F.; Jactel, H.; Vallet, P. Difference in shade tolerance drives the mixture effect on oak productivity. J. Ecol. 2018, 106, 1073–1082. [Google Scholar] [CrossRef]
- Forrester, D.I. The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. For. Ecol. Manag. 2014, 312, 282–292. [Google Scholar] [CrossRef]
- Jucker, T.; Bouriaud, O.; Coomes, D.A. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 2015, 29, 1078–1086. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.J.; Paquette, A.; Cavender-Bares, J.; Messier, C.; Reich, P.B. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol. 2017, 1, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cuny, H.E.; Rathgeber, C.B.K.; Lebourgeois, F.; Fortin, M.; Fournier, M. Life strategies in intra-annual dynamics of wood formation: Example of three conifer species in a temperate forest in north-east France. Tree Physiol. 2012, 32, 612–625. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Costa, E.; Poyatos, R.; Sabaté, S. Contrasting growth and water use strategies in four co-occurring Mediterranean tree species revealed by concurrent measurements of sap flow and stem diameter variations. Agric. For. Meteorol. 2015, 207, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H.; Schütze, G. Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: Evidence on stand level and explanation on individual tree level. Eur. J. For. Res. 2009, 128, 183–204. [Google Scholar] [CrossRef]
- Pretzsch, H.; del Río, M.; Schütze, G.; Ammer, C.; Annighöfer, P.; Avdagic, A.; Barbeito, I.; Bielak, K.; Brazaitis, G.; Coll, L.; et al. Mixing of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) enhances structural heterogeneity, And the effect increases with water availability. For. Ecol. Manag. 2016, 373, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Aiba, M.; Nakashizuka, T. Architectural differences associated with adult stature and wood density in 30 temperate tree species. Funct. Ecol. 2008, 23, 265–273. [Google Scholar] [CrossRef]
- Juchheim, J.; Ammer, C.; Schall, P.; Seidel, D. Canopy space filling rather than conventional measures of structural diversity explains productivity of beech stands. For. Ecol. Manag. 2017, 395, 19–26. [Google Scholar] [CrossRef]
- Delagrange, S.; Montpied, P.; Dreyer, E.; Messier, C.; Sinoquet, H. Does shade improve light interception efficiency? A comparison among seedlings from shade-tolerant and -intolerant temperate deciduous tree species. New Phytol. 2006, 172, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Lara, W.; Bravo, F.; Maguire, D.A. Modeling patterns between drought and tree biomass growth from dendrochronological data: A multilevel approach. Agric. For. Meteorol. 2013, 178–179, 140–151. [Google Scholar] [CrossRef]
- Uria-Diez, J.; Pommerening, A. Crown plasticity in Scots pine (Pinus sylvestris L.) as a strategy of adaptation to competition and environmental factors. Ecol. Modell. 2017, 356, 117–126. [Google Scholar] [CrossRef]
Triplet | Plot ID | Plot Size (m) | Stand | n/Plot | n Pines | n Oaks | n Other |
---|---|---|---|---|---|---|---|
1 | 1 | 25 × 25 | pure-Ps | 70 | 63 | 7 | -- |
7 | 30 × 30 | pure-Qp | 102 | 0 | 87 | 15 | |
4 | 25 × 25 | mix-PsQp | 103 | 48 | 55 | 2 | |
2 | 2 | 30 × 30 | pure_Ps | 78 | 57 | 21 | -- |
5 | 20 × 30 | pure-Qp | 85 | 4 | 81 | -- | |
6 | 30 × 30 | mix-PsQp | 107 | 44 | 63 | -- | |
TOTAL | 545 | 216 | 314 | 17 |
Main Tree Species | |||||||
---|---|---|---|---|---|---|---|
Pine | Oak | ||||||
n = 216 | n = 314 | ||||||
min | 13.60 | 7.20 | |||||
DBH (cm) | mean (± SD) | 29.69 | ± | 6.61 | 19.91 | ± | 6.51 |
Median | 29.73 | 19.65 | |||||
Max | 53.35 | 60.50 | |||||
min | 10.50 | 4.00 | |||||
TH (m) | mean (± SD) | 18.23 | ± | 1.90 | 17.32 | ± | 2.93 |
Median | 18.60 | 18.00 | |||||
Max | 23.90 | 23.70 | |||||
min | 1.10 | 2.00 | |||||
mean (± SD) | 12.56 | ± | 2.08 | 11.67 | ± | 2.21 | |
CBH (m) | Median | 12.70 | 12.00 | ||||
Max | 17.50 | 16.70 | |||||
min | 0.59 | 0.14 | |||||
mean (± SD) | 12.50 | ± | 8.80 | 9.88 | ± | 9.37 | |
CPA (m2) | Median | 10.71 | 7.49 | ||||
Max | 56.61 | 114.20 | |||||
min | 0.17 | 0.06 | |||||
mean (± SD) | 0.92 | ± | 0.41 | 0.50 | ± | 0.40 | |
BA (m2/ha) | Median | 0.90 | 0.43 | ||||
Max | 2.49 | 4.96 |
Angular resolution | 0.6135 milirad | Horizontal field of view | 0°–360° |
Oversampling | 2× | Vertical field of view | −60°–90° |
Scan duration (mm:ss) | approx. 02:08 | Point distance | 7.670 mm @ 10m |
Scan size (Pt) | 8192 × 3414 |
Triplet | Plot | Type | Surface | Species | n/Plot | TLS Trees |
---|---|---|---|---|---|---|
1 | 1 | pure | 25 × 25 | Pine | 63 | 61 |
7 | pure | 25 × 25 | Oak | 87 | 75 | |
4 | mixed | 30 × 30 | Pine-Oak | 48–55 | 47–53 | |
2 | 2 | pure | 30 × 30 | Pine | 57 | 47 |
5 | pure | 20 × 30 | Oak | 81 | 74 | |
6 | mixed | 30 × 30 | Pine-Oak | 44–63 | 38–54 | |
Total | 498 | 449 |
Models | Author |
---|---|
(Pain and Hann, 1982) | |
(Hann et al., 2003) | |
(Ritter and Nothdurft, 2018) | |
(Sanquetta et al., 2015) |
Species | Plot | n Total | DBH (cm) | TH (m) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Mean | SD | Min | Max | Mean | SD | Min | |||||
Pine | Pure | 113 | 46.98 | 30.99 | ± | 2.07 | 5.68 | 26.44 | 17.33 | ± | 6.97 | 11.62 |
Mix | 84 | 47.34 | 27.51 | ± | 2.13 | 13.96 | 22.36 | 18.04 | ± | 6.33 | 11.31 | |
Oak | Pure | 155 | 61.29 | 19.5 | ± | 3.38 | 7.56 | 23.2 | 17.38 | ± | 7.42 | 6.39 |
Mix | 107 | 33.52 | 20.53 | ± | 2.41 | 10.07 | 20.85 | 17.31 | ± | 5.20 | 8.73 |
Variable | Species | r | s | d | c | m | α0 | α1 | α2 | α3 | α4 | AIC | K-S Test | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MCWH | P. sylvestris | 10 | CI | Ratio BALpine | −0.11 | −1.13 | 646.59 | 0.078 | 0.54 | |||||
Q. petraea | 10 | TH | Ratio BApine | −0.095 | 0.273 | 890.47 | 0.007 | 0.78 | ||||||
CBH | P. sylvestris | 5 | DBH | BALpine | Ratio BALpine | −22.87 | 0.1 | −0.41 | 557.21 | 0.227 | 0.71 | |||
Q. petraea | 10 | DBH | ln (BAtotal) | BALtotal | Ratio BALpine | −14.43 | 0.05 | 0.04 | 0.17 | 936.91 | 0.543 | 0.74 | ||
CPA | P. sylvestris | 10 | DBH | BAtotal | CI | 0.0655 | 0.0188 | −0.0964 | 981.45 | 0.194 | 0.66 | |||
Q. petraea | 7.5 | DBH | BAtotal | BALtotal | Ratio npine | 0.81 | 0.039 | 0.089 | −0.186 | 1.154 | 1203.11 | 0.001 | 0.70 | |
CV | P. sylvestris | 10 | d2 H | BAtotal | CI. | 0.0015 | 0.44 | 2.35 | 1491.12 | 0.100 | 0.55 | |||
Q. petraea | 7.5 | d2 H | BAtotal | BALpine | Ratio BA | −20.28 | 0.003 | 1.03 | −4.29 | 46.92 | 1904.9 | 0.010 | 0.64 |
Equation | ||
---|---|---|
MCWH | Pine | |
Oak | ||
CBH | Pine | |
Oak | ||
CPA | Pine | |
Oak | ||
CV | Pine | |
Oak |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzquiano, S.; Barbeito, I.; San Martín, R.; Ehbrecht, M.; Seidel, D.; Bravo, F. Quantifying Crown Morphology of Mixed Pine-Oak Forests Using Terrestrial Laser Scanning. Remote Sens. 2021, 13, 4955. https://doi.org/10.3390/rs13234955
Uzquiano S, Barbeito I, San Martín R, Ehbrecht M, Seidel D, Bravo F. Quantifying Crown Morphology of Mixed Pine-Oak Forests Using Terrestrial Laser Scanning. Remote Sensing. 2021; 13(23):4955. https://doi.org/10.3390/rs13234955
Chicago/Turabian StyleUzquiano, Sara, Ignacio Barbeito, Roberto San Martín, Martin Ehbrecht, Dominik Seidel, and Felipe Bravo. 2021. "Quantifying Crown Morphology of Mixed Pine-Oak Forests Using Terrestrial Laser Scanning" Remote Sensing 13, no. 23: 4955. https://doi.org/10.3390/rs13234955
APA StyleUzquiano, S., Barbeito, I., San Martín, R., Ehbrecht, M., Seidel, D., & Bravo, F. (2021). Quantifying Crown Morphology of Mixed Pine-Oak Forests Using Terrestrial Laser Scanning. Remote Sensing, 13(23), 4955. https://doi.org/10.3390/rs13234955