Land Cover Changes after the Massive Rohingya Refugee Influx in Bangladesh: Neo-Classic Unsupervised Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Images
2.2.1. Sentinel-1 Dataset
2.2.2. Sentinel-2 Dataset
2.3. Classification Procedures
2.3.1. Classification Technique
2.3.2. Classification Steps
2.3.3. Accuracy Assessment
3. Results
3.1. Parameter Selection
3.2. Yearly Land Covers
3.3. Land Cover Changes
4. Discussion
4.1. Peculiarity of the Classification Approach
4.2. Impacts on Local Landscape
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ISCG. Situation Report: Rohingya Refugee Crisis: Cox’s Bazar. 25 March 2018. Available online: https://reliefweb.int/report/bangladesh/iscg-situation-report-rohingya-refugee-crisis-cox-s-bazar-25-march-2018 (accessed on 7 November 2021).
- Hassan, M.M.; Smith, A.C.; Walker, K.; Rahman, M.K.; Southworth, J. Rohingya refugee crisis and forest cover change in Teknaf, Bangladesh. Remote Sens. 2018, 10, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.E.; Zhang, L.; Dewan, A.; Guo, H.; Mahmood, R. Spatiotemporal Pattern of Forest Degradation and Loss of Eco-system Function Associated with Rohingya Influx: A Geospatial Approach. L. Degrad. Dev. 2020, 1–18. [Google Scholar]
- Braun, A.; Fakhri, F.; Hochschild, V. Refugee camp monitoring and environmental change assessment of Kutupalong, Bangladesh, based on radar imagery of Sentinel-1 and ALOS-2. Remote Sens. 2019, 11, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Khosravi, I.; Safari, A.; Homayouni, S. Multiple Classifier Systems for Classification of Multifrequency PolSAR Images with Limited Training Samples. Int. J. Remote Sens. 2018, 39, 7547–7567. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Toan, T.L.; Planells, M.; Dejoux, J.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Liu, C.A.; Chen, Z.X.; Shao, Y.; Chen, J.S.; Hasi, T.; Pan, H.Z. Research advances of SAR remote sensing for agriculture applications: A review. J. Integr. Agric. 2019, 18, 506–525. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Dong, J.; Liao, X.; Sun, L.; Wang, Z.; You, N.; Li, Z.; Fu, P. Examining Rice Distribution and Cropping Intensity in a Mixed Single- and Double-Cropping Region in South China Using All Available Sentinel 1/2 Images. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102351. [Google Scholar] [CrossRef]
- Chakhar, A.; Hernández-López, D.; Ballesteros, R.; Moreno, M.A. Improving the Accuracy of Multiple Algorithms for Crop Classification by Integrating Sentinel-1 Observations with Sentinel-2 Data. Remote Sens. 2021, 13, 1–21. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Salekin, S.; Ryirenda, V.R.; Murayama, Y.; Ranagalage, M.; Oktaviani, N.; Kusuma, H.A.; Zhang, T.; Su, J.; et al. Remote Sensing Sentinel-2 Data for Land Cover / Use Mapping: A Review. Remote Sens. 2019, 42, 14. [Google Scholar]
- ACAPS. COVID-19: Rohingya Response Risk Report—19 March 2020. Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/20200319_acaps_covid19_risk_report_rohingya_response.pdf (accessed on 7 November 2021).
- Bangladesh Bureau of Statistics (BBS). Bangladesh Population and Housing Census 2011; Community Report: Cox’s Bazar; Statistics and Informatics Division, Ministry of Planning, Government of Bangladesh: Dhaka, Bangladesh, 2014. Available online: www.bbs.gov.bd (accessed on 13 December 2021).
- ISCG. Bangladesh—Outline of Camps of Rohingya Refugees in Cox’s Bazar. 2021. Available online: https://data.humdata.org/dataset/outline-of-camps-sites-of-rohingya-refugees-in-cox-s-bazar-bangladesh (accessed on 7 November 2021).
- Nishorogo. Available online: http://nishorgo.org/project/teknaf-wildlife-sanctuary/ (accessed on 7 November 2021).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 7 November 2021).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016. [Google Scholar]
- Inglada, J.; Vincent, A.; Arias, M.; Marais-Sicre, C. Improved Early Crop Type Identification by Joint Use of High Temporal Resolution Sar and Optical Image Time Series. Remote Sens. 2016, 8, 12356–12379. [Google Scholar] [CrossRef] [Green Version]
- Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic use of radar sentinel-1 and optical sentinel-2 imagery for crop mapping: A case study for Belgium. Remote Sens. 2018, 10, 7547–7567. [Google Scholar] [CrossRef] [Green Version]
- Ranghetti, L.; Boschetti, M.; Nutini, F.; Busetto, L. sen2r: An R toolbox for automatically downloading and preprocessing Sentinel-2 satellite data. Comput. Geosci. 2020, 139, 104473. [Google Scholar] [CrossRef]
- QGIS.org. QGIS Geographic Information System. QGIS Association. Available online: http://www.qgis.org (accessed on 7 November 2021).
- Shaprio, M.; Tao, W. i.cluster in GRASS GIS 8.0.dev Reference Manual. Available online: https://grass.osgeo.org/grass80/manuals/i.cluster.html (accessed on 26 November 2021).
- Harmon, V.; Shaprio, M. GRASS Tutorial: Image Processing. Available online: https://grass.osgeo.org/gdp/imagery/grass4_image_processing.pdf (accessed on 26 November 2021).
- Hijmans, R.J. raster: Geographic Data Analysis and Modeling. R Package Version 3.4-5. 2020. Available online: https://CRAN.R-project.org/package=raster (accessed on 26 November 2021).
- Bivand, R.; Keitt, T.; Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R Package Version 1.5-23. 2021. Available online: https://CRAN.R-project.org/package=rgdal (accessed on 26 November 2021).
- Llano, X.C. AcATaMa—QGIS Plugin for Accuracy Assessment of Thematic Maps, Version 19.11.21. Available online: https://plugins.qgis.org/plugins/AcATaMa/ (accessed on 7 November 2021).
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Shaprio, M.; Tao, W. i.maxlik in GRASS GIS 8.0.dev Reference Manual. Available online: https://grass.osgeo.org/grass80/manuals/i.maxlik.html (accessed on 26 November 2021).
- Filgueiras, R.; Mantovani, E.C.; Althoff, D.; Fernandes Filho, E.I.; da Cunha, F.F. Crop NDVI Monitoring Based on Sentinel 1. Remote Sens. 2019, 11, 1441. [Google Scholar] [CrossRef] [Green Version]
- Singha, M.; Dong, J.; Zhang, G.; Xiao, X. High Resolution Paddy Rice Maps in Cloud-Prone Bangladesh and Northeast India Using Sentinel-1 Data. Sci. Data 2019, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.B.; Gruber, A.; Wagner, W. Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data. Remote. Sens. Lett. 2016, 7, 1209–1218. [Google Scholar] [CrossRef]
- Orynbaikyzy, A.; Gessner, U.; Mack, B.; Conrad, C. Crop type classification using fusion of sentinel-1 and sentinel-2 data: Assessing the impact of feature selection, optical data availability, and parcel sizes on the accuracies. Remote Sens. 2020, 12, 2779. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Schmugge, T.J. Remote sensing of soil moisture: Recent advances. IEEE Trans. Geosci. Remote Sens. 1983, 3, 336–344. [Google Scholar] [CrossRef]
- Brown, S.C.M.; Quegan, S.; Morrison, K.; Bennett, J.C.; Cookmartin, G. High- resolution measurements of scattering in wheat canopies—Implications for crop parameter retrieval. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1602–1610. [Google Scholar] [CrossRef] [Green Version]
- Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring Rice Agriculture across Myanmar Using Time Series Sentinel-1 Assisted by Landsat-8 and PALSAR-2. Remote Sens. 2017, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.M.A.; Asahiro, K.; Moriyama, M.; Tani, M. Socioeconomic Status Changes of the Host Communities after the Rohingya Refugee Influx in the Southern Coastal Area of Bangladesh. Sustainability 2021, 13, 4240. [Google Scholar] [CrossRef]
- UNDP. Impacts of the Rohingya Refugee Influx on Host Communities—Bangladesh | ReliefWeb. 2018. Available online: https://reliefweb.int/report/bangladesh/impacts-rohingya-refugee-influx-host-communities (accessed on 7 November 2021).
- Tani, M.; Rahman, M.A. (Eds.) Deforestation in the Teknaf Peninsula of Bangladesh: A Study of Political Ecology; Springer: Singapore, 2018. [Google Scholar]
- Roy, P.; Jinnat, M.A. Just vanished! 12 September 2020. Available online: https://www.thedailystar.net/frontpage/news/just-vanished-1959761 (accessed on 7 November 2021).
Year Group | Sentinel-1 | Sentinel-2 |
---|---|---|
2015–2017 | 13 | 8 |
2018–2019 | 31 | 16 |
2019–2020 | 30 | 15 |
2020–2021 | 30 | 19 |
1st Step (VV and NDWI) | 2nd Step (VH and NDWI) | |||
---|---|---|---|---|
Year Group | Class Separation | Class Numbers | Class Separation | Class Numbers |
2015–2017 | 1.0 | 12 | 1.0 | 11 |
2018–2019 | 1.4 | 13 | 1.5 | 8 |
2019–2020 | 1.5 | 11 | 1.5 | 8 |
2020–2021 | 1.5 | 13 | 1.6 | 10 |
Classes | Definitions |
---|---|
Wetland/Saltpan | The areas exposed to year-around or seasonal inundation by surface water or sea water |
Agriculture/Open field | Paddy fields, crop fields, grassland, areas of sparse or seasonal vegetation |
Degraded forest/Bush | Areas with low to medium vegetation coverage, dominated by small to medium-sized bush with a sparse presence of mature trees and saplings from coppicing |
Forest | Areas of moderate to densely covered vegetation including mature trees, dense saplings, and homestead agroforestry |
Built-up/Disturbed areas | Area occupied with artificial objects such as settlements, agricultural tents, and brickfields; also, area exposed to unusual disturbance by artificial or natural events such as construction, logging, and landslides |
No data | Misjudged areas as wetlands (excluded from the analysis) |
2015–17 (OA: 74.5) | 2018–19 (OA: 80.0) | ||||||||||||
W | A | D | F | B | PA | W | A | D | F | B | PA | ||
W | 8 | 0 | 0 | 0 | 0 | 100 | W | 8 | 0 | 0 | 0 | 0 | 100 |
A | 0 | 18 | 0 | 0 | 0 | 100 | A | 2 | 20 | 0 | 0 | 0 | 90.9 |
D | 1 | 1 | 19 | 8 | 1 | 63.3 | D | 1 | 2 | 15 | 5 | 1 | 62.5 |
F | 1 | 0 | 11 | 24 | 0 | 66.7 | F | 0 | 0 | 7 | 29 | 0 | 80.6 |
B | 0 | 0 | 1 | 1 | 4 | 66.7 | B | 0 | 2 | 0 | 0 | 8 | 80.0 |
UA | 80.0 | 94.7 | 61.3 | 72.7 | 80.0 | UA | 72.7 | 83.8 | 68.2 | 85.3 | 88.9 | ||
2019–20 (OA: 80.8) | 2020–21 (OA: 85.9) | ||||||||||||
W | A | D | F | B | PA | W | A | D | F | B | PA | ||
W | 7 | 0 | 0 | 0 | 0 | 100 | W | 4 | 0 | 0 | 0 | 1 | 80.0 |
A | 1 | 21 | 0 | 0 | 0 | 95.5 | A | 1 | 16 | 1 | 0 | 0 | 88.9 |
D | 0 | 0 | 13 | 9 | 0 | 59.1 | D | 0 | 0 | 19 | 2 | 2 | 82.6 |
F | 0 | 0 | 6 | 28 | 0 | 82.4 | F | 0 | 0 | 4 | 32 | 0 | 88.9 |
B | 0 | 2 | 1 | 0 | 11 | 78.6 | B | 1 | 2 | 0 | 0 | 14 | 82.4 |
UA | 87.5 | 91.3 | 65.0 | 75.7 | 100 | UA | 66.7 | 88.9 | 79.2 | 94.1 | 82.4 |
Wetland/ Saltpan | Agriculture /Open Field | Degraded forest/Bush | Forest | Built-Up/Disturbed Areas | |
---|---|---|---|---|---|
Total | |||||
2015–17 | 4754 (7.9) | 10,984 (18.3) | 18,516 (30.8) | 22,041 (36.7) | 3789 (6.3) |
2018–19 | 4506 (7.5) | 13,137 (21.9) | 14,424 (24.0) | 22,045 (36.7) | 5965 (9.9) |
2019–20 | 3917 (6.5) | 13,462 (22.4) | 13,392 (22.3) | 20,851 (34.7) | 8387 (14.0) |
2020–21 | 2969 (4.9) | 11,011 (18.3) | 13,910 (23.1) | 21,626 (36.0) | 10,614 (17.7) |
INP | |||||
2015–17 | 16 (0.1) | 1100 (7.5) | 5422 (37.0) | 7303 (49.8) | 830 (5.7) |
2018–19 | 30 (0.2) | 1451 (9.9) | 3236 (22.1) | 7344 (50.1) | 2609 (17.8) |
2019–20 | 27 (0.2) | 1416 (9.7) | 3689 (25.2) | 6575 (44.9) | 2948 (20.1) |
2020–21 | 13 (0.1) | 814 (5.5) | 3724 (25.4) | 6988 (47.6) | 3133 (21.4) |
TWS | |||||
2015–17 | 11 (0.1) | 342 (3.0) | 4117 (36.1) | 6373 (56.0) | 547 (4.8) |
2018–19 | 19 (0.2) | 534 (4.7) | 4065 (35.6) | 6199 (54.4) | 586 (5.1) |
2019–20 | 23 (0.2) | 527 (4.6) | 4141 (36.4) | 5628 (49.4) | 1066 (9.4) |
2020–21 | 13 (0.1) | 271 (4.6) | 3905 (34.2) | 6290 (55.1) | 936 (8.2) |
Inside of camps | |||||
2015–17 | 26 (1.0) | 398 (15.6) | 1095 (43.0) | 717 (28.2) | 308 (12.1) |
2018–19 | 21 (0.8) | 512 (20.1) | 419 (16.5) | 200 (7.9) | 1395 (54.8) |
2019–20 | 16 (0.6) | 384 (15.1) | 396 (15.6) | 228 (9.0) | 1520 (59.7) |
2020–21 | 9 (0.4) | 227 (8.9) | 529 (20.8) | 159 (6.2) | 1622 (63.7) |
1 km from camps | |||||
2015–17 | 440 (6.9) | 1135 (17.7) | 2356 (36.8) | 2044 (31.9) | 430 (6.7) |
2018–19 | 417 (6.5) | 1579 (24.6) | 1796 (28.0) | 1706 (26.6) | 912 (14.2) |
2019–20 | 239 (3.7) | 1728 (27.0) | 1672 (26.1) | 1597 (24.9) | 1166 (18.2) |
2020–21 | 266 (4.1) | 1233 (19.2) | 1680 (26.2) | 1772 (27.6) | 1466 (22.8) |
2015–17 | Wetland/ Saltpan | Agriculture /Open Field | Degraded Forest/Bush | Forest | Built-Up /Disturbed Areas |
---|---|---|---|---|---|
2018–19 | 15 (0.3) | 772 (12.9) | 2554 (42.8) | 1122 (18.8) | 1502 (25.2) |
2019–20 | 29 (0.3) | 1245 (14.8) | 3921 (46.8) | 1273 (15.2) | 1916 (22.9) |
2020–21 | 106 (1.0) | 2421 (22.8) | 4941 (46.6) | 1569 (14.8) | 1573 (14.8) |
2020–21 | Wetland/ Saltpan | Agriculture /Open Field | Degraded Forest/Bush | Forest | Built-Up /Disturbed Areas |
---|---|---|---|---|---|
2015–17 | |||||
Wetland/Saltpan | 2456 | 1875 | 218 | 89 | 106 |
Agriculture/Open field | 288 | 7206 | 859 | 206 | 2421 |
Degraded forest/Bush | 105 | 1283 | 6767 | 5418 | 4941 |
Forest | 90 | 415 | 4419 | 15,540 | 1569 |
Built-up/Disturbed areas | 15 | 225 | 1633 | 341 | 1573 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakamoto, M.; Ullah, S.M.A.; Tani, M. Land Cover Changes after the Massive Rohingya Refugee Influx in Bangladesh: Neo-Classic Unsupervised Approach. Remote Sens. 2021, 13, 5056. https://doi.org/10.3390/rs13245056
Sakamoto M, Ullah SMA, Tani M. Land Cover Changes after the Massive Rohingya Refugee Influx in Bangladesh: Neo-Classic Unsupervised Approach. Remote Sensing. 2021; 13(24):5056. https://doi.org/10.3390/rs13245056
Chicago/Turabian StyleSakamoto, Maiko, Shah M. Asik Ullah, and Masakazu Tani. 2021. "Land Cover Changes after the Massive Rohingya Refugee Influx in Bangladesh: Neo-Classic Unsupervised Approach" Remote Sensing 13, no. 24: 5056. https://doi.org/10.3390/rs13245056
APA StyleSakamoto, M., Ullah, S. M. A., & Tani, M. (2021). Land Cover Changes after the Massive Rohingya Refugee Influx in Bangladesh: Neo-Classic Unsupervised Approach. Remote Sensing, 13(24), 5056. https://doi.org/10.3390/rs13245056