Spatial and Temporal Variations of Aerosol Optical Thickness over the China Seas from Himawari-8
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Himawari-8 AOT
2.3. AERONET AOT
3. Results and Discussion
3.1. Validation of Himawari-8 AOT
3.2. Spatial Distribution
3.3. Temporal Variation
3.3.1. Diurnal Variation
3.3.2. Monthly Variation
3.3.3. Seasonal Variation
4. Conclusions
- (1)
- The H8 AOT/JAXA is consistent with the AERONET AOT at the pixel level without cloud contamination within a certain spatiotemporal window over most of the China Seas, except for some coastal regions. The H8 AOT/JAXA retrievalsagree very well with AERONET measurements, with a high correlation coefficient of 0.914 and small MAE and RMSE values of 0.081 and 0.11, respectively. Approximately 65% of the matchups fall in the EE, and the largest concentration of the matchups appear at 0.1 < AOT < 0.4. The performance of H8 AOT/JAXA over the open ocean was better than that over coastal seas.
- (2)
- The most significant spatial patterns are that AOT over high latitude seas are generally larger than those over low latitude seas, and AOT is distributed in strips along the coastline and decreases gradually with increasing distance from the coast.
- (3)
- Based on the number of pixels that have eight consecutive validated hourly observations from 9:00 a.m. to 4:00 p.m. local time each day, the diurnal variation of AOT was proven. AOT decreases gradually starting from 9:00 a.m. in the morning local time, remains stable at noon (11:00 a.m.–12:00 p.m.), and then begins to increase steadily in the afternoon. The rate of increase slows after 3:00 p.m. and AOT peaks at 4:00 p.m. The percentage daily departure of AOT showed a very similar pattern over the East China Seas and generally ranged within 20%, while in the NSCS, AOT increased sharply in the afternoon and reached a maximum (>40%) at 4:00 p.m.
- (4)
- The long-term monthly variation in AOT shows a pronounced annual cycle. For the BS and YS, there is usually a peak above 0.6 in July in summer, however the emergence of spring peaks is more unpredictable. The summer peaks in the ECS and NSCS drop more sharply than those in the BS and YS. A gradual decline in AOT for various seas has been observed since 2015.
- (5)
- The seasonal variation of the spatial pattern shows that for the BS, the largest AOT was observed in summer, followed by spring, autumn, and winter. For the YS and ECS, the maximum AOT was observed in spring, followed by summer, winter, and autumn. For the NSCS, the largest AOT was observed in spring, followed by autumn, winter, and summer.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Putaud, J.-P.; Van Dingenen, R.; Alastuey, A.; Bauer, H.; Birmili, W.; Cyrys, J.; Flentje, H.; Fuzzi, S.; Gehrig, R.; Hansson, H.C.; et al. A European Aerosol phenomenology-3: Physical and Chemical Characteristics of Particulate Matter from 60 Rural, Urban, and Kerbside Sites across Europe. Atmos. Environ. 2010, 44, 1308–1320. [Google Scholar] [CrossRef]
- Gupta, P.; Christopher, S.A.; Wang, J.; Gehrig, R.; Lee, Y.; Kumar, N. Satellite Remote Sensing of Particulate Matter and Air Quality Assessment over Global Cities. Atmos. Environ. 2006, 40, 5880–5892. [Google Scholar] [CrossRef]
- Nel, A. Air Pollution-Related Illness: Effects of Particles. Science 2005, 308, 804–806. [Google Scholar] [CrossRef] [PubMed]
- Haywood, J.; Boucher, O. Estimates of the Direct and Indirect Radiative Forcing Due to Tropospheric Aerosols: A Review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Ventura, A.; Simões, E.F.C.; Almeida, A.S.; Martins, R.; Duarte, A.C.; Loureiro, S.; Duarte, R.M.B.O. Deposition of Aerosols onto Upper Ocean and Their Impacts on Marine Biota. Atmosphere 2021, 12, 684. [Google Scholar] [CrossRef]
- Pérez-Ramírez, D.; Whiteman, D.N.; Veselovskii, I.; Ferrare, R.; Titos, G.; Granados-Muñoz, M.J.; Sánchez-Hernández, G.; Navas-Guzmán, F. Spatiotemporal Changes in Aerosol Properties by Hygroscopic Growth and Impacts on Radiative Forcing and Heating Rates during DISCover-AQ 2011. Atmos. Chem. Phys. 2021, 21, 12021–12048. [Google Scholar] [CrossRef]
- Mhawish, A.; Kumar, M.; Mishra, A.K.; Srivastava, P.K.; Banerjee, T. Remote Sensing of Aerosols from Space: Retrieval of Properties and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 978-0-12810-438-5. [Google Scholar]
- Xie, S.P.; Xie, Q.; Wang, D.; Liu, W.T. Summer Upwelling in the South China Sea and Its Role in Regional Climate Variations. J. Geophys. Res. 2003, 108, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhou, M. Temporal and Spatial Characteristics of Aerosols over the East China Sea. Acta Oceanol. Sin. 1999, 21, 32–40. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, F.; Zhao, W.; Gao, F.; Tang, J. Ground Surface Observation of Aerosol Optical Thickness over Yellow Sea Region. Chin. J. Quantum Electron. 2003, 20, 635–640. [Google Scholar] [CrossRef]
- Zhao, W.; Tang, J.; Gao, F.; Lin, M. Measurement and Study of Aerosol Optical Properties over the Huanghai Sea and the East China Sea in the Spring. Acta Oceanol. Sin. 2005, 27, 46–53. [Google Scholar] [CrossRef]
- Tan, H.; Wu, D.; Bi, X. Measurement and Study of Aerosol Optical Depth over Northern South China Sea. J. Trop. Oceanogr. 2006, 25, 21–25. [Google Scholar] [CrossRef]
- Tu, Q.; Hao, Z.; Yan, Y.; Tao, B.; Chung, C.; Kim, S. Aerosol Optical Properties around the East China Seas Based on AERONET Measurements. Atmosphere 2021, 12, 642. [Google Scholar] [CrossRef]
- Kalluri, S.; Cao, C.; Heidinger, A.; Ignatov, A.; Key, J.; Smith, T.; Less, V. The Advanced Very High Resolution Radiometer: Contributing to Earth Observations for over 40 Years. Bull. Am. Meteorol. Soc. 2021, 102, 351–366. [Google Scholar] [CrossRef]
- Hsu, N.C.; Gautam, R.; Sayer, A.M.; Bettenhausen, C.; Li, C.; Jeong, M.J.; Tsay, S.-C.; Holben, B.N. Global and Regional Trends of Aerosol Optical Depth over Land and Ocean Using SeaWiFS Measurements from 1997 to 2010. Atmos. Chem. Phys. 2012, 12, 8037–8053. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Munchak, L.A.; Mattoo, S.; Patadia, F.; Remer, L.A.; Holz, R.E. Towards a Long-Term Global Aerosol Optical Depth Record: Applying a Consistent Aerosol Retrieval Algorithm to MODIS and VIIRS-Observed Reflectance. Atmos. Meas. Tech. 2015, 8, 4083–4110. [Google Scholar] [CrossRef] [Green Version]
- Remer, L.A.; Levy, R.C.; Mattoo, S.; Tanré, D.; Gupta, P.; Shi, Y.; Sawyer, V.; Munchak, L.A.; Zhou, Y.; Kim, M.; et al. The Dark Target Algorithm for Observing the Global Aerosol System: Past, Present, and Future. Remote Sens. 2020, 12, 2900. [Google Scholar] [CrossRef]
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Aerosols, Climate, and the Hydrological Cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [Green Version]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.; Lim, H.; Kim, J.; Lee, S.; Eck, T.F.; Holben, B.N.; Garay, M.J.; Hyer, E.J.; Saide, P.E.; Liu, H. Validation, Comparison, and Integration of GOCI, AHI, MODIS, MISR, and VIIRS Aerosol Optical Depth over East Asia During the 2016 KORUS-AQ Campaign. Atmos. Meas. Tech. 2019, 12, 4619–4641. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhao, C.; Luo, N.; Zhao, W.; Shi, W.; Yan, X. Evaluation and Comparison of Himawari-8 L2 V1.0, V2.1 and MODIS C6.1 Aerosol Products over Asia and the Oceania Regions. Atmos. Environ. 2020, 220, 117068. [Google Scholar] [CrossRef]
- Cox, C.S.; Munk, W.H. Statistics of the Sea Surface Derived from Sun Glitter. J. Mar. Res. 1954, 13, 198–227. [Google Scholar]
- Yoshida, M.; Kikuchi, M.; Nagao, T.M.; Murakami, H.; Nomaki, T.; Higurashi, A. Common Retrieval of Aerosol Properties for Imaging Satellite Sensors. J. Meteorol. Soc. Japan. Ser. II 2018, 96B, 193–209. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) version 3 [database]—Automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Li, Z.; Sun, L.; Peng, Y.; Zhang, Z.; Li, Z.; Su, T.; Feng, L.; Cai, Z.; Wu, H. Evaluation and Uncertainty Estimate of Next-Generation Geostationary Meteorological Himawari-8/AHI Aerosol Products. Sci. Total Environ. 2019, 692, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Peers, F.; Francis, P.; Abel, S.J.; Barrett, P.A.; Bower, K.N.; Cotterell, M.I.; Crawford, I.; Davies, N.W.; Fox, C.; Fox, S.; et al. Observation of Absorbing Aerosols above Clouds over the South-East Atlantic Ocean from the Geostationary Satellite SEVIRI—Part 2: Comparison with MODIS and Aircraft Measurements from the CLARIFY-2017 Field Campaign. Atmos. Chem. Phys. 2021, 21, 3235–3254. [Google Scholar] [CrossRef]
- Toth, T.D.; Zhang, J.; Campbell, J.R.; Reid, J.S.; Shi, Y.; Johnson, R.S.; Smirnov, A.; Vaughan, M.A.; Winker, D.M. Investigating Enhanced Aqua MODIS Aerosol Optical Depth Retrievals over the Mid-to-High Latitude Southern Oceans through Intercomparison with Co-Located CALIOP, MAN, and AERONET Data Sets. J. Geophys. Res. Atmos. 2013, 118, 4700–4714. [Google Scholar] [CrossRef]
- Novoa, S.; Doxaran, D.; Ody, A.; Vanhellemont, Q.; Lafon, V.; Lubac, B.; Gernez, P. Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters. Remote Sens. 2017, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Lennartson, E.M.; Wang, J.; Gu, J.; Castro Garcia, L.; Ge, C.; Gao, M.; Choi, M.; Saide, P.E.; Carmichael, G.R.; Kim, J.; et al. Diurnal Variation of Aerosol Optical Depth and PM2.5 in South Korea: A Synthesis from AERONET, Satellite (GOCI). Atmos. Chem. Phys. 2018, 18, 15125–15144. [Google Scholar] [CrossRef] [Green Version]
- Bian, H.; Chin, M.; Rodriguez, J.M.; Yu, H.; Penner, J.E.; Strahan, S. Sensitivity of Aerosol Optical Thickness and Aerosol Direct Radiative Effect to Relative Humidity. Atmos. Chem. Phys. 2009, 9, 2375–2386. [Google Scholar] [CrossRef] [Green Version]
- Chepfer, H.; Brogniez, H.; Noel, V. Diurnal Variations of Cloud and Relative Humidity Profiles across the Tropics. Sci. Rep. 2019, 9, 16045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.-C.; Shi, G.-Y.; Wang, H. Long-Range Transport of Spring Dust Storms in Inner Mongolia and Impact on the China Seas. Atmos. Environ. 2012, 46, 299–308. [Google Scholar] [CrossRef]
- Zhang, J.; Reid, J.S.; Alfaro-Contreras, R.; Xian, P. Has China Been Exporting Less Particulate Air Pollution over the Past Decade? Geophys. Res. Lett. 2017, 44, 2941–2948. [Google Scholar] [CrossRef]
- Zheng, X. Spatial and Temporal Variations of Aerosol Optical Depth and Influence Factors over the East China Sea. Int. J. Environ. Monit. Anal. 2016, 4, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Bai, Y.; Wang, D.; Li, T.; He, X. Satellite Retrieval of Air Pollution Changes in Central and Eastern China during COVID-19 Lockdown Based on a Machine Learning Model. Remote Sens. 2021, 13, 2525. [Google Scholar] [CrossRef]
- Ouyang, L.; Hui, F.; Zhu, L.; Cheng, X.; Cheng, B.; Shokr, M.; Zhao, J.; Ding, M.; Zeng, T. The Spatiotemporal Patterns of Sea Ice in the Bohai Sea during the Winter Seasons of 2000–2016. Int. J. Digit. Earth. 2019, 12, 893–909. [Google Scholar] [CrossRef]
Site Name | Longitude (°E) | Latitude (°N) | Altitude (m) | Time Period | Surface Type |
---|---|---|---|---|---|
Baengnyeong | 124.630 | 37.966 | 136 | July 2015–August 2016 | Island |
Socheongcho | 124.738 | 37.423 | 28 | October 2015–July 2021 | Roof deck |
Anmyon | 126.330 | 36.539 | 47 | July 2015–November 2019 | Island |
Gosan_SNU | 126.162 | 33.292 | 72 | July 2015–September 2016 | Island |
Ieodo_Station | 125.182 | 32.123 | 29 | July 2015–August 2019 | Roof deck |
Okinawa_Hedo | 128.249 | 28.867 | 60 | March 2019–July 2021 | Cape |
Cape_Fuguei | 121.538 | 25.297 | 15 | November 2016–July 2021 | Cape |
Dongsha_Island | 116.729 | 20.699 | 5 | July 2015–July 2021 | Island |
Tai_Ping | 114.362 | 10.376 | 4 | July 2015–July 2021 | Island |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, Q.; Zhao, Y.; Guo, J.; Cheng, C.; Shi, L.; Yan, Y.; Hao, Z. Spatial and Temporal Variations of Aerosol Optical Thickness over the China Seas from Himawari-8. Remote Sens. 2021, 13, 5082. https://doi.org/10.3390/rs13245082
Tu Q, Zhao Y, Guo J, Cheng C, Shi L, Yan Y, Hao Z. Spatial and Temporal Variations of Aerosol Optical Thickness over the China Seas from Himawari-8. Remote Sensing. 2021; 13(24):5082. https://doi.org/10.3390/rs13245082
Chicago/Turabian StyleTu, Qianguang, Yun Zhao, Jing Guo, Chunmei Cheng, Liangliang Shi, Yunwei Yan, and Zengzhou Hao. 2021. "Spatial and Temporal Variations of Aerosol Optical Thickness over the China Seas from Himawari-8" Remote Sensing 13, no. 24: 5082. https://doi.org/10.3390/rs13245082
APA StyleTu, Q., Zhao, Y., Guo, J., Cheng, C., Shi, L., Yan, Y., & Hao, Z. (2021). Spatial and Temporal Variations of Aerosol Optical Thickness over the China Seas from Himawari-8. Remote Sensing, 13(24), 5082. https://doi.org/10.3390/rs13245082