Dual-Weighted Kernel Extreme Learning Machine for Hyperspectral Imagery Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Weighted Kernel Extreme Learning Machine
2.1.1. Single-Layer Feedforward Neural Networks (SLFN)
2.1.2. ELM and Weighted Kernel ELM
2.2. Spatial Feature Extraction
2.3. Proposed Dual-Weighted Kernel ELM-Based Method
Algorithm (Spatial–spectral dual-weighted kernel ELM for HSI classification) |
Input: HSI data set, r, , L 1. Spectral information is directly extracted from HSI data set. 2. PCA operations are performed and PCs are chosen, according to the quality of information the PCs contain; afterwards, the spatial information is extracted by guided image filtering, according to Equation (23). 3. Kernel weighted summation is formed by spectral and spatial–spectral information, according to Equations (24)–(26). 4. The weighted matrix is acquired, according to Equations (28)–(29). 5. Initiation of the weighted kernel extreme learning machine. 6. Calculation of with Equations (16)–(17). 7. Calculation of the predicted output with Equation (27). 8. Sample is assigned to the highest value, according to Equation (30).End procedure |
3. Experimental Results and Analysis
3.1. Hyperspectral Image Data Sets
3.1.1. Indian Pines
3.1.2. Pavia University
3.1.3. Salinas
3.2. Parameter Settings
3.3. Accuracy of Classification and Analysis
3.3.1. Results on the Indian Pines Data Set
3.3.2. Results on the University of Pavia Image Data Set
3.3.3. Results on the Salinas Image
3.4. Ablation Study
3.5. G-Mean as a Supplementary Measure for Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Camps-Valls, G.; Tuia, D.; Bruzzone, L.; Benediktsson, J.A. Advances in Hyperspectral Image Classification: Earth Monitoring with Statistical Learning Methods. IEEE Signal Process. Mag. 2014, 31, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Gualtieri, J.A.; Cromp, R.F. Support vector machines for hyperspectral remote sensing classification. Proc. SPIE Workshop Adv. Comput. Assist. Recognit. 1998, 3584, 221–232. [Google Scholar]
- Campsvalls, G.; Gomezchova, L.; Munozmari, J.; Vilafrances, J.; Calpemaravilla, J. Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2006, 3, 93–97. [Google Scholar] [CrossRef]
- Fauvel, M.; Chanussot, J.; Benediktsson, J.A. Evaluation of kernels for multiclass classification of hyperspectral remote sensing data. In Proceedings of the 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Toulouse, France, 14–19 May 2006; p. II. [Google Scholar] [CrossRef]
- Fauvel, M.; Arbelot, B.; Benediktsson, J.A.; Sheeren, D.; Chanussot, J. Detection of Hedges in a Rural Landscape Using a Local Orientation Feature: From Linear Opening to Path Opening. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 15–26. [Google Scholar] [CrossRef]
- Valero, S.; Chanussot, J.; Benediktsson, J.A.; Talbot, H.; Waske, B. Advanced directional mathematical morphology of the detection of the road network in very high resolution remote sensing images. Pattern Recognit. Lett. 2010, 31, 1120–1127. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Li, S.; Duan, W.; Ren, J.; Benediktsson, J.A. Classification of Hyperspectral Images by Exploiting Spectral-Spatial Information of Super pixel via Multiple Kernels. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6663–6674. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Prasad, S. Semi-Supervised Deep Learning Using Pseudo Labels for Hyperspectral Image Classification. IEEE Trans. Image Process. 2018, 27, 1259–1270. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Xu, X.; Shi, Z.; Zhang, N.; Luo, H.; Lan, X. DSSNet: A Simple Dilated Semantic Segmentation Network for Hyperspectral Imagery Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1968–1972. [Google Scholar] [CrossRef]
- Pan, B.; Shi, Z.; Xu, X. R-VCANet: A New Deep-Learning-Based Hyperspectral Image Classification Method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1975–1986. [Google Scholar] [CrossRef]
- Mei, S.; Ji, J.; Geng, Y.; Zhang, Z.; Li, X.; Du, Q. Unsupervised Spatial–Spectral Feature Learning by 3D Convolutional Autoencoder for Hyperspectral Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6808–6820. [Google Scholar] [CrossRef]
- Peng, J.; Sun, W.; Du, Q. Self-Paced Joint Sparse Representation for the Classification of Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1183–1194. [Google Scholar] [CrossRef]
- Peng, J.; Li, L.; Tang, Y.Y. Maximum Likelihood Estimation-Based Joint Sparse Representation for the Classification of Hyperspectral Remote Sensing Images. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 1790–1802. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Lin, J.; Wang, Q. Hyperspectral Image Classification via Multitask Joint Sparse Representation and Stepwise MRF Optimization. IEEE Trans. Cybern. 2016, 46, 2966–2977. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Liu, T.; Jia, X.; Benediktsson, J.A.; Chanussot, J. Nonlinear Multiple Kernel Learning with Multiple-Structure-Element Extended Morphological Profiles for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3235–3247. [Google Scholar] [CrossRef]
- Li, J.; Marpu, P.R.; Plaza, A.; Bioucas-Dias, J.M.; Benediktsson, J.A. Generalized Composite Kernel Framework for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4816–4829. [Google Scholar] [CrossRef]
- Li, W.; Prasad, S.; Fowler, J.E. Decision Fusion in Kernel-Induced Spaces for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3399–3411. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; He, N.; Li, S.; Ghamisi, P.; Benediktsson, J.A. Extinction Profiles Fusion for Hyperspectral Images Classification. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1803–1815. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans. Syst. Man Cybern. Part B 2012, 42, 513–529. [Google Scholar] [CrossRef] [Green Version]
- Pal, M.; Maxwell, A.E.; Warner, T.A. Kernel-based extreme learning machine for remote sensing image classification. Remote Sens. Lett. 2013, 4, 853–862. [Google Scholar] [CrossRef]
- Zhou, Y.; Peng, J.; Chen, C.L.P. Extreme Learning Machine with Composite Kernels for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2351–2360. [Google Scholar] [CrossRef]
- Chen, C.; Li, W.; Su, H.; Liu, K. Spectral-Spatial Classification of Hyperspectral Image Based on Kernel Extreme Learning Machine. Remote Sens. 2014, 6, 5795–5814. [Google Scholar] [CrossRef] [Green Version]
- Argüello, F.; Heras, D.B. ELM-based spectral–spatial classification of hyperspectral images using extended morphological profiles and composite feature mappings. Int. J. Remote Sens. 2015, 36, 645–664. [Google Scholar] [CrossRef]
- Jiang, M.; Cao, F.; Lu, Y. Extreme Learning Machine with Enhanced Composite Feature for Spectral-Spatial Hyperspectral Image Classification. IEEE Access 2018, 6, 22645–22654. [Google Scholar] [CrossRef]
- Cao, F.; Yang, Z.; Ren, J.; Ling, B.W.-K.; Zhao, H.; Sun, M.; Benediktsson, J.A. Sparse Representation-Based Augmented Multinomial Logistic Extreme Learning Machine with Weighted Composite Features for Spectral–Spatial Classification of Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6263–6279. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xi, B.; Du, Q.; Song, R.; Li, Y.; Ren, G. Deep Kernel Extreme-Learning Machine for the Spectral–Spatial Classification of Hyperspectral Imagery. Remote Sens. 2018, 10, 2036. [Google Scholar] [CrossRef] [Green Version]
- Ergul, U.; Bilgin, G. HCKBoost: Hybridized composite kernel boosting with extreme learning machines for hyperspectral image classification. Neurocomputing 2019, 334, 100–113. [Google Scholar] [CrossRef]
- Le, B.T.; Ha, T.T.L. Hyperspectral image classification based on average spectral-spatial features and improved hierarchical-ELM. Infrared Phys. Technol. 2019, 102, 103013. [Google Scholar] [CrossRef]
- Lv, F.; Han, M. Hyperspectral image classification based on multiple reduced kernel extreme learning machine. Int. J. Mach. Learn. Cybern. 2019, 10, 3397–3405. [Google Scholar] [CrossRef]
- Marpu, P.R.; Pedergnana, M.; Mura, M.D.; Benediktsson, J.A.; Bruzzone, L. Automatic Generation of Standard Deviation Attribute Profiles for Spectral–Spatial Classification of Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2013, 10, 293–297. [Google Scholar] [CrossRef]
- Su, H.; Cai, Y.; Du, Q. Firefly-Algorithm-Inspired Framework with Band Selection and Extreme Learning Machine for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 309–320. [Google Scholar] [CrossRef]
- Su, H.; Tian, S.; Cai, Y.; Sheng, Y.; Chen, C.; Najafian, M. Optimized extreme learning machine for urban land cover classification using hyperspectral imagery. Front. Earth Sci. 2017, 11, 765–773. [Google Scholar] [CrossRef]
- Li, J.; Du, Q.; Li, W.; Li, Y. Optimizing extreme learning machine for hyperspectral image classification. J. Appl. Remote Sens. 2015, 9, 97296. [Google Scholar] [CrossRef]
- Lv, F.; Han, M.; Qiu, T. Remote Sensing Image Classification Based on Ensemble Extreme Learning Machine with Stacked Autoencoder. IEEE Access 2017, 5, 9021–9031. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Guided Image Filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef]
- Pan, B.; Shi, Z.; Xu, X. Hierarchical Guidance Filtering-Based Ensemble Classification for Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4177–4189. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, X.; Zhao, X.; Yang, D.; Bai, Y. Hyperspectral image classification with SVM and guided filter. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 56. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, H.; Zhang, L.; Xue, J.-H. Discriminatively guided filtering (DGF) for hyperspectral image classification. Neurocomputing 2018, 275, 1981–1987. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zheng, J.; Zhu, Z.; Yao, W.; Wu, S. Weighted Guided Image Filtering. IEEE Trans. Image Process. 2015, 24, 120–129. [Google Scholar] [CrossRef]
- Fletcher, R. Practical Methods of Optimization: Constrained Optimization; Wiley: New York, NY, USA, 1981; Volume 2, pp. 143–144. [Google Scholar]
- Zong, W.; Huang, G.-B.; Chen, Y. Weighted extreme learning machine for imbalance learning. Neurocomputing 2013, 101, 229–242. [Google Scholar] [CrossRef]
- Raghuwanshi, B.S.; Shukla, S. Class imbalance learning using UnderBagging based kernelized extreme learning machine. Neurocomputing 2019, 329, 172–187. [Google Scholar] [CrossRef]
Class No. | Train/Test | ELM | KELM | WKELM | SS-KELM | KELM-CK | ASS-H-DELM | HCKBoost | DW-KELM |
---|---|---|---|---|---|---|---|---|---|
1 | 5/41 | 43.14 | 81.65 | 86.75 | 84.55 | 87.92 | 86.50 | 87.23 | 91.42 |
2 | 143/1285 | 70.51 | 73.03 | 74.19 | 90.23 | 90.65 | 89.80 | 89.88 | 88.98 |
3 | 883/747 | 45.61 | 73.25 | 76.70 | 93.86 | 95.10 | 95.12 | 94.16 | 96.29 |
4 | 24/213 | 42.24 | 62.16 | 68.75 | 66.38 | 92.86 | 92.66 | 93.52 | 94.36 |
5 | 50/433 | 85.96 | 88.53 | 89.97 | 94.15 | 94.63 | 95.35 | 94.27 | 97.14 |
6 | 75/655 | 92.16 | 92.61 | 93.58 | 94.70 | 95.85 | 95.40 | 99.65 | 99.62 |
7 | 3/25 | 20.26 | 66.58 | 72.13 | 69.22 | 97.05 | 94.68 | 95.10 | 96.96 |
8 | 49/429 | 96.64 | 96.08 | 97.08 | 97.35 | 99.50 | 99.45 | 99.43 | 99.98 |
9 | 2/18 | 23.30 | 63.21 | 73.71 | 68.35 | 99.45 | 99.13 | 100 | 99.85 |
10 | 97/875 | 50.38 | 79.91 | 83.56 | 94.27 | 90.01 | 95.60 | 96.31 | 93.30 |
11 | 247/2208 | 79.82 | 86.35 | 88.71 | 95.12 | 95.25 | 94.48 | 96.55 | 98.34 |
12 | 62/531 | 45.18 | 82.24 | 84.62 | 85.35 | 87.62 | 88.26 | 89.34 | 95.61 |
13 | 22/183 | 97.26 | 99.01 | 99.45 | 99.13 | 99.03 | 99.10 | 99.25 | 99.38 |
14 | 130/1135 | 97.27 | 97.44 | 97.75 | 98.35 | 99.67 | 99.85 | 99.30 | 99.80 |
15 | 38/348 | 40.17 | 72.58 | 76.29 | 75.20 | 91.28 | 92.68 | 93.29 | 96.75 |
16 | 10/83 | 46.20 | 86.23 | 87.13 | 87.25 | 86.53 | 88.59 | 86.36 | 94.69 |
OA | 63.52 | 84.45 | 88.25 | 94.55 | 94.28 | 94.30 | 94.55 | 98.25 | |
std | 1.05 | 1.29 | 0.95 | 0.95 | 0.69 | 0.88 | 0.95 | 0.95 | |
AA | 56.06 | 81.57 | 84.25 | 90.28 | 93.18 | 93.16 | 93.27 | 98.27 | |
std | 1.83 | 2.26 | 1.41 | 1.56 | 1.72 | 1.16 | 0.63 | 0.99 | |
κ | 65.37 | 80.73 | 84.52 | 84.52 | 93.16 | 93.22 | 92.19 | 94.25 | |
std | 1.25 | 2.44 | 2.30 | 2.30 | 0.72 | 0.75 | 1.16 | 0.86 | |
Time(s) | 0.35 | 3.65 | 5.41 | 47.56 | 43.67 | 135.25 | 322.45 | 96.26 | |
std | 0.03 | 0.38 | 0.85 | 1.08 | 0.68 | 0.65 | 1.05 | 0.58 |
Training Numbers | Assessments | ELM | KELM | WKELM | SS-KELM | KELM-CK | ASS-H-DELM | HCKBoost | DW-KELM |
---|---|---|---|---|---|---|---|---|---|
5 | OA | 42.61 | 48.33 | 51.25 | 65.23 | 64.80 | 65.42 | 66.14 | 70.50 |
std | 1.23 | 2.88 | 2.37 | 2.55 | 0.85 | 1.28 | 0.55 | 3.22 | |
AA | 53.01 | 61.25 | 64.75 | 74.58 | 76.25 | 77.80 | 77.45 | 81.91 | |
std | 2.17 | 1.87 | 1.95 | 1.29 | 1.46 | 0.66 | 1.17 | 1.83 | |
κ | 36.45 | 42.67 | 44.56 | 62.06 | 58.95 | 64.35 | 64.62 | 68.12 | |
std | 2.93 | 3.12 | 2.23 | 2.12 | 0.67 | 1.25 | 1.25 | 3.35 | |
10 | OA | 55.22 | 62.22 | 65.26 | 73.52 | 74.85 | 76.95 | 77.25 | 80.84 |
std | 2.15 | 2.17 | 1.89 | 2.27 | 1.45 | 1.23 | 0.87 | 4.01 | |
AA | 68.58 | 73.50 | 75.53 | 80.35 | 79.12 | 90.23 | 91.13 | 92.26 | |
std | 2.85 | 1.98 | 1.66 | 1.35 | 2.26 | 0.68 | 1.65 | 2.99 | |
κ | 50.61 | 58.27 | 62.75 | 65.16 | 72.35 | 70.15 | 73.52 | 78.53 | |
std | 2.21 | 2.31 | 1.99 | 2.54 | 0.75 | 0.95 | 0.95 | 4.59 | |
15 | OA | 62.59 | 68.12 | 71.19 | 73.56 | 79.56 | 82.12 | 83.14 | 87.28 |
std | 1.55 | 2.21 | 2.09 | 2.113 | 1.46 | 1.55 | 1.54 | 2.67 | |
AA | 74.62 | 78.29 | 78.29 | 83.59 | 88.23 | 89.52 | 90.25 | 94.26 | |
std | 1.75 | 1.25 | 1.25 | 1.86 | 1.68 | 0.68 | 1.44 | 1.35 | |
κ | 60.45 | 63.82 | 65.28 | 76.18 | 79.12 | 81.65 | 82.06 | 84.72 | |
std | 1.22 | 2.23 | 1.85 | 2.53 | 1.88 | 1.56 | 0.92 | 2.66 | |
20 | OA | 68.10 | 69.26 | 72.35 | 81.53 | 87.85 | 84.56 | 85.16 | 89.91 |
std | 1.05 | 1.31 | 1.56 | 1.68 | 1.72 | 0.68 | 1.18 | 1.23 | |
AA | 78.29 | 80.20 | 83.69 | 88.53 | 94.56 | 93.13 | 94.25 | 95.59 | |
std | 1.78 | 2.44 | 1.49 | 2.32 | 0.85 | 1.35 | 0.79 | 2.28 | |
κ | 64.87 | 67.65 | 70.65 | 83.12 | 86.89 | 85.65 | 86.16 | 89.86 | |
std | 0.98 | 3.10 | 2.69 | 2.29 | 1.27 | 0.58 | 1.59 | 2.55 | |
25 | OA | 69.42 | 71.21 | 73.25 | 83.23 | 87.85 | 88.45 | 89.26 | 93.06 |
std | 3.31 | 2.21 | 2.47 | 1.35 | 1.72 | 0.65 | 1.75 | 2.28 | |
AA | 79.35 | 82.20 | 84.55 | 89.55 | 94.56 | 94.18 | 95.25 | 97.23 | |
std | 1.52 | 2.41 | 1.85 | 1.56 | 0.85 | 0.65 | 1.97 | 1.12 | |
κ | 65.29 | 67.65 | 69.96 | 85.02 | 86.89 | 88.12 | 89.92 | 92.51 | |
std | 1.25 | 3.10 | 2.83 | 2.14 | 1.27 | 0.86 | 0.76 | 2.90 | |
30 | OA | 71.21 | 72.59 | 75.66 | 88.56 | 93.52 | 94.15 | 94.59 | 97.88 |
std | 1.72 | 2.62 | 1.82 | 0.56 | 0.55 | 0.73 | 1.14 | 1.21 | |
AA | 80.55 | 82.90 | 84.59 | 90.42 | 96.51 | 96.12 | 96.35 | 99.15 | |
std | 0.88 | 1.82 | 1.16 | 0.73 | 0.38 | 0.75 | 0.66 | 0.96 | |
κ | 67.37 | 69.82 | 72.59 | 87.05 | 90.68 | 91.65 | 92.39 | 95.42 | |
std | 2.21 | 1.75 | 1.69 | 1.35 | 0.75 | 0.64 | 1.36 | 0.87 |
Class | Train/test | ELM | KELM | WKELM | SS-KELM | ASS-H-DELM | CK-KELM | HCKBoost | DW-KELM |
---|---|---|---|---|---|---|---|---|---|
1 | 64/6599 | 72.56 | 77.15 | 80.28 | 91.82 | 92.88 | 92.60 | 95.15 | 100 |
2 | 184/18465 | 74.35 | 75.28 | 78.46 | 93.59 | 92.19 | 95.55 | 93.29 | 98.88 |
3 | 20/2079 | 66.19 | 67.13 | 78.37 | 86.551 | 86.99 | 86.28 | 90.03 | 94.29 |
4 | 28/3026 | 67.45 | 68.27 | 72.18 | 93.65 | 92.59 | 92.09 | 93.50 | 95.47 |
5 | 11/1134 | 70.23 | 74.52 | 77.28 | 97.59 | 95.35 | 97.46 | 97.86 | 98.27 |
6 | 48/4981 | 79.53 | 82.33 | 84.19 | 94.90 | 94.53 | 95.58 | 94.91 | 98.36 |
7 | 11/1319 | 76.58 | 78.65 | 82.34 | 95.29 | 97.28 | 95.36 | 95.28 | 97.85 |
8 | 34/3648 | 75.86 | 79.21 | 80.25 | 86.90 | 89.33 | 87.89 | 88.45 | 97.41 |
9 | 8/939 | 70.35 | 77.35 | 81.55 | 95.38 | 93.25 | 94.58 | 98.06 | 98.17 |
OA | 71.26 | 78.53 | 82.35 | 93.15 | 94.16 | 93.37 | 94.59 | 98.36 | |
std | 2.38 | 1.81 | 1.28 | 1.62 | 0.95 | 1.28 | 1.32 | 0.68 | |
AA | 73.66 | 83.76 | 86.57 | 95.16 | 95.51 | 93.53 | 95.26 | 99.22 | |
std | 1.25 | 1.29 | 1.17 | 1.33 | 0.98 | 1.29 | 1.35 | 0.65 | |
κ | 70.15 | 74.38 | 75.83 | 90.66 | 93.15 | 92.66 | 94.27 | 96.42 | |
std | 1.38 | 1.29 | 1.22 | 1.35 | 1.15 | 1.35 | 1.35 | 0.37 | |
Time(s) | 0.76 | 5.26 | 6.53 | 40.15 | 135.17 | 46.55 | 157.69 | 98.63 | |
std | 0.07 | 0.85 | 0.96 | 1.42 | 1.55 | 1.74 | 2.03 | 1.98 |
Training | Evaluation | ELM | KELM | WKELM | SS-KELM | KELM-CK | ASS-H-DELM | HCKBoost | DW-KELM |
---|---|---|---|---|---|---|---|---|---|
t5 | OA | 60.06 | 59.22 | 62.36 | 64.5 | 65.42 | 66.55 | 67.39 | 71.85 |
std | 3.72 | 5.83 | 3.12 | 1.98 | 4.55 | 3.37 | 4.16 | 6.52 | |
AA | 66.53 | 69.81 | 71.58 | 71.6 | 73.71 | 74.26 | 74.78 | 75.92 | |
std | 3.11 | 3.02 | 1.78 | 2.25 | 3.58 | 3.55 | 3.85 | 5.41 | |
κ | 49.92 | 51.52 | 53.34 | 54.96 | 56.56 | 60.29 | 61.95 | 62.65 | |
std | 3.85 | 5.52 | 4.19 | 4.55 | 5.35 | 4.46 | 4.29 | 6.86 | |
10 | OA | 47.25 | 64.17 | 66.38 | 71.25 | 78.46 | 79.62 | 80.89 | 83.29 |
std | 2.21 | 2.83 | 2.87 | 2.29 | 6.07 | 3.57 | 3.48 | 4.65 | |
AA | 59.62 | 74.62 | 76.28 | 82.36 | 85.12 | 85.6 | 85.49 | 85.65 | |
std | 2.29 | 3.56 | 2.66 | 2.05 | 2.85 | 3.31 | 2.96 | 4.65 | |
κ | 41.35 | 53.61 | 59.63 | 68.09 | 69.58 | 70.25 | 70.48 | 77.23 | |
std | 3.55 | 2.01 | 2.36 | 2.7 | 3.85 | 3.54 | 3.09 | 5.85 | |
15 | OA | 53.71 | 68.74 | 72.56 | 84.55 | 83.5 | 83.89 | 83.92 | 87.81 |
std | 3.52 | 1.27 | 1.35 | 1.85 | 6.15 | 4.42 | 3.99 | 2.81 | |
AA | 64.5 | 78.65 | 81.57 | 83.65 | 88.23 | 88.95 | 89.12 | 91.09 | |
std | 2.66 | 1.85 | 2.37 | 2.16 | 4.79 | 3.86 | 3.67 | 4.15 | |
κ | 49.18 | 63.59 | 65.56 | 80.03 | 81.51 | 83.87 | 84.02 | 87.75 | |
std | 3.35 | 3.02 | 2.08 | 1.45 | 3.65 | 3.28 | 3.47 | 2.29 | |
20 | OA | 58.02 | 71.56 | 73.71 | 86.95 | 88.66 | 89.93 | 91.05 | 93.31 |
std | 1.65 | 1.99 | 1.85 | 1.45 | 2.53 | 2.25 | 2.19 | 1.87 | |
AA | 70.25 | 80.36 | 83.35 | 92.35 | 90.9 | 91.32 | 91.85 | 93.72 | |
std | 1.18 | 2.68 | 2.43 | 2.18 | 1.51 | 1.27 | 1.07 | 1.88 | |
κ | 52.55 | 67.15 | 72.64 | 80.26 | 79.35 | 88.68 | 89.53 | 91.85 | |
std | 2.28 | 2.35 | 2.31 | 1.53 | 3.6 | 2.75 | 2.38 | 1.39 | |
25 | OA | 63.16 | 71.51 | 73.68 | 88.92 | 91.12 | 91.56 | 91.89 | 94.67 |
std | 2.21 | 3.02 | 2.79 | 1.85 | 1.06 | 0.98 | 0.88 | 0.78 | |
AA | 75.73 | 81.63 | 83.95 | 91.33 | 92.06 | 92..36 | 92.46 | 94.25 | |
std | 1.86 | 1.08 | 1.14 | 0.9 | 0.65 | 0.85 | 0.57 | 0.82 | |
κ | 60.52 | 67.14 | 71.43 | 86.59 | 87.13 | 89.82 | 90.23 | 91.86 | |
std | 2.26 | 2.25 | 2.52 | 1.12 | 1.87 | 1.24 | 0.97 | 0.99 | |
30 | OA | 70.06 | 79.16 | 82.36 | 93.22 | 92.82 | 93.19 | 94.2 | 98.15 |
std | 2.51 | 1.63 | 1.75 | 1.68 | 1.89 | 0.87 | 0.78 | 0.45 | |
AA | 72.25 | 85.29 | 87.65 | 95.67 | 94.25 | 94.68 | 96.13 | 99.12 | |
std | 0.89 | 0.89 | 1.29 | 1.55 | 2.21 | 2.89 | 1.17 | 0.8 | |
κ | 69.66 | 73.52 | 75.88 | 92.16 | 91.75 | 92.35 | 93.34 | 95.87 | |
std | 1.2 | 1.35 | 1.4 | 1.96 | 0.97 | 0.89 | 0.93 | 0.56 |
Class No. | Train/Test | ELM | KELM | WKELM | SS-KELM | KELM-CK | ASS-H-DELM | HCKBoost | DW-KELM |
---|---|---|---|---|---|---|---|---|---|
1 | 20/1989 | 84.32 | 85.62 | 86.25 | 87.80 | 87.55 | 86.35 | 88.26 | 90.35 |
2 | 37/3689 | 97.50 | 97.92 | 98.26 | 98.56 | 98.02 | 98.80 | 99.15 | 100 |
3 | 20/1956 | 86.15 | 87.50 | 88.53 | 90.23 | 89.10 | 90.02 | 91.23 | 92.83 |
4 | 14/1380 | 88.26 | 89.71 | 90.05 | 91.85 | 92.15 | 90.14 | 92.64 | 95.28 |
5 | 27/2651 | 76.54 | 77.95 | 79.21 | 79.55 | 78.63 | 77.27 | 78.15 | 81.95 |
6 | 40/3919 | 99.62 | 99.70 | 99.80 | 99.91 | 99.63 | 98.38 | 99.26 | 99.80 |
7 | 36/3543 | 74.52 | 76.20 | 79.26 | 78.26 | 77.23 | 76.68 | 79.16 | 81.37 |
8 | 113/11158 | 98.65 | 99.08 | 99.35 | 99.14 | 99.50 | 99.76 | 99.82 | 99.90 |
9 | 62/6141 | 71.52 | 73.84 | 76.38 | 75.94 | 76.49 | 77.25 | 79.98 | 82.31 |
10 | 33/3245 | 69.20 | 71.25 | 74.46 | 74.56 | 75.01 | 73.64 | 76.21 | 78.14 |
11 | 11/1057 | 79.15 | 81.65 | 84.50 | 85.30 | 86.25 | 84.48 | 85.65 | 87.21 |
12 | 19/1908 | 96.51 | 97.18 | 97.45 | 97.24 | 98.42 | 98.15 | 98.64 | 99.01 |
13 | 9/907 | 99.16 | 99.43 | 99.45 | 99.31 | 99.01 | 99.17 | 99.33 | 99.52 |
14 | 11/1059 | 97.27 | 97.75 | 98.10 | 98.64 | 99.27 | 98.49 | 99.16 | 99.75 |
15 | 73/7195 | 98.57 | 98.96 | 99.11 | 99.20 | 99.28 | 99.37 | 100 | 100 |
16 | 18/1789 | 98.20 | 98.76 | 98.23 | 98.45 | 98.53 | 98.29 | 98.87 | 99.47 |
OA | 86.62 | 88.07 | 90.32 | 92.58 | 94.35 | 93.22 | 96.38 | 98.35 | |
std | 2.35 | 1.68 | 1.65 | 0.99 | 0.76 | 0.96 | 1.16 | 0.95 | |
AA | 88.27 | 89.35 | 91.68 | 93.16 | 95.13 | 94.52 | 97.57 | 99.17 | |
std | 1.95 | 2.24 | 1.99 | 1.98 | 1.46 | 1.36 | 0.89 | 0.99 | |
κ | 86.16 | 88.25 | 90.60 | 91.11 | 93.23 | 93.65 | 94.55 | 96.18 | |
std | 1.66 | 2.13 | 2.09 | 1.68 | 1.12 | 1.75 | 1.30 | 1.16 | |
Time(s) | 0.56 | 4.46 | 5.24 | 60.57 | 47.55 | 141.06 | 335.85 | 98.95 | |
std | 0.02 | 0.09 | 0.06 | 1.44 | 0.88 | 0.71 | 1.05 | 0.87 |
Training | Evaluation | ELM | KELM | WELM | SS-KELM | KELM-CK | ASS-H-DELM | HCKBoost | DW-KELM |
---|---|---|---|---|---|---|---|---|---|
5 | OA | 81.75 | 83.5 | 84.62 | 85.13 | 83.16 | 84.64 | 83.72 | 91.52 |
std | 2.54 | 2.26 | 1.99 | 3.11 | 3.32 | 3.05 | 3.39 | 0.62 | |
AA | 86.88 | 89.89 | 89.6 | 86.88 | 89.45 | 89.92 | 90.02 | 95.28 | |
std | 1.71 | 2.83 | 2.95 | 2.05 | 2.21 | 1.88 | 1.67 | 0.82 | |
κ | 79.52 | 82.15 | 83.06 | 79.96 | 82.78 | 83.4 | 83.26 | 90.35 | |
std | 2.52 | 1.17 | 1.28 | 3.24 | 4.24 | 3.65 | 3.16 | 0.37 | |
10 | OA | 83.06 | 86.73 | 87.54 | 89.96 | 88.29 | 88.85 | 89.03 | 92.29 |
std | 2.64 | 1.56 | 1.06 | 1.52 | 1.25 | 1.07 | 1.3 | 0.81 | |
AA | 89.05 | 92.86 | 93.16 | 93.95 | 93.06 | 93.49 | 93.61 | 96.06 | |
std | 1.26 | 1.35 | 1.28 | 0.89 | 1.07 | 1.55 | 1.28 | 1.86 | |
κ | 81.29 | 85.33 | 86.29 | 83.98 | 82.32 | 82.96 | 83.1 | 92.03 | |
std | 2.65 | 1.85 | 2.01 | 1.75 | 2.62 | 3.18 | 2.28 | 0.75 | |
15 | OA | 85.85 | 87.35 | 87.97 | 91.34 | 89.71 | 90.05 | 90.35 | 94.25 |
std | 1.92 | 1.94 | 1.88 | 1.86 | 1.1 | 1.55 | 1.07 | 1.29 | |
AA | 91.23 | 92.38 | 92.69 | 93.28 | 92.26 | 92.75 | 92.64 | 96.89 | |
std | 0.76 | 1.26 | 1.35 | 0.95 | 0.74 | 0.88 | 0.93 | 0.99 | |
κ | 84.05 | 93.31 | 93.61 | 90.32 | 91.18 | 91.59 | 91.58 | 92.85 | |
std | 1.79 | 0.93 | 0.59 | 1.65 | 1.04 | 0.92 | 1.15 | 0.78 | |
20 | OA | 87.58 | 87.65 | 88.56 | 91.93 | 92.15 | 92.69 | 92.75 | 95.37 |
std | 1.92 | 1.02 | 1.65 | 1.37 | 1.12 | 1.4 | 1.27 | 1.06 | |
AA | 92.19 | 94.54 | 94.84 | 94.85 | 95.32 | 95.87 | 95.67 | 97.52 | |
std | 0.58 | 0.5 | 0.66 | 0.87 | 1.83 | 1.09 | 0.85 | 0.5 | |
κ | 85.36 | 87.87 | 88.26 | 93.64 | 92.38 | 92.75 | 92.82 | 93.24 | |
std | 0.88 | 0.49 | 0.63 | 1.58 | 0.88 | 0.63 | 0.85 | 0.62 | |
25 | OA | 88.55 | 87.95 | 88.98 | 94.86 | 94.45 | 94.86 | 94.9 | 96.29 |
std | 0.82 | 1.23 | 1.45 | 1.43 | 1.55 | 1.25 | 1.43 | 1.35 | |
AA | 93.22 | 95.13 | 96.23 | 98.15 | 96.3 | 96.84 | 97.01 | 98.75 | |
std | 0.92 | 0.86 | 0.96 | 1.33 | 0.62 | 0.75 | 0.65 | 0.88 | |
κ | 86.87 | 97.99 | 98.19 | 95.22 | 93.79 | 94.17 | 94.42 | 95.31 | |
std | 0.58 | 1.12 | 1.35 | 1.61 | 1.29 | 1.35 | 1.12 | 1.01 | |
30 | OA | 88.95 | 89.17 | 89.65 | 95.65 | 94.85 | 95.16 | 95.38 | 99.1 |
std | 0.76 | 1.06 | 1.24 | 1.87 | 0.93 | 0.85 | 0.79 | 0.73 | |
AA | 94.2 | 95.72 | 96.32 | 97.89 | 96.94 | 97.26 | 97.46 | 99.78 | |
std | 0.63 | 0.63 | 0.75 | 0.88 | 1.12 | 0.94 | 0.99 | 0.55 | |
κ | 88.13 | 88.18 | 89.16 | 95.15 | 94.12 | 94.58 | 94.61 | 97.25 | |
std | 0.62 | 0.52 | 0.77 | 1.85 | 0.58 | 0.64 | 0.73 | 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Feng, Y.; Gao, Y.; Jia, Y.; Mei, S. Dual-Weighted Kernel Extreme Learning Machine for Hyperspectral Imagery Classification. Remote Sens. 2021, 13, 508. https://doi.org/10.3390/rs13030508
Yu X, Feng Y, Gao Y, Jia Y, Mei S. Dual-Weighted Kernel Extreme Learning Machine for Hyperspectral Imagery Classification. Remote Sensing. 2021; 13(3):508. https://doi.org/10.3390/rs13030508
Chicago/Turabian StyleYu, Xumin, Yan Feng, Yanlong Gao, Yingbiao Jia, and Shaohui Mei. 2021. "Dual-Weighted Kernel Extreme Learning Machine for Hyperspectral Imagery Classification" Remote Sensing 13, no. 3: 508. https://doi.org/10.3390/rs13030508
APA StyleYu, X., Feng, Y., Gao, Y., Jia, Y., & Mei, S. (2021). Dual-Weighted Kernel Extreme Learning Machine for Hyperspectral Imagery Classification. Remote Sensing, 13(3), 508. https://doi.org/10.3390/rs13030508