Annual Sea Level Amplitude Analysis over the North Pacific Ocean Coast by Ensemble Empirical Mode Decomposition Method
Abstract
:1. Introduction
2. Data Sets
2.1. Tide Gauge Records
2.2. Satellite Altimetric Data
2.3. In Situ Hydrographical Data
2.4. Wind Data
2.5. Climate Indices
3. Methods
4. Results
4.1. Temporal Variability of Mean Annual Sea Level Cycle
4.2. Trend of Annual Amplitude of Sea Level Cycle
5. Discussion
5.1. West Coast of South China Sea
5.2. Eastern Boundary of the North Pacific Ocean
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woodworth, P.L.; Melet, A.; Marcos, M.; Ray, R.D.; Wöppelmann, G.; Sasaki, Y.N.; Cirano, M.; Hibbert, A.; Huthnance, J.M.; Monserrat, S.; et al. Forcing factors causing sea level changes at the coast. Surv. Geophys. 2019, 40, 1351–1397. [Google Scholar] [CrossRef] [Green Version]
- Wahl, T.; Calafat, F.M.; Luther, M.E. Rapid changes in the seasonal sea level cycle along the US Gulf coast from the late 20th century. Geophys. Res. Lett. 2014, 41, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Tsimplis, M.N.; Woodworth, P.L. The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data. J. Geophys. Res. 1994, 99, 16031–16039. [Google Scholar] [CrossRef]
- Dufau, C.; Martin-Puig, C.; Moreno, L. User requirements in the coastal ocean for satellite altimetry. In Coastal Altimetry; Vignudelli, S., Kostianoy, A.G., Cipollini, P., Benveniste, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 51–60. [Google Scholar]
- López-García, P.; Gómez-Enri, J.; Muñoz-Pérez, J. Accuracy assessment of wave data from altimeter near the coast. Ocean Eng. 2019, 178, 229–232. [Google Scholar] [CrossRef]
- Chen, J.L.; Shum, C.K.; Wilson, C.R.; Chambers, D.P.; Tapley, B.D. Seasonal sea level change from TOPEX/Poseidon observation and thermal contribution. J. Geod. 2000, 73, 638–647. [Google Scholar] [CrossRef]
- Vinogradov, S.V.; Ponte, R.M.; Heimbach, P.; Wunsch, C. The mean seasonal cycle in sea level estimated from a data-constrained general circulation model. J. Geophys. Res. 2008, 113, C03032. [Google Scholar] [CrossRef]
- Vinogradov, S.V.; Ponte, R.M. Annual cycle in coastal sea level from tide gauges and altimetry. J. Geophys. Res. Oceans 2010, 115, C04021. [Google Scholar] [CrossRef] [Green Version]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Feng, X.; Tsimplis, M.N.; Marcos, M.; Calalfat, F.M.; Zheng, J.; Jorda, G.; Cipollini, P. Spatial and temporal variations of the seasonal sea level cycle in the northwest Pacific. J. Geophys. Res. Oceans 2015, 120, 7091–7112. [Google Scholar] [CrossRef] [Green Version]
- Amiruddin, A.M.; Haigh, I.D.; Tsimplis, M.N.; Calafat, F.M.; Dangendorf, S. The seasonal cycle and variability of sea level in the South China Sea. J. Geophys. Res. Oceans 2015, 120, 5490–5513. [Google Scholar] [CrossRef] [Green Version]
- Torres, R.R.; Tsimplis, M.N. Seasonal sea level cycle in the Caribbean Sea. J. Geophys. Res. 2012, 117, C07011. [Google Scholar] [CrossRef] [Green Version]
- Passaro, M.; Cipollini, P.; Benveniste, J. Annual sea level variability of the coastal ocean: The Baltic Sea-North Sea transition zone. J. Geophys. Res. Oceans 2015, 120, 3061–3078. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.C.; Xu, Q.; Li, X.F. Spatio-Temporal Variability of Annual Sea Level Cycle in the Baltic Sea. Remote Sens. 2018, 10, 528. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.H.; Schneider, E.K.; Kirtman, B.P.; Sarachik, E.S.; Huang, N.E.; Tucker, C.J. The modulated annual cycle: An alternative reference frame for climate anomalies. Clim. Dyn. 2008, 31, 823–841. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.H.; Huang, N.E. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. Lond. A. 2004, 460, 1597–1611. [Google Scholar] [CrossRef]
- Qian, C.; Wu, Z.H.; Fu, C.B.; Zhou, T.J. On multi-timescale variability of temperature in China in modulated annual cycle reference frame. Adv. Atmos. Sci. 2010, 27, 1169–1182. [Google Scholar] [CrossRef]
- Bindoff, N.L.; Willebrand, J.; Artale, V.; Cazenave, A.; Gregory, J.; Gulev, S.; Hanawa, K.; Le Quéré, C.; Levitus, S.; Nojiri, Y.; et al. Observations: Oceanic Climate Change and Sea Level. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 385–432. [Google Scholar]
- Douglas, B.C. Global sea level rise. J. Geophys. Res. 1991, 96, 6981–6992. [Google Scholar] [CrossRef] [Green Version]
- Woodworth, P.L.; Tsimplis, M.N.; Flather, R.A.; Shennan, I. A review of the trends observed in British Isles mean sea level data measured by tide gauges. Geophys. J. Int. 1999, 136, 651–670. [Google Scholar] [CrossRef]
- Holgate, S.J.; Matthews, A.; Woodworth, P.L.; Rickards, L.J.; Tamisiea, M.E.; Bradshaw, E.; Foden, P.R.; Gordon, K.M.; Jevrejeva, S.; Pugh, J. New Data Systems and Products at the Permanent Service for Mean Sea Level. J. Coastal Res. 2013, 29, 493–504. [Google Scholar] [CrossRef]
- Permanent Service for Mean Sea Level (PSMSL). Available online: http://www.psmsl.org/data/obtaining/ (accessed on 5 March 2018).
- Church, J.A.; White, N.J.; Coleman, R.; Lambeck, K.; Mitrovica, J.X. Estimates of regional distribution of sea-level rise over the 1950-2000 period. J. Clim. 2004, 17, 2609–2625. [Google Scholar] [CrossRef]
- Kandasamy, S.; Baret, F.; Verger, A.; Neveux, P.; Weiss, M. A comparison of methods for smoothing and gap filling time series of remote sensing observations–application to MODIS LAI products. Biogeosciences 2013, 10, 4055–4071. [Google Scholar] [CrossRef] [Green Version]
- Lan, W.H.; Kuo, C.Y.; Kao, H.C.; Lin, L.C.; Shum, C.K.; Tseng, K.H.; Chang, J.C. Impact of Geophysical and Datum Corrections on Absolute Sea-Level Trends from Tide Gauges around Taiwan, 1993–2015. Water 2017, 9, 480. [Google Scholar] [CrossRef]
- Amante, C.; Eakins, B.W. ETOPO1 1 Arc Minute Global Relief Model: Procedures, Data Sources and Analysis. In NOAA Technical Memorandum NESDIS NGDC-24; National Geophysical Data Center: Boulder, CO, USA, 2009. [Google Scholar]
- Ishii, M.; Fukuda, Y.; Hirahara, S.; Yasui, S.; Suzuki, T.; Sato, K. Accuracy of global upper ocean heat content estimation expected from present observational data sets. SOLA 2017, 13, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Steele, M.; Ermold, W. Steric sea level change in the Northern Seas. J. Climate 2007, 20, 403–417. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Joseph, D. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Large, W.G.; Olson, J.G. The mean annual cycle in global ocean wind stress. J. Phys. Oceanogr. 1990, 20, 1742–1760. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.J.; Zhang, Q. On the decadal and interdecadal variability in the Pacific Ocean. Adv. Atmos. Sci. 2003, 20, 173–184. [Google Scholar]
- McGregor, S.; Timmermann, A.; England, M.H.; Elison Timm, O.; Wittenberg, A.T. Inferred changes in El Niño–Southern Oscillation variance over the past six centuries. Clim. Past 2013, 9, 2269–2284. [Google Scholar] [CrossRef] [Green Version]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Zhang, Y.; Wallace, J.M.; Battisti, D.S. ENSO-like interdecadal variability: 1900–93. J. Clim. 1997, 10, 1004–1020. [Google Scholar] [CrossRef]
- Zhang, X.; Church, J.A. Sea-level trends, interannual and decadal variability in the Pacific Ocean. Geophys. Res. Lett. 2012, 39, L21701. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, E.H.; Zheng, Q.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. P. Roy. Soc. Lon. A Mat. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Ezer, T.; Corlett, W.B. Is sea level rise accelerating in the Chesapeake Bay? A demonstration of a novel new approach for analyzing sea level data. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.L.; Meng, Y.; Li, W.; Yue, A.Z.; Yuan, Y. Satellite Image Time Series Decomposition Based on EEMD. Remote Sens. 2015, 7, 15583–15604. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Chen, X.Y.; Qiao, F.L.; Wu, Z.H.; Huang, N.E. On intrinsic mode function. Adv. Adap. Data Analy. 2010, 2, 277–293. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, M.L.C.; Long, S.R.; Shen, S.S.P.; Qu, W.D.; Gloersen, P.; Fan, K.L. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. P. Roy. Soc. Lon. A Mat. 2003, 459, 2317–2345. [Google Scholar] [CrossRef]
- Wu, Z.H.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. in Adap. Data Analy. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Chambers, D.P. Evaluation of empirical mode decomposition for quantifying multi-decadal variations and acceleration in sea level records. Nonlin. Processes Geophys. 2015, 22, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Kimball, J.S.; Zhou, N.; Alfieri, L.; Luo, L.; Du, J.; Huang, Z. Evaluation of real-time global flood modeling with satellite surface inundation observations from SMAP. Remote Sens. Environ. 2019, 233, 111360. [Google Scholar] [CrossRef]
- Cheng, X.H.; Xie, S.P.; Du, Y.; Wang, J.; Chen, X.; Wang, J. Interannual-to-decadal variability and trends of sea level in the South China Sea. Clim. Dynam. 2016, 46, 3113–3126. [Google Scholar] [CrossRef] [Green Version]
- Good, S.A.; Martin, M.J.; Rayner, N.A. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans 2013, 118, 6704–6716. [Google Scholar] [CrossRef]
- Llovel, W.; Guinehut, S.; Cazenave, A. Regional and interannual variability in sea level over 2002-2009 based on satellite altimetry, Argo float data and GRACE ocean mass. Ocean Dynam. 2010, 60, 1193–1204. [Google Scholar] [CrossRef]
- Wu, C.R. Interannual modulation of the Pacific Decadal Oscillation (PDO) on the low-latitude western North Pacific. Prog. Oceanogr. 2013, 110, 49–58. [Google Scholar] [CrossRef]
- Sturges, W.; Douglas, B.C. Wind effects on estimates of sea level rise. J. Geophys. Res. 2011, 116, C06008. [Google Scholar] [CrossRef]
- Lan, W.H. Assessment of Seasonal-to-Decadal Variability and Trends of Regional Sea Level in the North Pacific Ocean Using Satellite Altimetry and Tide Gauges. Ph.D. Thesis, National Cheng Kung University, Tainan, Taiwan, 2018. [Google Scholar]
- Wang, Y.; Liu, H.; Lin, P.; Yin, J. Record-low coastal sea levels in the Northeast Pacific during the winter of 2013–2014. Scientific Reports 2019, 9, 3774. [Google Scholar] [CrossRef]
- Bromirski, P.D.; Miller, A.J.; Flick, R.E.; Auad, G. Dynamical suppression of sea level rise along the Pacific coast of North America: Indications for imminent acceleration. J. Geophys. Res. 2011, 116, C07005. [Google Scholar] [CrossRef] [Green Version]
- Feng, W. Regional Terrestrial Water Storage and Sea Level Variations Inferred from Satellite Gravimetry. Ph.D. Thesis, Université Toulouse III Paul Sabatier, Toulouse, France, 2014. [Google Scholar]
- Strassburg, M.W.; Hamlington, B.D.; Leben, R.R.; Manurung, P.; Lumban Gaol, J.; Nababan, B.; Vignudelli, S.; Kim, K.Y. Sea level trends in Southeast Asian seas. Clim. Past 2015, 11, 743–750. [Google Scholar] [CrossRef] [Green Version]
- Hamlington, B.D.; Cheon, S.H.; Thompson, P.R.; Merrifield, M.A.; Nerem, R.S.; Leben, R.R.; Kim, K.Y. An ongoing shift in Pacific Ocean sea level. J. Geophys. Res. Oceans 2016, 121, 5084–5097. [Google Scholar] [CrossRef] [Green Version]
Area | No. | Name | Lat. (° N) | Lon. (° E) | Data Period | Trend of Annual Sea Level Amplitude (mm yr−1) | Completeness (%) |
---|---|---|---|---|---|---|---|
SCSW | 1 | Bangkok Bar | 13.45 | 100.60 | 1952–2000 | −1.15 ± 0.10 | 91 |
2 | Ko Sichang | 13.15 | 100.82 | 1952–1999 | −1.11 ± 0.10 | 94 | |
3 | Hondau | 20.67 | 106.80 | 1959–2011 | −0.20 ± 0.07 | 100 | |
4 | Zhapo | 21.58 | 111.82 | 1961–2014 | −0.52 ± 0.09 | 99 | |
5 | Quarry Bay | 22.29 | 114.21 | 1952–2014 | −0.36 ± 0.06 | 99 | |
6 | Xiamen | 24.45 | 118.07 | 1956–2002 | −0.18 ± 0.08 | 100 | |
ECS | 7 | Kanmen | 28.08 | 121.28 | 1961–2014 | 0.02 ± 0.06 * | 99 |
8 | Mokpo | 34.78 | 126.38 | 1962–2014 | 0.18 ± 0.05 | 99 | |
9 | Jeju | 33.53 | 126.54 | 1966–2014 | −0.14 ± 0.06 | 99 | |
10 | Yeosu | 34.75 | 127.77 | 1968–2014 | −0.07 ± 0.07 * | 98 | |
11 | Izuhara II | 34.20 | 129.29 | 1953–2014 | 0.18 ± 0.03 | 96 | |
12 | Sasebo II | 33.16 | 129.72 | 1968–2014 | 0.19 ± 0.05 | 100 | |
13 | Fukue | 32.70 | 128.85 | 1967–2014 | −0.01 ± 0.06 * | 98 | |
14 | Oura | 32.98 | 130.22 | 1967–2014 | 0.11 ± 0.05 | 98 | |
15 | Nagasaki | 32.74 | 129.87 | 1967–2014 | 0.09 ± 0.06 * | 99 | |
16 | Misumi | 32.62 | 130.45 | 1959–2010 | 0.15 ± 0.05 | 97 | |
17 | Kagoshima | 31.58 | 130.57 | 1959–2014 | 0.14 ± 0.05 | 98 | |
18 | Naha | 26.21 | 127.67 | 1968–2014 | 0.17 ± 0.10 * | 100 | |
SJ | 19 | Busan | 35.10 | 129.04 | 1963–2014 | −0.02 ± 0.05 * | 99 |
20 | Ulsan | 35.50 | 129.39 | 1965–2014 | −0.15 ± 0.07 | 95 | |
21 | Mukho | 37.55 | 129.12 | 1967–2014 | −0.14 ± 0.05 | 97 | |
22 | Oshoro II | 43.21 | 140.86 | 1952–2014 | 0.11 ± 0.02 | 100 | |
23 | Nezugaseki | 38.56 | 139.55 | 1957–2014 | 0.22 ± 0.05 | 90 | |
24 | Awa Sima | 38.47 | 139.26 | 1968–2014 | 0.45 ± 0.06 | 97 | |
25 | Kashiwazaki | 37.36 | 138.51 | 1957–2014 | 0.00 ± 0.05 * | 95 | |
26 | Wajima | 37.41 | 136.90 | 1952–2014 | 0.15 ± 0.04 | 96 | |
27 | Mikuni | 36.25 | 136.15 | 1969–2014 | 0.23 ± 0.05 | 97 | |
28 | Maizuru II | 35.48 | 135.39 | 1953–2014 | 0.01 ± 0.03 * | 98 | |
29 | Tajiri | 35.59 | 134.32 | 1968–2014 | 0.00 ± 0.05 * | 99 | |
30 | Sakai | 35.55 | 133.24 | 1959–2014 | 0.12 ± 0.03 | 97 | |
31 | Saigo | 36.20 | 133.33 | 1967–2014 | 0.15 ± 0.05 | 100 | |
32 | Hamada II | 34.90 | 132.07 | 1952–2014 | 0.16 ± 0.04 | 97 | |
33 | Mozi | 33.95 | 130.97 | 1960–2006 | −0.15 ± 0.04 | 100 | |
34 | Shimonoseki III | 33.93 | 130.93 | 1959–2010 | −0.26 ± 0.06 | 96 | |
35 | Hakata | 33.62 | 130.41 | 1967–2014 | 0.18 ± 0.05 | 100 | |
JNE | 36 | Monbetu II | 44.35 | 143.37 | 1957–2006 | −0.42 ± 0.05 | 97 |
37 | Abashiri | 44.02 | 144.29 | 1970–2014 | 0.17 ± 0.07 | 97 | |
38 | Hanasaki II | 43.28 | 145.57 | 1959–2014 | 0.08 ± 0.04 * | 95 | |
39 | Kushiro | 42.98 | 144.37 | 1953–2014 | −0.09 ± 0.03 | 97 | |
40 | Urakawa II | 42.17 | 142.77 | 1960–2007 | −0.33 ± 0.05 | 95 | |
41 | Hakodate I | 41.78 | 140.72 | 1959–2014 | 0.03 ± 0.03 * | 99 | |
42 | Ominato | 41.25 | 141.15 | 1954–2006 | −0.13 ± 0.04 | 96 | |
43 | Asamushi | 40.90 | 140.86 | 1956–2014 | 0.02 ± 0.03 * | 99 | |
44 | Hachinohe II | 40.53 | 141.53 | 1952–2009 | −0.10 ± 0.03 | 99 | |
45 | Miyako II | 39.64 | 141.98 | 1952–2009 | 0.02 ± 0.03 * | 99 | |
46 | Ayukawa | 38.30 | 141.51 | 1960–2009 | 0.00 ± 0.03 * | 94 | |
47 | Onahama | 36.94 | 140.89 | 1953–2009 | 0.07 ± 0.03 | 99 | |
JSE | 48 | Katsuura | 35.13 | 140.25 | 1969–2014 | −0.05 ± 0.04 * | 98 |
49 | Mera | 34.92 | 139.83 | 1952–2014 | 0.01 ± 0.05 * | 96 | |
50 | Tiba | 35.57 | 140.05 | 1966–2014 | 0.04 ± 0.05 * | 100 | |
51 | Yokosuka | 35.29 | 139.65 | 1957–2014 | −0.23 ± 0.05 | 95 | |
52 | Aburatsubo | 35.16 | 139.62 | 1952–2014 | −0.16 ± 0.03 | 99 | |
53 | Okada | 34.79 | 139.39 | 1967–2014 | −0.53 ± 0.07 | 99 | |
54 | Uchiura | 35.02 | 138.89 | 1952–2014 | −0.39 ± 0.06 | 99 | |
55 | Shimizu-Minato | 35.01 | 138.52 | 1959–2014 | −0.37 ± 0.07 | 100 | |
56 | Maisaka | 34.68 | 137.61 | 1967–2014 | −0.09 ± 0.10 * | 99 | |
57 | Nagoya II | 35.09 | 136.88 | 1959–2014 | −0.26 ± 0.07 | 100 | |
58 | Onisaki | 34.90 | 136.82 | 1965–2014 | −0.09 ± 0.07 * | 98 | |
59 | Toba II | 34.49 | 136.82 | 1952–2014 | −0.35 ± 0.06 | 100 | |
60 | Owase | 34.08 | 136.21 | 1968–2014 | −0.08 ± 0.11 * | 94 | |
61 | Uragami | 33.56 | 135.90 | 1967–2014 | −0.27 ± 0.10 | 96 | |
62 | Kushimoto | 33.48 | 135.77 | 1959–2014 | 0.20 ± 0.07 | 99 | |
63 | Shirahama | 33.68 | 135.38 | 1968–2014 | 0.65 ± 0.09 | 99 | |
64 | Kainan | 34.14 | 135.19 | 1955–2014 | 0.14 ± 0.07 | 99 | |
65 | Wakayama | 34.22 | 135.15 | 1959–2014 | 0.27 ± 0.07 | 99 | |
66 | Tan-Nowa | 34.34 | 135.18 | 1959–2014 | 0.32 ± 0.08 | 97 | |
67 | Kobe II | 34.68 | 135.19 | 1959–2014 | −0.17 ± 0.06 | 100 | |
68 | Sumoto | 34.34 | 134.91 | 1967–2014 | −0.14 ± 0.09 * | 99 | |
69 | Komatsushima | 34.01 | 134.59 | 1960–2014 | 0.30 ± 0.07 | 99 | |
70 | Uno | 34.49 | 133.95 | 1959–2014 | 0.31 ± 0.07 | 97 | |
71 | Takamatsu II | 34.35 | 134.06 | 1959–2014 | 0.21 ± 0.05 | 98 | |
72 | Matsuyama II | 33.86 | 132.71 | 1959–2014 | 0.19 ± 0.06 | 98 | |
73 | Kure IV | 34.24 | 132.55 | 1957–2014 | 0.15 ± 0.03 | 98 | |
74 | Hirosima | 34.35 | 132.46 | 1965–2014 | 0.14 ± 0.05 | 99 | |
75 | Uwajima II | 33.23 | 132.55 | 1952–2014 | 0.09 ± 0.04 | 99 | |
76 | Tokuyama II | 34.04 | 131.8 | 1954–2014 | 0.16 ± 0.03 | 100 | |
77 | Tosa Shimizu | 32.78 | 132.96 | 1959–2014 | 0.22 ± 0.06 | 98 | |
78 | Hosojima | 32.43 | 131.67 | 1952–2014 | 0.15 ± 0.04 | 97 | |
79 | Aburatsu | 31.58 | 131.41 | 1959–2014 | 0.17 ± 0.06 | 99 | |
80 | Odomari | 31.02 | 130.69 | 1967–2014 | 0.40 ± 0.11 | 99 | |
81 | Nisinoomote | 30.74 | 130.99 | 1967–2014 | −0.26 ± 0.10 | 99 | |
GA | 82 | Seldovia | 59.44 | −151.72 | 1967–2014 | −0.23 ± 0.07 | 96 |
83 | Seward | 60.12 | −149.43 | 1966–2014 | −0.07 ± 0.07 * | 91 | |
84 | Cordova | 60.56 | −145.75 | 1966–2014 | 0.34 ± 0.07 | 94 | |
85 | Yakutat | 59.55 | −139.73 | 1952–2014 | −0.23 ± 0.06 | 96 | |
86 | Sitka | 57.05 | −135.34 | 1952–2014 | −0.07 ± 0.05 * | 99 | |
87 | Ketchikan | 55.33 | −131.63 | 1952–2014 | −0.18 ± 0.05 | 99 | |
WC | 88 | Prince Rupert | 54.32 | −130.33 | 1952–2014 | −0.01 ± 0.06 * | 99 |
89 | Queen Charlotte City | 53.25 | −132.07 | 1966–2014 | −0.31 ± 0.06 | 97 | |
90 | Bella Bella | 52.17 | −128.13 | 1963–2014 | −0.21 ± 0.07 | 97 | |
91 | Port Hardy | 50.72 | −127.48 | 1966–2014 | −0.36 ± 0.07 | 98 | |
92 | Tofino | 49.15 | −125.92 | 1952–2014 | −0.45 ± 0.06 | 96 | |
93 | Victoria | 48.42 | −123.37 | 1952–2014 | −0.44 ± 0.05 | 100 | |
94 | Vancouver | 49.28 | −123.12 | 1952–2014 | −0.28 ± 0.05 | 99 | |
95 | Point Atkinson | 49.33 | −123.25 | 1952–2014 | −0.31 ± 0.05 | 98 | |
WA | 96 | Friday Harbor | 48.55 | −123.01 | 1952–2014 | −0.41 ± 0.06 | 97 |
97 | Neah Bay | 48.37 | −124.61 | 1952–2014 | −0.35 ± 0.05 | 97 | |
98 | Seattle | 47.60 | −122.34 | 1952–2014 | −0.34 ± 0.06 | 100 | |
99 | Astoria | 46.21 | −123.77 | 1952–2014 | 0.12 ± 0.09 * | 100 | |
100 | South Beach | 44.63 | −124.04 | 1969–2014 | −0.69 ± 0.10 | 100 | |
101 | Crescent City | 41.75 | −124.18 | 1952–2014 | −0.55 ± 0.05 | 98 | |
102 | San Francisco | 37.81 | −122.47 | 1952–2014 | −0.42 ± 0.05 | 100 | |
103 | Alameda | 37.77 | −122.30 | 1952–2014 | −0.45 ± 0.05 | 99 | |
104 | Port San Luis | 35.18 | −120.76 | 1952–2014 | −0.19 ± 0.05 | 94 | |
105 | Los Angeles | 33.72 | −118.27 | 1952–2014 | −0.08 ± 0.04 * | 99 | |
106 | La Jolla | 32.87 | −117.26 | 1952–2014 | 0.04 ± 0.04 * | 92 | |
107 | San Diego | 32.71 | −117.17 | 1952–2014 | 0.06 ± 0.04 * | 98 |
Area | EEMD (mm) | TLRA (mm) | |||
---|---|---|---|---|---|
Tide Gauge | Satellite Altimetry | Steric Component | Tide Gauge (3-year) | Tide Gauge (5-year) | |
SCSW | 174 | 153 | 42 | 172 | 172 |
ECS | 124 | 112 | 107 | 124 | 124 |
SJ | 117 | 107 | 112 | 121 | 121 |
JNE | 77 | 72 | 69 | 81 | 81 |
JSE | 103 | 102 | 82 | 102 | 102 |
GA | 87 | 49 | 25 | 85 | 83 |
WC | 84 | 42 | 32 | 82 | 80 |
WA | 84 | 49 | 32 | 83 | 82 |
Area | Period | EEMD | ||
---|---|---|---|---|
Mean (mm) | Trend (mm·yr−1) | C.C. with Altimetry | ||
SCSW | 1952–2011 | 174 | −0.77 ± 0.04 | 0.53 |
ECS | 1959–2014 | 124 | 0.02 ± 0.04 * | 0.94 |
SJ | 1952–2014 | 117 | −0.01 ± 0.03 * | 0.93 |
JNE | 1953–2014 | 77 | −0.12 ± 0.02 | 0.71 |
JSE | 1952–2014 | 103 | 0.00 ± 0.04 * | 0.86 |
GA | 1952–2014 | 87 | −0.11 ± 0.04 | 0.81 |
WC | 1952–2014 | 84 | −0.34 ± 0.04 | 0.63 |
WA | 1952–2014 | 84 | −0.16 ± 0.04 | 0.66 |
Area | Steric Component | Tu | Tv | Tuv | MEI | PDO |
---|---|---|---|---|---|---|
SCSW | 0.27 | 0.54 | 0.60 | 0.62 | −0.14 | −0.48 |
ECS | 0.67 | 0.60 | 0.30 | 0.41 | −0.15 | −0.26 |
SJ | 0.60 | −0.02 * | 0.26 | 0.17 | −0.05 * | −0.17 |
JNE | 0.00* | −0.16 | −0.28 | −0.24 | 0.05 * | −0.25 |
JSE | 0.42 | 0.26 | 0.29 | 0.35 | −0.15 | −0.16 |
GA | 0.30 | 0.65 | 0.12 | 0.58 | 0.22 | 0.07 * |
WC | 0.25 | 0.38 | 0.32 | 0.42 | 0.22 | 0.03 * |
WA | 0.51 | 0.42 | 0.57 | 0.56 | 0.39 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, W.-H.; Kuo, C.-Y.; Lin, L.-C.; Kao, H.-C. Annual Sea Level Amplitude Analysis over the North Pacific Ocean Coast by Ensemble Empirical Mode Decomposition Method. Remote Sens. 2021, 13, 730. https://doi.org/10.3390/rs13040730
Lan W-H, Kuo C-Y, Lin L-C, Kao H-C. Annual Sea Level Amplitude Analysis over the North Pacific Ocean Coast by Ensemble Empirical Mode Decomposition Method. Remote Sensing. 2021; 13(4):730. https://doi.org/10.3390/rs13040730
Chicago/Turabian StyleLan, Wen-Hau, Chung-Yen Kuo, Li-Ching Lin, and Huan-Chin Kao. 2021. "Annual Sea Level Amplitude Analysis over the North Pacific Ocean Coast by Ensemble Empirical Mode Decomposition Method" Remote Sensing 13, no. 4: 730. https://doi.org/10.3390/rs13040730
APA StyleLan, W. -H., Kuo, C. -Y., Lin, L. -C., & Kao, H. -C. (2021). Annual Sea Level Amplitude Analysis over the North Pacific Ocean Coast by Ensemble Empirical Mode Decomposition Method. Remote Sensing, 13(4), 730. https://doi.org/10.3390/rs13040730