Calibration of Satellite Low Radiance by AERONET-OC Products and 6SV Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. AEONET-OC Data
2.2. MSI/S2A and OLI/L8 Data
2.3. Procedure for Belharmony Low Radiance Gains Retrieval
2.3.1. Hyperspectral TOA Simulated Reflectance, REFhyp
2.3.2. Simulated MSI/S2A and OLI/L8 TOA Reflectance, REF
2.3.3. Belharmony Low-Radiance Gains
- Screening 1 (C1): Aerosol model assumption. The first screening is applied to the sensor band where there is the highest contribution of the aerosol atmospheric scattering that is the first two Cimel bands (nominal center wavelengths, 412 nm and 442 nm). In this spectral domain, the aerosol properties influence the REF signal, especially in the case of dark surface (water target) as explained in [41]. Thus, a small error in atmospheric characterization may lead to large error in the REF simulation resulting in a REF/MEAS ratio which could be far from the expected value. Thus, a REF/MEAS ratio was removed from the dataset if REF/MEAS of the sensor band close to 442 nm is an outlier and belongs to the distribution tails (5%).
- Screening 2 (C2): Spectral gap of AERONET-OC water products. The spectral information of water target between fifth (551 nm, nominal center wavelength) and sixth band (668 nm, nominal center wavelength) of the CIMEL-SeaPrism sunphotometer would be relevant for accurate simulation of signal over coastal water but the aquatic AERONET-OC products are lacking. Consequently, the simulated REF could not correspond to the real value of the water target in this spectral gap. Thus, the REF/MEAS ratios of the sensor band around 560 nm were removed if they result outliers and are in the distribution tails (5%)
- Screening 3 (C3): Very low at-sensor signal. The AERONET-OC normalized water-leaving radiance is very close to zero and occasionally less than zero in the last two Cimel-SeaPrism channels (870 nm and 1020 nm), and the simulated REF may not be suitable to represent the effective measurements of the sensor. Thus, the corresponding ratios calculated at the sensor band close to the 870 nm Cimel-SeaPrism channel could be far from the expected value, and the third screening achieved an accuracy of 90% through the removal of the REF/MEAS ratios belonging to the tails of distribution (5%).
3. Results
3.1. OLI/L8 Belharmony Gains
3.2. MSI/S2A Belharmony Gains
4. Validation of the Gains
Performance Metrics
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Platt, T.; Hoepffner, N.; Stuart, V.; Brown, C. (Eds.) Why Ocean Colour? The Societal Benefits of Ocean-Colour Technology, Reports of the International Ocean-Colour Coordinating Group, No. 7; IOCCG: Dartmouth, NS, Canada, 2008; Available online: https://ioccg.org/wp-content/uploads/2015/10/ioccg-report-07.pdf (accessed on 22 January 2021).
- CEOS Virtual Constellations: Ocean Colour Radiometry. Available online: http://ceos.org/ourwork/virtual-constellations/ocr/ (accessed on 22 January 2021).
- Bailey, S.W.; Hooker, S.B.; Antoine, D.; Franz, B.A.; Werdell, P.J. Sources and assumptions for the vicarious calibration of ocean color satellite observations. Appl. Opt. 2008, 47, 2035–2045. [Google Scholar] [CrossRef]
- Zibordi, G.; Mélin, F.; Voss, K.J.; Johnson, B.C.; Franz, B.A.; Kwiatkowska, E.; Huot, J.P.; Wang, M.; Antoine, D. System vicarious calibration for ocean color climate change applications: Requirements for in situ data. Remote Sens. Environ. 2015, 159, 361–369. [Google Scholar] [CrossRef]
- Pahlevan, N.; Lee, Z.; Wei, J.; Schaaf, C.B.; Schott, J.R.; Berk, A. On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing. Remote Sens. Environ. 2014, 154, 272–284. [Google Scholar] [CrossRef]
- Pahlevan, N.; Sarkar, S.; Franz, B.A.; Balasubramanian, S.V.; He, J. Sentinel-2 MultiSpectral Instrument (MSI) data processing for aquatic science applications: Demonstrations and validations. Remote Sens. Environ. 2017, 201, 47–56. [Google Scholar] [CrossRef]
- Antoine, D.A.; Guevel, P.; Deste, J.-F.; Becu, G.; Louis, F.; Scott, A.J.; Bardey, P. The “BOUSSOLE” Buoy-A New Transparent to Swell Taut Mooring Dedicated to Marine Optics: Design, Tests, and Performance at Sea. J. Atmos. Ocean. Technol. 2008, 25, 968–989. [Google Scholar] [CrossRef]
- Clark, D.K.; Yarbrough, M.A.; Feinholz, M.; Flora, S.; Broenkow, W.; Kim, Y.S.; Johnson, B.C.; Brown, S.W.; Yuen, M.; Mueller, J. MOBY, A Radiometric Buoy for Performance Monitoring and Vicarious Calibration of Satellite Ocean Color Sensors: Measurement and Data Analysis Protocols. In Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4; Mueller, J.L., Fargion, G.S., McClain, C.R., Eds.; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2003; Volume 6, pp. 3–34. [Google Scholar]
- Zibordi, G.; Mélin, F.; Berthon, J.F.; Holben, B.; Slutsker, I.; Giles, D.; D’Alimonte, D.; Mélin, F.; Berthon, J.-F.; Vandemark, D.; et al. AERONET-OC: A Network for the Validation of Ocean Color Primary Products. J. Atmos. Ocean. Technol. 2009, 26, 1634–1651. [Google Scholar] [CrossRef]
- Vermote, E.; Tanré, D.; Deuzé, J.L.; Herman, M.; Morcette, J.J.; Kotchenova, S.Y. Second Simulation of the Satellite Signal in the Solar Spectrum-Vector (6SV). 6S User Guide Version 3. 2006. Available online: https://salsa.umd.edu/6spage.html (accessed on 22 January 2021).
- Kotchenova, S.Y.; Vermote, E.F.; Levy, R.; Lyapustin, A. Radiative transfer codes for atmospheric correction and aerosol retrieval: Intercomparison study. Appl. Opt. 2008, 47, 2215–2226. [Google Scholar] [CrossRef] [Green Version]
- Kotchenova, S.Y.; Vermote, E.F. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surface. Appl. Opt. 2007, 46, 4455–4464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotchenova, S.Y.; Vermote, E.F.; Matarrese, R.; Frank, J.; Klemm, J. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt. 2006, 45, 6762–6774. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.F.; Tanré, D.; Deuzé, J.L.; Herman, M.; Morcrette, J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Berk, A.; Conforti, P.; Kennett, R.; Perkins, T.; Hawes, F.; van den Bosch, J. MODTRAN6: A major upgrade of the MODTRAN radiative transfer code. In Proceedings of the 6th Workshop on Hyperspectral Image and Signal Processing Evolution in Remote Sensing, Lausanne, Switzerland, 24–27 June 2014. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, 90880H. [Google Scholar] [CrossRef]
- Banks, A.C.; Vendt, R.; Alikas, K.; Bialek, A.; Kuusk, J.; Lerebourg, C.; Ruddick, K.; Tilstone, G.; Vabson, V.; Donlon, C.; et al. Fiducial Reference Measurements for Satellite Ocean Colour (FRM4SOC). Remote Sens. 2020, 12, 1322. [Google Scholar] [CrossRef] [Green Version]
- Antoine, D.; Vellucci, V.; Banks, A.C.; Bardey, P.; Bretagnon, M.; Bruniquel, V.; Deru, A.; d’Andon, O.H.F.; Lerebourg, C.; Mangin, A.; et al. ROSACE: A Proposed European Design for the Copernicus Ocean Colour System Vicarious Calibration Infrastructure. Remote Sens. 2020, 12, 1535. [Google Scholar] [CrossRef]
- Liberti, G.L.; D’Alimonte, D.; di Sarra, A.; Mazeran, C.; Voss, K.; Yarbrough, M.; Bozzano, R.; Cavaleri, L.; Colella, S.; Cesarini, C.; et al. European Radiometry Buoy and Infrastructure (EURYBIA): A Contribution to the Design of the European Copernicus Infrastructure for Ocean Colour System Vicarious Calibration. Remote Sens. 2020, 12, 1178. [Google Scholar] [CrossRef] [Green Version]
- Ruddick, K.G.; Voss, K.; Boss, E.; Castagna, A.; Frouin, R.; Gilerson, A.; Hieronymi, M.; Johnson, B.C.; Kuusk, J.; Lee, Z.; et al. A Review of Protocols for Fiducial Reference Measurements of Water-Leaving Radiance for Validation of Satellite Remote-Sensing Data over Water. Remote Sens. 2019, 11, 2198. [Google Scholar] [CrossRef] [Green Version]
- Copernicus. Europe’s Eyes on Earth. Available online: http://www.copernicus.eu (accessed on 22 January 2021).
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Esaias, W.E.; Abbott, M.R.; Barton, I.; Brown, O.B.; Campbell, J.W.; Carder, K.L.; Clark, D.K.; Evans, R.L.; Hodge, F.E.; Gordon, H.R.; et al. An overview of MODIS capabilities for ocean science observations. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1250–1265. [Google Scholar] [CrossRef] [Green Version]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Pahlevan, N.; Chittimalli, S.K.; Balasubramanian, S.V.; Vellucci, V. Sentinel-2/Landsat-8 product consistency and implications for monitoring aquatic systems. Remote Sens. Environ. 2019, 220, 19–29. [Google Scholar] [CrossRef]
- Pahlevan, N.; Schott, J.R.; Franz, B.A.; Zibordi, G.; Markham, B.; Bailey, S.; Schaaf, C.B.; Ondrusek, M.; Greb, S.; Strait, C.M. Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements. Remote Sens. Environ. 2017, 190, 289–301. [Google Scholar] [CrossRef]
- Belharmony. Harmonization of Multi-Mission High Resolution Time Series: Application to Belair. Available online: https://belharmony.vito.be/ (accessed on 22 January 2021).
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 9791–9806. [Google Scholar] [CrossRef] [Green Version]
- Pahlevan, N.; Smith, B.; Binding, C.; O’Donnell, D.M. Spectral band adjustments for remote sensing reflectance spectra in coastal/inland waters. Opt. Express 2017, 25, 28650–28667. [Google Scholar] [CrossRef]
- Moses, W.J.; Saprygin, V.; Gerasyuk, V.; Povazhnyy, V.; Berdnikov, S.; Gitelson, A.A. OLCI-based NIR-red models for estimating chlorophyll-a concentration in productive coastal waters—A preliminary evaluation. Environmental Research Communications. Environ. Res. Commun. 2019, 1, 011002. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Saprygin, V.; Povazhnyi, V. Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters—The Azov Sea case study. Remote Sens. Environ. 2012, 121, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Bassani, C.; Manzo, C.; Braga, F.; Bresciani, M.; Giardino, C.; Alberotanza, L. The impact of the microphysical properties of aerosol on the atmospheric correction of hyperspectral data in coastal waters. Atmos. Meas. Tech. 2015, 8, 1593–1604. [Google Scholar] [CrossRef]
- Torres, B.; Dubovik, O.; Fuertes, D.; Schuster, G.; Cachorro, V.E.; Lapyonok, T.; Goloub, P.; Blarel, L.; Barreto, A.; Mallet, M.; et al. Advanced characterisation of aerosol size properties from measurements of spectral optical depth using the GRASP algorithm. Atmos. Meas. Tech. 2017, 10, 3743–3781. [Google Scholar] [CrossRef] [Green Version]
- Schuster, G.L.; Dubovik, O.; Holben, B.N. Angstrom exponent and bimodal aerosol size distributions. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Pace, G.; di Sarra, A.; Meloni, D.; Piacentino, S.; Chamard, P. Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types. Atmos. Chem. Phys. 2006, 6, 697–713. [Google Scholar] [CrossRef] [Green Version]
- Moore, K.D.; Voss, K.J.; Gordon, H.R. Spectral reflectance of whitecaps: Their contribution to water-leaving radiance. J. Geophys. Res. Ocean 2000, 105, 6493–6499. [Google Scholar] [CrossRef]
- Charles, C.; Walter, M. Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter. J. Opt. Soc. Am. 1954, 44, 838–850. [Google Scholar] [CrossRef]
- Lu, Z.; Li, J.; Shen, Q.; Zhang, B.; Zhang, H.; Zhang, F.; Wang, S. Modification of 6SV to remove skylight reflected at the air-water interface: Application to atmospheric correction of Landsat 8 OLI imagery in inland waters. PLoS ONE 2018, 13, e0202883. [Google Scholar] [CrossRef] [Green Version]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in FORTRAN; The Art of Scientific Computing, 2nd ed.; Cambridge University Press: New York, NY, USA, 1993. [Google Scholar]
- Bassani, C.; Cavalli, R.M.; Pignatti, S. Aerosol optical retrieval and surface reflectance from airborne remote sensing data over land. Sensors 2010, 10, 6421. [Google Scholar] [CrossRef] [Green Version]
- Bassani, C.; Cavalli, R.M.; Antonelli, P. Influence of aerosol and surface reflectance variability on hyperspectral observed radiance. Atmos. Meas. Tech. 2012, 5, 1139–1203. [Google Scholar] [CrossRef] [Green Version]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Acolite for Sentinel-2: Aquatic applications of MSI imagery. In Proceedings of the 2016 ESA Living Planet Symposium; Prague, Czech Republic, 9–13 May 2016, ESA Special Publication: Paris, France, 2016; Volume 740, pp. 9–13. [Google Scholar]
- Vanhellemont, Q.; Ruddick, K. Advantages of high quality {SWIR} bands for ocean colour processing: Examples from Landsat-8. Remote Sens. Environ. 2015, 161, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Vanhellemont, Q.; Ruddick, K. Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sens. Environ. 2014, 145, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Landsat 8 Science Results. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
SITE | Lat. | Long. | DATE | TIME_sat | TIME_OC | TIME_aero | AOT | AngExp440870 | mod.aerosol | Chla | WS.OC |
---|---|---|---|---|---|---|---|---|---|---|---|
Galata | 43.045 | 28.193 | 28/08/2015 | 08:50:00 | 08:42:00 | 08:54:00 | 0.138 | 1.650 | rural | 0.768 | 1.859 |
Galata | 43.045 | 28.193 | 02/09/2017 | 08:50:00 | 08:41:00 | 08:40:00 | 0.125 | 1.500 | rural | 0.328 | 2.372 |
Galata | 43.045 | 28.193 | 30/04/2018 | 08:50:00 | 09:10:48 | 08:50:24 | 0.096 | 1.332 | rural | 0.839 | 3.433 |
Galata | 43.045 | 28.193 | 04/08/2018 | 08:50:00 | 08:47:26 | 08:46:31 | 0.166 | 1.484 | rural | 0.649 | 8.376 |
Galata | 43.045 | 28.193 | 21/09/2018 | 08:51:00 | 09:14:33 | 08:34:12 | 0.080 | 1.345 | rural | 0.584 | 5.440 |
Gloria | 44.600 | 29.360 | 02/06/2015 | 08:40:00 | 09:07:00 | 08:47:00 | 0.083 | 1.929 | rural | 4.575 | 1.086 |
Gloria | 44.600 | 29.360 | 30/06/2017 | 08:50:00 | 08:39:00 | 08:51:00 | 0.124 | 1.290 | rural | 0.694 | 3.906 |
Gloria | 44.600 | 29.360 | 10/08/2017 | 08:44:21 | 08:41:49 | 08:40:51 | 0.219 | 1.675 | rural | 0.526 | 6.112 |
Gloria | 44.600 | 29.360 | 26/08/2017 | 08:44:00 | 08:38:37 | 08:37:39 | 0.144 | 1.451 | rural | 0.862 | 1.202 |
Gustav | 58.594 | 17.467 | 01/05/2017 | 10:00:00 | 10:20:00 | 09:54:00 | 0.049 | 1.499 | rural | 1.465 | 2.798 |
Lisco | 40.955 | −73.342 | 30/03/2016 | 15:33:00 | 15:10:00 | 15:14:00 | 0.058 | 0.811 | maritime | 3.171 | 4.139 |
Lisco | 40.955 | −73.342 | 18/06/2016 | 15:33:00 | 15:28:00 | 15:27:00 | 0.062 | 1.576 | rural | 4.387 | 2.777 |
Lisco | 40.955 | −73.342 | 22/09/2016 | 15:34:00 | 15:58:45 | 15:57:50 | 0.049 | 1.365 | rural | 4.062 | 4.593 |
Lisco | 40.955 | −73.342 | 18/04/2017 | 15:33:00 | 15:26:23 | 15:38:33 | 0.043 | 1.038 | rural | 7.344 | 7.771 |
UscSP | 33.564 | −118.118 | 12/02/2015 | 18:28:00 | 18:19:00 | 18:37:00 | 0.014 | 0.846 | maritime | 0.244 | 5.906 |
UscSP | 33.564 | −118.118 | 26/09/2016 | 18:28:00 | 18:17:00 | 18:29:00 | 0.055 | 0.760 | maritime | 0.808 | 5.341 |
UscSP | 33.564 | −118.118 | 13/11/2016 | 18:28:00 | 18:10:00 | 18:22:00 | 0.043 | 0.872 | maritime | 0.324 | 3.451 |
Venise | 45.314 | 12.508 | 01/07/2015 | 09:58:00 | 09:47:00 | 09:46:00 | 0.091 | 2.039 | rural | 0.550 | 1.238 |
Venise | 45.314 | 12.508 | 07/05/2016 | 09:57:00 | 10:12:00 | 09:52:00 | 0.095 | 1.850 | rural | 0.973 | 1.122 |
Venise | 45.314 | 12.508 | 10/07/2016 | 09:58:00 | 09:48:00 | 10:01:00 | 0.182 | 1.789 | rural | 1.585 | 1.765 |
Venise | 45.314 | 12.508 | 19/07/2016 | 09:52:00 | 09:49:00 | 09:49:00 | 0.078 | 1.621 | rural | 0.821 | 0.593 |
Venise | 45.314 | 12.508 | 27/08/2016 | 09:57:00 | 09:45:00 | 09:58:00 | 0.077 | 1.845 | rural | 1.187 | 1.343 |
Venise | 45.314 | 12.508 | 08/04/2017 | 09:57:00 | 10:24:00 | 09:45:23 | 0.125 | 1.356 | rural | 2.262 | 0.733 |
Venise | 45.314 | 12.508 | 26/05/2017 | 09:57:00 | 09:42:00 | 09:54:00 | 0.136 | 1.802 | rural | 2.389 | 2.465 |
Venise | 45.314 | 12.508 | 20/04/2018 | 09:52:00 | 10:15:09 | 09:54:49 | 0.069 | 1.512 | rural | 2.142 | 4.082 |
WaveCIS | 28.867 | −90.483 | 07/02/2015 | 16:32:00 | 16:29:00 | 16:32:00 | 0.051 | 1.438 | rural | 1.798 | 2.271 |
WaveCIS | 28.867 | −90.483 | 08/12/2015 | 16:32:00 | 16:27:00 | 16:39:00 | 0.058 | 1.292 | rural | 3.768 | 1.185 |
WaveCIS | 28.867 | −90.483 | 10/02/2016 | 16:32:00 | 16:29:00 | 16:32:00 | 0.023 | 1.105 | rural | 3.966 | 5.380 |
WaveCIS | 28.867 | −90.483 | 26/02/2016 | 16:32:00 | 16:49:00 | 16:31:00 | 0.052 | 1.189 | rural | 4.224 | 5.515 |
WaveCIS | 28.867 | −90.483 | 13/03/2016 | 16:32:00 | 16:45:00 | 16:27:00 | 0.074 | 0.836 | maritime | 2.762 | 5.028 |
WaveCIS | 28.867 | −90.483 | 26/10/2017 | 16:33:00 | 16:19:52 | 16:31:48 | 0.034 | 0.171 | maritime | 1.548 | 2.698 |
SITE | Lat. | Long. | DATE | TIME_sat | TIME_OC | TIME_aero | AOT | AngExp440870 | mod.aerosol | Chla | WS.OC |
---|---|---|---|---|---|---|---|---|---|---|---|
Galata | 43.05 | 28.19 | 05/09/2016 | 09:05:00 | 09:13:32 | 09:07:36 | 0.087 | 1.86 | rural | 0.71 | 1.33 |
Galata | 43.05 | 28.19 | 03/04/2017 | 09:04:00 | 08:20:00 | 09:16:00 | 0.051 | 1.08 | rural | 0.52 | 4.16 |
Galata | 43.05 | 28.19 | 03/05/2017 | 09:08:00 | 09:37:00 | 09:19:00 | 0.192 | 0.55 | maritime | 0.37 | 5.64 |
Galata | 43.05 | 28.19 | 22/06/2017 | 09:05:00 | 09:42:24 | 09:14:12 | 0.119 | 1.83 | rural | 0.42 | 2.74 |
Galata | 43.05 | 28.19 | 31/08/2017 | 09:08:00 | 09:41:00 | 09:08:00 | 0.125 | 1.51 | rural | 0.50 | 3.39 |
Gloria | 44.60 | 29.36 | 28/04/2016 | 09:05:00 | 09:06:22 | 09:05:23 | 0.101 | 1.93 | rural | 1.86 | 3.32 |
Gloria | 44.60 | 29.36 | 12/06/2017 | 09:11:00 | 08:36:06 | 09:03:12 | 0.087 | 1.65 | rural | 5.79 | 3.79 |
Gustav | 58.59 | 17.47 | 24/05/2017 | 10:25:00 | 10:20:37 | 10:19:42 | 0.036 | 1.66 | rural | 1.22 | 2.87 |
Helsinki | 59.95 | 24.93 | 07/07/2017 | 09:58:00 | 09:58:18 | 09:57:22 | 0.031 | 1.36 | rural | 2.32 | 3.66 |
Lisco | 40.95 | 73.34 | 18/04/2016 | 15:48:00 | 15:58:00 | 15:57:00 | 0.068 | 0.64 | maritime | 5.23 | 1.56 |
Lisco | 40.95 | 73.34 | 27/07/2016 | 15:50:00 | 16:07:00 | 15:47:00 | 0.047 | 1.04 | rural | 7.64 | 2.68 |
Lisco | 40.95 | 73.34 | 15/10/2016 | 15:48:00 | 15:51:00 | 15:50:00 | 0.035 | 1.21 | rural | 3.59 | 3.51 |
UscSP | 33.56 | −118.12 | 06/09/2016 | 18:42:00 | 18:57:00 | 18:51:00 | 0.191 | 1.08 | rural | 0.59 | 2.48 |
UscSP | 33.56 | −118.12 | 26/09/2016 | 18:43:00 | 18:50:05 | 18:44:43 | 0.061 | 0.60 | maritime | 0.70 | 5.20 |
UscSP | 33.56 | −118.12 | 06/10/2016 | 18:44:00 | 18:52:57 | 18:47:36 | 0.065 | 0.62 | maritime | 0.52 | 4.26 |
Venise | 45.31 | 12.51 | 14/05/2017 | 10:18:00 | 10:14:00 | 10:13:00 | 0.119 | 1.15 | rural | 1.31 | 2.19 |
WaveCIS | 28.87 | −90.48 | 06/10/2015 | 16:43:00 | 16:56:39 | 16:51:11 | 0.039 | 1.38 | rural | 2.47 | 2.99 |
WaveCIS | 28.87 | −90.48 | 08/12/2015 | 16:57:00 | 17:07:13 | 16:54:33 | 0.054 | 1.39 | rural | 3.75 | 1.29 |
WaveCIS | 28.87 | −90.48 | 24/01/2016 | 16:47:00 | 16:47:47 | 16:45:00 | 0.053 | 1.57 | rural | 3.62 | 1.89 |
WaveCIS | 28.87 | −90.48 | 04/03/2016 | 16:45:00 | 16:47:54 | 16:44:46 | 0.051 | 1.46 | rural | 5.20 | 4.27 |
WaveCIS | 28.87 | −90.48 | 23/04/2016 | 16:41:00 | 17:06:00 | 16:46:00 | 0.069 | 1.47 | rural | 11.26 | 3.02 |
WaveCIS | 28.87 | −90.48 | 12/12/2016 | 16:57:00 | 17:29:40 | 16:56:51 | 0.067 | 1.20 | rural | 2.30 | 4.26 |
WaveCIS | 28.87 | −90.48 | 08/05/2017 | 16:41:00 | 16:33:00 | 16:44:00 | 0.079 | 1.31 | rural | 1.00 | 1.00 |
Gain | B01 | B02 | B03 | B04 | B05 | B06 | B07 | B08 |
---|---|---|---|---|---|---|---|---|
wvl (nm) | 443.0 | 482.6 | 561.3 | 654.6 | 864.6 | 1609.1 | 2201.3 | 591.6 |
MD | 0.99 | 0.97 | 0.94 | 0.95 | 0.93 | 0.87 | 0.77 | 0.98 |
SD | 0.03 | 0.04 | 0.06 | 0.06 | 0.12 | 0.31 | 0.40 | 0.06 |
Gain | B01 | B02 | B03 | B04 | B05 | B06 | B07 | B08 | B08A | B09 | B11 | B12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
wvl (nm) | 442.7 | 492.4 | 559.9 | 664.6 | 704.1 | 740.5 | 782.8 | 832.8 | 864.7 | 945.1 | 1613.7 | 2202.4 |
MD | 0.97 | 0.95 | 0.93 | 0.89 | 0.88 | 0.90 | 0.85 | 0.85 | 0.80 | 0.99 | 0.53 | 0.43 |
SD | 0.03 | 0.04 | 0.06 | 0.09 | 0.11 | 0.12 | 0.14 | 0.15 | 0.17 | 0.23 | 0.46 | 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bassani, C.; Sterckx, S. Calibration of Satellite Low Radiance by AERONET-OC Products and 6SV Model. Remote Sens. 2021, 13, 781. https://doi.org/10.3390/rs13040781
Bassani C, Sterckx S. Calibration of Satellite Low Radiance by AERONET-OC Products and 6SV Model. Remote Sensing. 2021; 13(4):781. https://doi.org/10.3390/rs13040781
Chicago/Turabian StyleBassani, Cristiana, and Sindy Sterckx. 2021. "Calibration of Satellite Low Radiance by AERONET-OC Products and 6SV Model" Remote Sensing 13, no. 4: 781. https://doi.org/10.3390/rs13040781
APA StyleBassani, C., & Sterckx, S. (2021). Calibration of Satellite Low Radiance by AERONET-OC Products and 6SV Model. Remote Sensing, 13(4), 781. https://doi.org/10.3390/rs13040781