Assessing Near Real-Time Satellite Precipitation Products for Flood Simulations at Sub-Daily Scales in a Sparsely Gauged Watershed in Peruvian Andes
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Ground-Based Data
2.3. Satellite Precipitation Products (SPPs)
3. Methods
3.1. Statistical Evaluation of SPPs against Rain Gauges
3.2. Bias Correction of SPPs
3.3. Semi-Distributed GR4H Model
3.3.1. Model Description and Setup
3.3.2. Model Calibration, Validation, and Verification
4. Results
4.1. Validation of SPP against Rain Gauges
4.2. Evaluation of SPP’s Hydrological Performance Using GR4H Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huggel, C.; Raissig, A.; Rohrer, M.; Romero, G.; Diaz, A.; Salzmann, N. How useful and reliable are disaster databases in the context of climate and global change? A comparative case study analysis in Peru. Nat. Hazards Earth Syst. Sci. 2015, 15, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Min, X.; Yang, C.; Dong, N. Merging Satellite and Gauge Rainfalls for Flood Forecasting of Two Catchments Under Different Climate Conditions. Water 2020, 12, 802. [Google Scholar] [CrossRef] [Green Version]
- INDECI. Evaluación Del Impacto Socio-Económico de la Temporada de Lluvias 2010 en la Región Cusco; Instituto Nacional de Defensa Civil del Perú: Lima, Peru, 2012; ISBN 201201354.
- Belabid, N.; Zhao, F.; Brocca, L.; Huang, Y.; Tan, Y. Near-Real-Time Flood Forecasting Based on Satellite Precipitation Products. Remote Sens. 2019, 11, 252. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Adler, R.F.; Tian, Y.; Huffman, G.J.; Li, H.; Wang, J. Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res. 2014, 50, 2693–2717. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Hong, Y.; Wang, J.; Adler, R.F.; Policelli, F.S.; Habib, S.; Irwn, D.; Korme, T.; Okello, L. Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia Basin, Lake Victoria, Africa. Nat. Hazards 2009, 50, 109–123. [Google Scholar] [CrossRef]
- Aybar, C.; Fernández, C.; Huerta, A.; Lavado, W.; Vega, F.; Felipe-Obando, O. Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day. Hydrol. Sci. J. 2020, 65, 770–785. [Google Scholar] [CrossRef]
- Thiemig, V.; Rojas, R.; Zambrano-Bigiarini, M.; De Roo, A. Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo Basin. J. Hydrol. 2013, 499, 324–338. [Google Scholar] [CrossRef]
- Ma, Z.; Tan, X.; Yang, Y.; Chen, X.; Kan, G.; Ji, X.; Lu, H.; Long, J.; Cui, Y.; Hong, Y. The First Comparisons of IMERG and the Downscaled Results Based on IMERG in Hydrological Utility over the Ganjiang River Basin. Water 2018, 10, 1392. [Google Scholar] [CrossRef] [Green Version]
- Maggioni, V.; Massari, C. On the performance of satellite precipitation products in riverine flood modeling: A review. J. Hydrol. 2018, 558, 214–224. [Google Scholar] [CrossRef]
- Andres, N.; Vegas Galdos, F.; Lavado Casimiro, W.S.; Zappa, M. Water resources and climate change impact modelling on a daily time scale in the Peruvian Andes. Hydrol. Sci. J. 2014, 59, 2043–2059. [Google Scholar] [CrossRef] [Green Version]
- Zulkafli, Z.; Buytaert, W.; Onof, C.; Manz, B.; Tarnavsky, E.; Lavado, W.; Guyot, J.-L. A Comparative Performance Analysis of TRMM 3B42 (TMPA) Versions 6 and 7 for Hydrological Applications over Andean–Amazon River Basins. J. Hydrometeorol. 2014, 15, 581–592. [Google Scholar] [CrossRef]
- Zubieta, R.; Getirana, A.; Espinoza, J.C.; Lavado-Casimiro, W.; Aragon, L. Hydrological modeling of the Peruvian-Ecuadorian Amazon Basin using GPM-IMERG satellite-based precipitation dataset. Hydrol. Earth Syst. Sci. 2017, 21, 3543–3555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satgé, F.; Bonnet, M.-P.; Gosset, M.; Molina, J.; Lima, W.H.Y.; Zolá, R.P.; Timouk, F.; Garnier, J. Assessment of satellite rainfall products over the Andean plateau. Atmos. Res. 2016, 167, 1–14. [Google Scholar] [CrossRef]
- Rossa, A.; Haase, G.; Keil, C.; Alberoni, P.; Ballard, S.; Bech, J.; Germann, U.; Pfeifer, M.; Salonen, K. Propagation of uncertainty from observing systems into NWP: COST-731 Working Group 1. Atmos. Sci. Lett. 2010, 11, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, P.K.; Shrestha, S.; Ninsawat, S. How significant is sub-daily variability of rainfall for hydrological modelling of floods? A satellite based approach to sub-daily downscaling of gauged rainfall. Meteorol. Appl. 2019, 26, 288–299. [Google Scholar] [CrossRef] [Green Version]
- Mei, Y.; Nikolopoulos, E.I.; Anagnostou, E.N.; Zoccatelli, D.; Borga, M. Error Analysis of Satellite Precipitation-Driven Modeling of Flood Events in Complex Alpine Terrain. Remote Sens. 2016, 8, 293. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Adler, R.F.; Negri, A.; Huffman, G.J. Flood and landslide applications of near real-time satellite rainfall products. Nat. Hazards 2007, 43, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Massari, C.; Pellarin, T.; Filippucci, P.; Ciabatta, L.; Camici, S.; Kerr, Y.H.; Fernández-Prieto, D. River flow prediction in data scarce regions: Soil moisture integrated satellite rainfall products outperform rain gauge observations in West Africa. Sci. Rep. 2020, 10, 12517. [Google Scholar] [CrossRef] [PubMed]
- Soo, E.Z.X.; Jaafar, W.Z.W.; Lai, S.H.; Othman, F.; Elshafie, A.; Islam, T.; Srivastava, P.; Hadi, H.S.O. Evaluation of bias-adjusted satellite precipitation estimations for extreme flood events in Langat river basin, Malaysia. Hydrol. Res. 2020, 51, 105–126. [Google Scholar] [CrossRef]
- Habib, E.; Haile, A.T.; Sazib, N.; Zhang, Y.; Rientjes, T. Effect of Bias Correction of Satellite-Rainfall Estimates on Runoff Simulations at the Source of the Upper Blue Nile. Remote Sens. 2014, 6, 6688–6708. [Google Scholar] [CrossRef] [Green Version]
- Yeditha, P.K.; Kasi, V.; Rathinasamy, M.; Agarwal, A. Forecasting of extreme flood events using different satellite precipitation products and wavelet-based machine learning methods. Chaos 2020, 30, 063115. [Google Scholar] [CrossRef]
- Moine, N. Le Bassin Versant De Surface Vu Par le Souterrain: Une voie D’amélioration Des Performances Et Du Réalisme Des Modèles Pluie-Débit? Ph.D. Thesis, Université Pierre et Marie, Paris, France, November 2008. [Google Scholar]
- Caligiuri, S.; Camera, C.; Masetti, M.; Bruggeman, A.; Sofokleous, I. Testing GR4H Model Parameter Transferability for Extreme Events in Cyprus: Evaluation of a Cluster Analysis Approach. Proceedings of the Geophysical Research Abstracts, EGU General Assembly Conference Abstracts. Vienna, Austria, 7–12 April 2019; Volume 21. Available online: search.ebscohost.com (accessed on 16 January 2020).
- Basri, H.; Sidek, L.M.; Razad, A.Z.; Pokhrel, P. Hydrological Modelling of Surface Runoff for Temengor Reservoir Using GR4H Model. Int. J. Civ. Eng. Technol. 2019, 10, 29–40. [Google Scholar]
- Ficchì, A.; Perrin, C.; Andréassian, V. Hydrological modelling at multiple sub-daily time steps: Model improvement via flux-matching. J. Hydrol. 2019, 575, 1308–1327. [Google Scholar] [CrossRef]
- Lavado Casimiro, W.S.; Labat, D.; Guyot, J.L.; Ardoin-Bardin, S. Assessment of climate change impacts on the hydrology of the Peruvian Amazon-Andes basin. Hydrol. Process. 2011, 25, 3721–3734. [Google Scholar] [CrossRef]
- Salzmann, N.; Huggel, C.; Rohrer, M.; Silverio, W.; Mark, B.G.; Burns, P.; Portocarrero, C. Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. Cryosphere 2013, 7, 103–118. [Google Scholar] [CrossRef] [Green Version]
- Drenkhan, F.; Carey, M.; Huggel, C.; Seidel, J.; Oré, M.T. The changing water cycle: Climatic and socioeconomic drivers of water-related changes in the Andes of Peru. Wiley Interdiscip. Rev. Water 2015, 2, 715–733. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA/GSFC Code 2015, 612, 47. [Google Scholar]
- Kubota, T.; Aonashi, K.; Ushio, T.; Shige, S.; Takayabu, Y.N.; Kachi, M.; Arai, Y.; Tashima, T.; Masaki, T.; Kawamoto, N.; et al. Global Satellite Mapping of Precipitation (GSMaP) Products in the GPM Era. In Satellite Precipitation Measurement: Volume 1; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 355–373. ISBN 9783030245689. [Google Scholar]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Scofield, R.A.; Kuligowski, R.J. Status and Outlook of Operational Satellite Precipitation Algorithms for Extreme-Precipitation Events. Weather Forecast 2003, 18, 1037–1051. [Google Scholar] [CrossRef] [Green Version]
- Dinku, T.; Hailemariam, K.; Maidment, R.; Tarnavsky, E.; Connor, S. Combined use of satellite estimates and rain gauge observations to generate high-quality historical rainfall time series over Ethiopia. Int. J. Climatol. 2014, 34, 2489–2504. [Google Scholar] [CrossRef] [Green Version]
- Perrin, C.; Michel, C.; Andréassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 2003, 279, 275–289. [Google Scholar] [CrossRef]
- Li, Y.; Ryu, D.; Western, A.W.; Wang, Q.J. Assimilation of stream discharge for flood forecasting: The benefits of accounting for routing time lags. Water Resour. Res. 2013, 49, 1887–1900. [Google Scholar] [CrossRef]
- Cunge, J.A. On The Subject Of A Flood Propagation Computation Method (Musklngum Method). J. Hydraul. Res. 1969, 7, 205–230. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Ambient Air Temperature. In Proceedings of the American Society of Agricultural Engineers Meeting (Paper 85-2517), Chicago, IL, USA, 17 December 1985. [Google Scholar]
- Coron, L.; Thirel, G.; Delaigue, O.; Perrin, C.; Andréassian, V. The suite of lumped GR hydrological models in an R package. Environ. Model. Softw. 2017, 94, 166–171. [Google Scholar] [CrossRef]
- Duan, Q.Y.; Gupta, V.K.; Sorooshian, S. Effective and Efficient Global Minimization. J. Optim. Theory Appl. 1993. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Dawson, C.W.; Abrahart, R.J.; See, L.M. HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Model. Softw. 2007, 22, 1034–1052. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Gupta, H.V. Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resour. Res. 2007, 43, 160. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, L.; Soe, K.M.W.; Ren, L.; Zhao, C.; Zhu, Y.; Jiang, S.; Liu, Y. Applications of TRMM- and GPM-Era Multiple-Satellite Precipitation Products for Flood Simulations at Sub-Daily Scales in a Sparsely Gauged Watershed in Myanmar. Remote Sens. 2019, 11, 140. [Google Scholar] [CrossRef] [Green Version]
N° Subbasin | Station * | Area [km2] | Mean Elevation [masl] | Mean Slope [°] | Length [km] |
---|---|---|---|---|---|
1 | SAL | 2042 | 4753 | 11 | 45 |
2 | - | 1743 | 4167 | 13 | 41 |
3 | - | 290 | 4317 | 19 | 29 |
4 | - | 686 | 4635 | 18 | 17 |
5 | - | 42 | 3766 | 17 | 9 |
6 | - | 1192 | 4010 | 17 | 58 |
7 | PIS | 906 | 3725 | 17 | 3 |
8 | - | 1113 | 3858 | 20 | 59 |
9 | - | 766 | 3733 | 13 | 13 |
10 | CHI | 401 | 4091 | 23 | 17 |
11 | INT | 411 | 3791 | 27 | 7 |
Type | Station | Abrev. | Longitude [ºW] | Latitude [ºS] | Elevation [masl] | Coverage [%] |
---|---|---|---|---|---|---|
Pluviometric | Acjanaco Gore | AGR | 71.62 | 13.20 | 3466.11 | 85.63 |
Calca | CAL | 71.96 | 13.33 | 2921.24 | 94.01 | |
Casaccancha | CAS | 72.30 | 13.99 | 4033.16 | 84.62 | |
Huayllabamba | HUA | 72.45 | 13.27 | 2976.55 | 86.86 | |
Intihuatana H | INH | 72.56 | 13.17 | 1774.23 | 63.86 | |
Intihuatana M | INM | 72.56 | 13.17 | 1778.23 | 89.81 | |
Machupicchu | MAC | 72.55 | 13.18 | 2399.80 | 68.18 | |
Marcapata Gore | MAR | 70.90 | 13.50 | 1792.76 | 83.05 | |
Qorihuayrachina | QOR | 72.43 | 13.22 | 2517.25 | 96.41 | |
Salcca | SAC | 71.23 | 14.17 | 3920.10 | 87.75 | |
San Pablo | SPB | 72.62 | 13.03 | 1228.11 | 90.45 | |
Santa Teresa | STR | 72.59 | 13.13 | 1491.43 | 64.97 | |
Santo Tomas | STM | 72.10 | 14.45 | 3665.48 | 95.58 | |
Sicuani | SIC | 71.24 | 14.24 | 3534.95 | 99.53 | |
Soraypampa | SOR | 72.57 | 13.40 | 3842.32 | 97.78 | |
Hydrometric | Intihuatana km105 | INT | 72.53 | 13.18 | 1774.72 | 12.01 |
Chilca | CHI | 72.34 | 13.22 | 2475.28 | 36.57 | |
Pisac | PIS | 71.84 | 13.43 | 2791.65 | 98.33 | |
Salcca | SAL | 71.23 | 14.17 | 3918.71 | 31.39 |
Product | Version | Short Name | Institution | Resolution | Latency |
---|---|---|---|---|---|
Integrated Multi-satellite Retrievals for GPM | Early V06B | IMERG-E | NASA | 0.1º × 0.1º | 5 h |
Global Satellite Mapping of Precipitation | Near Real-Time V06 | GSMaP-NRT | JAXXA | 0.1º × 0.1º | 5 h |
Climate Prediction Center Morphing Method | v0.x & v1.0 | CMORPH | NOAA/CPC | 0.08º ×0.08º | 8 h |
HydroEstimator | - | HE | NOAA/NESDIS | 0.05º ×0.05º | 3 h |
Statistical Metric | Unit | Equation | Optimal Value |
---|---|---|---|
Relative Error (RE) | - | 0 | |
Coefficient of Correlation (R) | - | 1 | |
Root Mean Square Error (RMSE) | mm/h | 0 | |
Mean Absolute Error (MAE) | mm/h | 0 |
Statistical Metric | Unit | Equation | Optimal Value |
---|---|---|---|
Kling–Gupta efficiency (KGE) | - | 1 | |
Mean Absolute Relative Error (MARE) | - | 1 | |
Percentage Bias (PBIAS) | % | 0 | |
Root Mean Square Error (RMSE) | m3/s | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llauca, H.; Lavado-Casimiro, W.; León, K.; Jimenez, J.; Traverso, K.; Rau, P. Assessing Near Real-Time Satellite Precipitation Products for Flood Simulations at Sub-Daily Scales in a Sparsely Gauged Watershed in Peruvian Andes. Remote Sens. 2021, 13, 826. https://doi.org/10.3390/rs13040826
Llauca H, Lavado-Casimiro W, León K, Jimenez J, Traverso K, Rau P. Assessing Near Real-Time Satellite Precipitation Products for Flood Simulations at Sub-Daily Scales in a Sparsely Gauged Watershed in Peruvian Andes. Remote Sensing. 2021; 13(4):826. https://doi.org/10.3390/rs13040826
Chicago/Turabian StyleLlauca, Harold, Waldo Lavado-Casimiro, Karen León, Juan Jimenez, Kevin Traverso, and Pedro Rau. 2021. "Assessing Near Real-Time Satellite Precipitation Products for Flood Simulations at Sub-Daily Scales in a Sparsely Gauged Watershed in Peruvian Andes" Remote Sensing 13, no. 4: 826. https://doi.org/10.3390/rs13040826
APA StyleLlauca, H., Lavado-Casimiro, W., León, K., Jimenez, J., Traverso, K., & Rau, P. (2021). Assessing Near Real-Time Satellite Precipitation Products for Flood Simulations at Sub-Daily Scales in a Sparsely Gauged Watershed in Peruvian Andes. Remote Sensing, 13(4), 826. https://doi.org/10.3390/rs13040826