Predicting Skipjack Tuna Fishing Grounds in the Western and Central Pacific Ocean Based on High-Spatial-Temporal-Resolution Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Skipjack Tuna Fishery Data
2.2. Remotely-Sensed Environmental Data
2.3. Habitat Suitability Index Model
2.4. Calculation of Predicting Rate
3. Results
3.1. Variations of Skipjack Tuna in the WCPO
3.2. Suitability Index Analysis and Habitat Suitability Index Model
3.3. Accuracy of the HSI Model
3.4. The Outputs of the HSI Model and Purse Seine Fishing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashida, H. Spatial and temporal differences in the reproductive traits of skipjack tuna Katsuwonus pelamis between the subtropical and temperate western Pacific Ocean. Fish. Res. 2020, 221. [Google Scholar] [CrossRef]
- Mugo, R.; Saitoh, S.-I.; Nihira, A.; Kuroyama, T. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: A remote sensing perspective. Fish. Oceanogr. 2010, 19, 382–396. [Google Scholar] [CrossRef]
- Miyabe, N.; Nakano, H. Historical Trends of Tuna Catches in the World; Food & Agriculture Org.: Rome, Italy, 2004. [Google Scholar]
- Langley, A.; Hampton, J.; Ogura, M. Stock Assessment of Skipjack Tuna in the Western and Central Pacific Ocean; WCPFC SC1 SA WP-4, 69 pp. Bigeye Tuna Yellowfin Tuna 2005; WCPFC: Kolonia, Federated States of Micronesia, 2005. [Google Scholar]
- Miyake, M.P.; Guillotreau, P.; Sun, C.-H.; Ishimura, G. Recent Developments in the Tuna Industry: Stocks, Fisheries, Management, Processing, Trade and Markets; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- FAO. FAO Yearbook: Fishery and Aquaculture Statistics; FAO: Rome, Italy, 2017. [Google Scholar]
- WCPFC. Tuna Fishery Yearbook 2017; Western Central Pacific Fisheries Commission: Kolonia, Federated States of Micronesia, 2018. [Google Scholar]
- Lehodey, P.; Bertignac, M.; Hampton, J.; Lewis, A.; Picaut, J. El Niño Southern Oscillation and tuna in the western Pacific. Nature 1997, 389, 715–718. [Google Scholar] [CrossRef]
- Graham, J.B.; Dickson, K.A. Tuna comparative physiology. J. Exp. Biol. 2004, 207, 4015–4024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Druon, J.; Chassot, E.; Murua, H.; Soto, M. Preferred feeding habitat of skipjack tuna in the eastern central Atlantic and western Indian Oceans: Relations with carrying capacity and vulnerability to purse seine fishing. In Proceedings of the Scientific Committee of the Indian Ocean Tuna Commission-working Party on Tropical Tunas, Mahe, Seychelles, 5–10 November 2016. [Google Scholar]
- Druon, J.-N.; Chassot, E.; Murua, H.; Lopez, J. Skipjack Tuna Availability for Purse Seine Fisheries Is Driven by Suitable Feeding Habitat Dynamics in the Atlantic and Indian Oceans. Front. Mar. Sci. 2017, 4. [Google Scholar] [CrossRef]
- Zainuddin, M.; Farhum, A.; Safruddin, S.; Selamat, M.B.; Sudirman, S.; Nurdin, N.; Syamsuddin, M.; Ridwan, M.; Saitoh, S.I. Detection of pelagic habitat hotspots for skipjack tuna in the Gulf of Bone-Flores Sea, southwestern Coral Triangle tuna, Indonesia. PLoS ONE 2017, 12, e0185601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathnasuriya, M.I.G. Environmental Effect on the Skipjack Tuna (Katsuwonus pelamis) Fishery in the Sri Lankan Waters; Pukyong National University: Busan, Korea, 2016. [Google Scholar]
- Tang, H.; Xu, L.-X.; Chen, X.-J.; Zhu, G.-P.; Zhou, C.; Wang, X.-F. Effects of spatiotemporal and environmental factors on the fishing ground of Skipjack Tuna (Katsuwonus pelamis) in the western and central Pacific Ocean based on generalized additive model. Mar. Environ. Sci. 2013, 32, 518–522. [Google Scholar]
- Wang, J.; Chen, X.; Chen, Y. Spatio-temporal distribution of skipjack in relation to oceanographic conditions in the west-central Pacific Ocean. Int. J. Remote Sens. 2016, 37, 6149–6164. [Google Scholar] [CrossRef]
- Arrizabalaga, H.; Dufour, F.; Kell, L.; Merino, G.; Ibaibarriaga, L.; Chust, G.; Irigoien, X.; Santiago, J.; Murua, H.; Fraile, I.; et al. Global habitat preferences of commercially valuable tuna. Deep Sea Res. Part Ii Top. Stud. Oceanogr. 2015, 113, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Coletto, J.L.; Pinho, M.P.; Madureira, L.S.P. Operational oceanography applied to skipjack tuna (Katsuwonus pelamis) habitat monitoring and fishing in south-western Atlantic. Fish. Oceanogr. 2018, 28, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Baudena, A.; Ser-Giacomi, E.; d’Onofrio, D.; Capet, X.; Cotté, C.; Cherel, Y.; d’Ovidio, F. Fine-scale fronts as hotspots of fish aggregation in the open ocean. bioRxiv 2019. [Google Scholar] [CrossRef]
- Kai, E.T.; Rossi, V.; Sudre, J.; Weimerskirch, H.; Lopez, C.; Hernandez-Garcia, E.; Marsac, F.; Garçon, V. Top marine predators track Lagrangian coherent structures. Proc. Natl. Acad. Sci. USA 2009, 106, 8245–8250. [Google Scholar]
- Watson, J.R.; Fuller, E.C.; Castruccio, F.S.; Samhouri, J.F. Fishermen Follow Fine-Scale Physical Ocean Features for Finance. Front. Mar. Sci. 2018, 5. [Google Scholar] [CrossRef]
- Yen, K.-W.; Lu, H.-J.; Chang, Y.; Lee, M.-A. Using remote-sensing data to detect habitat suitability for yellowfin tuna in the Western and Central Pacific Ocean. Int. J. Remote Sens. 2012, 33, 7507–7522. [Google Scholar] [CrossRef]
- Lan, K.-W.; Shimada, T.; Lee, M.-A.; Su, N.-J.; Chang, Y. Using Remote-Sensing Environmental and Fishery Data to Map Potential Yellowfin Tuna Habitats in the Tropical Pacific Ocean. Remote Sens. 2017, 9, 444. [Google Scholar] [CrossRef] [Green Version]
- Receveur, A.; Nicol, S.; Tremblay-Boyer, L.; Menkes, C.; Senina, I.; Lehodey, P. Using SEAPODYM to better understand the influence of El Niño Southern Oscillation on Pacific tuna fisheries. Spc Fish. Newsl. 2016, 149, 31–36. [Google Scholar]
- Brooks, R.P. Improving habitat suitability index models. Wildl. Soc. Bull. (1973–2006) 1997, 25, 163–167. [Google Scholar]
- Lee, M.-A.; Weng, J.-S.; Lan, K.-W.; Vayghan, A.H.; Wang, Y.-C.; Chan, J.-W. Empirical habitat suitability model for immature albacore tuna in the North Pacific Ocean obtained using multisatellite remote sensing data. Int. J. Remote Sens. 2019. [Google Scholar] [CrossRef]
- Uenaka, T.; Sakamoto, N.; Koyamada, K. Visual Analysis of Habitat Suitability Index Model for Predicting the Locations of Fishing Grounds. In Proceedings of the 2014 IEEE Pacific Visualization Symposium, Yokohama, Japan, 4–7 March 2014; pp. 306–310. [Google Scholar]
- Stelzenmüller, V.; Ehrich, S.; Zauke, G.-P. Effects of survey scale and water depth on the assessment of spatial distribution patterns of selected fish in the northern North Sea showing different levels of aggregation. Mar. Biol. Res. 2005, 1, 375–387. [Google Scholar] [CrossRef]
- Bordalo-Machado, P. Fishing Effort Analysis and Its Potential to Evaluate Stock Size. Rev. Fish. Sci. 2007, 14, 369–393. [Google Scholar] [CrossRef]
- Abernethy, K.E.; Allison, E.H.; Molloy, P.P.; Côté, I.M. Why do fishers fish where they fish? Using the ideal free distribution to understand the behaviour of artisanal reef fishers. Can. J. Fish. Aquat. Sci. 2007, 64, 1595–1604. [Google Scholar] [CrossRef]
- Swain, D.P.; Wade, E.J. Spatial distribution of catch and effort in a fishery for snow crab (Chionoecetes opilio): Tests of predictions of the ideal free distribution. Can. J. Fish. Aquat. Sci. 2003, 60, 897–909. [Google Scholar] [CrossRef]
- Global Fishing Watch. Available online: www.globalfishingwatch.org (accessed on 17 January 2021).
- Dagorn, L.; Holland, K.N.; Restrepo, V.; Moreno, G. Is it good or bad to fish with FADs? What are the real impacts of the use of drifting FADs on pelagic marine ecosystems? Fish Fish. 2013, 14, 391–415. [Google Scholar] [CrossRef]
- Orue, B.; Lopez, J.; Moreno, G.; Santiago, J.; Soto, M.; Murua, H. Aggregation process of drifting fish aggregating devices (DFADs) in the Western Indian Ocean: Who arrives first, tuna or non-tuna species? PLoS ONE 2019, 14, e0210435. [Google Scholar] [CrossRef] [Green Version]
- Boyra, G.; Moreno, G.; Sobradillo, B.; Pérez-Arjona, I.; Sancristobal, I.; Demer, D.A.; Ratilal, P. Target strength of skipjack tuna (Katsuwanus pelamis) associated with fish aggregating devices (FADs). ICES J. Mar. Sci. 2018, 75, 1790–1802. [Google Scholar] [CrossRef]
- Belkin, I.M.; O’Reilly, J.E. An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. J. Mar. Syst. 2009, 78, 319–326. [Google Scholar] [CrossRef]
- Woodson, C.; McManus, M.; Tyburczy, J.; Barth, J.; Washburn, L.; Caselle, J.; Carr, M.; Malone, D.; Raimondi, P.; Menge, B. Coastal fronts set recruitment and connectivity patterns across multiple taxa. Limnol. Oceanogr. 2012, 57, 582–596. [Google Scholar] [CrossRef] [Green Version]
- Kiyofuji, H.; Aoki, Y.; Kinoshita, J.; Okamoto, S.; Masujima, M.; Matsumoto, T.; Fujioka, K.; Ogata, R.; Nakao, T.; Sugimoto, N.; et al. Northward migration dynamics of skipjack tuna (Katsuwonus pelamis) associated with the lower thermal limit in the western Pacific Ocean. Prog. Oceanogr. 2019, 175, 55–67. [Google Scholar] [CrossRef]
- Matear, R.J.; Chamberlain, M.A.; Sun, C.; Feng, M. Climate change projection for the western tropical Pacific Ocean using a high-resolution ocean model: Implications for tuna fisheries. Deep Sea Res. Part Ii Top. Stud. Oceanogr. 2015, 113, 22–46. [Google Scholar] [CrossRef]
- Lauver, C.L.; Busby, W.H.; Whistler, J.L. Testing a GIS model of habitat suitability for a declining grassland bird. Environ. Manag. 2002, 30, 88–97. [Google Scholar] [CrossRef]
- Santos, A.M.P. Fisheries oceanography using satellite and airborne remote sensing methods: A review. Fish. Res. 2000, 49, 1–20. [Google Scholar] [CrossRef]
- Chang, S.-K.; Lu, H.-J. Taiwan tuna fisheries in the western-central Pacific Ocean, 1997. Presented at the Eleventh Meeting of the Standing Committee on Tuna and Billfish, Honolulu, HI, USA, 30 May–6 June 1998. [Google Scholar]
- Matsumoto, W.M. The Skipjack Tuna, Katsuwonus pelamis. Mar. Fish. Rev. 1974, 36, 26. [Google Scholar]
- WCPFC. Conservation and Management Measure for Bigeye and Yellowfin Tuna in the Western and Central Pacific Ocean; CMM 2008-01; WCPFC: Kolonia, Federated States of Micronesia, 2008. [Google Scholar]
- Lan, K.-W.; Kawamura, H.; Lee, M.-A.; Lu, H.-J.; Shimada, T.; Hosoda, K.; Sakaida, F. Relationship between albacore (Thunnus alalunga) fishing grounds in the Indian Ocean and the thermal environment revealed by cloud-free microwave sea surface temperature. Fish. Res. 2012, 113, 1–7. [Google Scholar] [CrossRef]
- Tang, H.; Xu, L.; Zhou, C.; Wang, X.; Zhu, G.; Hu, F. The effect of environmental variables, gear design and operational parameters on sinking performance of tuna purse seine setting on free-swimming schools. Fish. Res. 2017, 196, 151–159. [Google Scholar] [CrossRef]
- Fonteneau, A.; Pallares, P.; Pianet, R. A worldwide review of purse seine fisheries on FADs. In Proceedings of the Pêche Thonière et Dispositifs de Concentration de Poissons, Caribbean, Martinique, 15–19 October 1999. [Google Scholar]
- Tanabe, T. Feeding habits of skipjack tuna Katsuwonus pelamis and other tuna Thunnus spp. juveniles in the tropical western Pacific. Fish. Sci. 2001, 67, 563–570. [Google Scholar] [CrossRef]
- Varela, J.L.; Canavate, J.P.; Medina, A.; Mourente, G. Inter-regional variation in feeding patterns of skipjack tuna (Katsuwonus pelamis) inferred from stomach content, stable isotope and fatty acid analyses. Mar. Environ. Res. 2019, 152, 104821. [Google Scholar] [CrossRef]
- Ménard, F.; Stéquert, B.; Rubin, A.; Herrera, M.; Marchal, É. Food consumption of tuna in the Equatorial Atlantic Ocean: FAD-associated versus unassociated schools. Aquat. Living Resour. 2000, 13, 233–240. [Google Scholar] [CrossRef]
- Pravin, P. Purse Seine and its Operation; Central Institute of Fisheries Technology: Kerala, India, 2002. [Google Scholar]
- Liao, C.-P.; Huang, H.-W. The cooperation strategies of fisheries between Taiwanese purse seiners and Pacific Island Countries. Mar. Policy 2016, 66, 67–74. [Google Scholar] [CrossRef]
- Fonteneau, A.; Chassot, E.; Bodin, N. Global spatio-temporal patterns in tropical tuna purse seine fisheries on drifting fish aggregating devices (DFADs): Taking a historical perspective to inform current challenges. Aquat. Living Resour. 2013, 26, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, Y.; Truesdell, S.; Xu, L.; Cao, J.; Guan, W. The large-scale deployment of fish aggregation devices alters environmentally-based migratory behavior of skipjack tuna in the Western Pacific Ocean. PLoS ONE 2014, 9, e98226. [Google Scholar] [CrossRef] [Green Version]
Parameters | Data Source | Unit | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|
Sea Surface Temperature (SST) | https://marine.copernicus.eu/ (accessed on 17 January 2021) | °C | 8 × 8 km | daily |
Sea Surface Temperature front | detected from SST | °C/km | 8 × 8 km | daily |
Sea Surface Height (SSH) | https://marine.copernicus.eu/ (accessed on 17 January 2021) | m | 8 × 8 km | daily |
Sea Surface Salinity (SSS) | https://marine.copernicus.eu/ (accessed on 17 January 2021) | PSU | 8 × 8 km | daily |
Mixed Layer Depth (MLD) | https://marine.copernicus.eu/ (accessed on 17 January 2021) | m | 8 × 8 km | daily |
Chlorophyll a concentration (CHLA) | https://marine.copernicus.eu/ (accessed on 17 January 2021) | mg/m3 | 8 × 8 km | weekly |
Finite-Size Lyapunov Exponents (FSLE) | https://www.aviso.altimetry.fr/ (accessed on 17 January 2021) | day−1 | 4 × 4 km | daily |
Variable | SI Models | F Value | p Value | Accounted Rate of Total Efforts (SI Value ≧ 0.6) |
---|---|---|---|---|
SST | 2628.26 | <0.01 | 60.00% | |
SST front | 4374.82 | <0.01 | 62.66% | |
SSH | 4359.73 | <0.01 | 51.26% | |
SSS | 1119.0 | <0.01 | 57.40% | |
MLD | 170.58 | <0.01 | 20.36% | |
CHLA | 3744.87 | <0.01 | 23.91% | |
FSLE | 3718.63 | <0.01 | 64.50% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, T.-Y.; Chang, Y.; Lee, M.-A.; Wu, R.-F.; Hsiao, S.-C. Predicting Skipjack Tuna Fishing Grounds in the Western and Central Pacific Ocean Based on High-Spatial-Temporal-Resolution Satellite Data. Remote Sens. 2021, 13, 861. https://doi.org/10.3390/rs13050861
Hsu T-Y, Chang Y, Lee M-A, Wu R-F, Hsiao S-C. Predicting Skipjack Tuna Fishing Grounds in the Western and Central Pacific Ocean Based on High-Spatial-Temporal-Resolution Satellite Data. Remote Sensing. 2021; 13(5):861. https://doi.org/10.3390/rs13050861
Chicago/Turabian StyleHsu, Tung-Yao, Yi Chang, Ming-An Lee, Ren-Fen Wu, and Shih-Chun Hsiao. 2021. "Predicting Skipjack Tuna Fishing Grounds in the Western and Central Pacific Ocean Based on High-Spatial-Temporal-Resolution Satellite Data" Remote Sensing 13, no. 5: 861. https://doi.org/10.3390/rs13050861
APA StyleHsu, T.-Y., Chang, Y., Lee, M.-A., Wu, R.-F., & Hsiao, S.-C. (2021). Predicting Skipjack Tuna Fishing Grounds in the Western and Central Pacific Ocean Based on High-Spatial-Temporal-Resolution Satellite Data. Remote Sensing, 13(5), 861. https://doi.org/10.3390/rs13050861