Future Directions in Precipitation Science
Abstract
:- Seamless variable resolution models providing precipitation estimates at several resolutions across scales. Perhaps we will soon only speak about simply “The model”. As mentioned, all efforts in modeling might soon converge in a single approach within the framework of quantum computing.
- IoT/wearables/cheap electronics for meteorological data. The likely problem will be dealing with the vast amount of data and making sense of the physics.
- Parameterizations of precipitation microphysics. This will still be an active research field in 2045. Targeted and high-quality measurements to elucidate specific processes will be a major reason for satellite missions, which should be combined with an extensive ground field experiment.
- International observatory of precipitation (IOP). It is not hard to imagine an international observatory of precipitation, probably a constellation of satellites with far more capabilities than today’s systems. The evolution of the GPM constellation towards a more multinational effort with far more radars could be the basis of this IOP.
- Assimilation. Meteorological satellites will be devoted mainly to providing data for assimilation. This will be the main driver for meteorological satellite missions, rather than producing climate data records competing with increasingly precise re-analyses.
- Advanced rain gauges will remain the ultimate truth and reference source for precipitation on the ground and will still be used to validate model outputs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, K.-S.S.; Chang, E.-C.; Sun, R.; Kim, K.; Tapiador, F.J.; Lee, G. Evaluation of Simulated Winter Precipitation Using WRF-ARW during the ICE-POP 2018 Field Campaign. Weather Forecast. 2020, 35, 2199–2213. [Google Scholar] [CrossRef]
- Billault-Roux, A.-C.; Berne, A. Integrated Water Vapor and Liquid Water Path Retrieval Using a Single-Channel Radiometer. Atmos. Meas. Tech. Discuss. 2020, 1–29. [Google Scholar] [CrossRef]
- Gehring, J.; Oertel, A.; Vignon, É.; Jullien, N.; Besic, N.; Berne, A. Microphysics and Dynamics of Snowfall Associated with a Warm Conveyor Belt over Korea. Atmos. Chem. Phys. Discuss. 2020, 20, 7373–7392. [Google Scholar] [CrossRef]
- Jeoung, H.; Liu, G.; Kim, K.; Lee, G.; Seo, E.-K. Microphysical Properties of Three Types of Snow Clouds: Implication for Satellite Snowfall Retrievals. Atmos. Chem. Phys. Discuss. 2020, 20, 14491–14507. [Google Scholar] [CrossRef]
- Planat, N.; Gehring, J.; Vignon, É.; Berne, A. Identification of Snowfall Microphysical Processes from Vertical Gradients of Polarimetric Radar Variables. Atmos. Meas. Tech. Discuss. 2020, 1–34. [Google Scholar] [CrossRef]
- Derin, Y.; Anagnostou, E.; Berne, A.; Borga, M.; Boudevillain, B.; Buytaert, W.; Chang, C.-H.; Chen, H.; Delrieu, G.; Hsu, Y.C.; et al. Evaluation of GPM-era Global Satellite Precipitation Products over Multiple Complex Terrain Regions. Remote Sens. 2019, 11, 2936. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-W.; Min, K.-H.; Lee, Y.-H.; Lee, G. X-Net-Based Radar Data Assimilation Study over the Seoul Metropolitan Area. Remote Sens. 2020, 12, 893. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Chen, M.; Gao, S.; Hong, Z.; Tang, G.; Wen, Y.; Gourley, J.J.; Hong, Y. Cross-Examination of Similarity, Difference and Deficiency of Gauge, Radar and Satellite Precipitation Measuring Uncertainties for Extreme Events Using Conventional Metrics and Multiplicative Triple Collocation. Remote Sens. 2020, 12, 1258. [Google Scholar] [CrossRef] [Green Version]
- Navarro, A.; García-Ortega, E.; Merino, A.; Sánchez, J.L. Extreme Events of Precipitation Over Complex Terrain Derived from Satellite Data for Climate Applications: An Evaluation of the Southern Slopes of the Pyrenees. Remote Sens. 2020, 12, 2171. [Google Scholar] [CrossRef]
- Sadeghi, M.; Asanjan, A.A.; Faridzad, M.; Gorooh, V.A.; Nguyen, P.; Hsu, K.; Sorooshian, S.; Braithwaite, D. Evaluation of PERSIANN-CDR Constructed Using GPCP V2.2 and V2.3 and A Comparison with TRMM 3B42 V7 and CPC Unified Gauge-Based Analysis in Global Scale. Remote Sens. 2019, 11, 2755. [Google Scholar] [CrossRef] [Green Version]
- Ye, B.-Y.; Jung, E.; Shin, S.; Lee, G. Statistical Characteristics of Cloud Occurrence and Vertical Structure Observed by a Ground-Based Ka-Band Cloud Radar in South Korea. Remote Sens. 2020, 12, 2242. [Google Scholar] [CrossRef]
- National Academies of Sciences. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space; National Academies of Sciences: Washington, DC, USA, 2018; ISBN 9780309467575. [Google Scholar]
- Voosen, P. Europe Builds ‘Digital Twin’ of Earth to Hone Climate Forecasts. Science 2020, 370, 16–17. [Google Scholar] [CrossRef]
- Fuhrer, O.; Chadha, T.; Hoefler, T.; Kwasniewski, G.; Lapillonne, X.; Leutwyler, D.; Lüthi, D.; Osuna, C.; Schär, C.; Schulthess, T.C.; et al. Near-Global Climate Simulation at 1 km Resolution: Establishing a Performance Baseline on 4888 GPUs with COSMO 5.0. Geosci. Model Dev. 2018, 11, 1665–1681. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.J.; Vidale, P.L.; Senior, C.; Hewitt, H.T.; Bates, C.; Berthou, S.; Chang, P.; Christensen, H.M.; Danilov, S.; Demory, M.-E.; et al. The Benefits of Global High Resolution for Climate Simulation: Process Understanding and the Enabling of Stakeholder Decisions at the Regional Scale. Bull. Am. Meteorol. Soc. 2018, 99, 2341–2359. [Google Scholar] [CrossRef] [Green Version]
- Leung, L.R.; Bader, D.C.; Taylor, M.A.; McCoy, R.B. An Introduction to the E3SM Special Collection: Goals, Science Drivers, Development, and Analysis. J. Adv. Model. Earth Syst. 2020, 12, 1821. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Hou, A.Y.; De Castro, M.; Checa-Garcia, R.; Cuartero, F.; Barros, A.P. Precipitation Estimates for Hydroelectricity. Energy Environ. Sci. 2011, 4, 4435–4448. [Google Scholar] [CrossRef]
- Erhardt, R.; Bell, J.; Blanton, B.; Nutter, F.; Robinson, M.; Smith, R. Stronger Climate Resilience with Insurance. Bull. Am. Meteorol. Soc. 2019, 100, 1549–1552. [Google Scholar] [CrossRef]
- Enenkel, M.; Osgood, D.; Anderson, M.; Powell, B.; Mccarty, J.; Neigh, C.; Carroll, M.; Wooten, M.; Husak, G.; Hain, C.; et al. Exploiting the Convergence of Evidence in Satellite Data for Advanced Weather Index Insurance Design. Weather Clim. Soc. 2018, 11, 65–93. [Google Scholar] [CrossRef]
- Sempere-Torres, D.; Corral, C.; Raso, J.; Malgrat, P. Use of Weather Radar for Combined Sewer Overflows Monitoring and Control. J. Environ. Eng. 1999, 125, 372–380. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Pan, M.; Beck, H.; Coccia, G.; Serrat-Capdevila, A.; Verbist, K. Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data-Poor Regions. Water Resour. Res. 2018, 54, 9724–9758. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Adler, R.F.; Tian, Y.; Huffman, G.J.; Li, H.; Wang, J. Real-Time Global Flood Estimation Using Satellite-Based Precipitation and a Coupled Land Surface and Routing Model. Water Resour. Res. 2014, 50, 2693–2717. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wang, Z.; Wu, X.; Chen, X.; Lai, C.; Zeng, Z.; Li, J. Accuracy Evaluation of GPM Multi-Satellite Precipitation Products in the Hydrological Application over Alpine and Gorge Regions with Sparse Rain Gauge Network. Hydrol. Res. 2019, 50, 1710–1729. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Huang, B.; Ma, Z.; Chen, X.; Qiu, J.; Liu, D. Comprehensive Comparisons of State-Of-The-Art Gridded Precipitation Estimates for Hydrological Applications over Southern China. Remote Sens. 2020, 12, 3997. [Google Scholar] [CrossRef]
- Khan, S.; Maggioni, V. Assessment of Level-3 Gridded Global Precipitation Mission (GPM) Products Over Oceans. Remote Sens. 2019, 11, 255. [Google Scholar] [CrossRef] [Green Version]
- Navarro, A.; García-Ortega, E.; Merino, A.; Sánchez, J.L.; Kummerow, C.; Tapiador, F.J. Assessment of IMERG Precipitation Estimates over Europe. Remote Sens. 2019, 11, 2470. [Google Scholar] [CrossRef] [Green Version]
- Prakash, S.; Mitra, A.K.; Pai, D.; AghaKouchak, A. From TRMM to GPM: How Well Can Heavy Rainfall Be Detected from Space? Adv. Water Resour. 2016, 88, 1–7. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Kirschbaum, D.; Petersen, W.; Huffman, G.; Kidd, C.; Stocker, E.; Kakar, R. The Global Precipitation Measurement (GPM) Mission’s Scientific Achievements and Societal Contributions: Reviewing Four Years of Advanced Rain and Snow Observations. Q. J. R. Meteorol. Soc. 2018, 144, 27–48. [Google Scholar] [CrossRef] [Green Version]
- Solakian, J.; Maggioni, V.; Godrej, A.N. On the Performance of Satellite-Based Precipitation Products in Simulating Streamflow and Water Quality During Hydrometeorological Extremes. Front. Environ. Sci. 2020, 8, 8. [Google Scholar] [CrossRef]
- Tapiador, F.J. Validation of Climate Models. In Satellite Precipitation Measurement, Volume 2; Levizzani, V., Kidd, C., Kirsch-baum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Advances in Global Change Research; Springer International Publishing: Cham, Switzerland, 2020; pp. 1073–1086. ISBN 978-3-030-35798-6. [Google Scholar]
- Wang, X.; Li, B.; Chen, Y.; Guo, H.; Wang, Y.; Lian, L. Applicability Evaluation of Multisource Satellite Precipitation Data for Hydrological Research in Arid Mountainous Areas. Remote Sens. 2020, 12, 2886. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, L.; Soe, K.M.W.; Ren, L.; Zhao, C.; Zhu, Y.; Jiang, S.; Liu, Y. Applications of TRMM-and GPM-Era Multiple-Satellite Precipitation Products for Flood Simulations at Sub-Daily Scales in a Sparsely Gauged Watershed in Myanmar. Remote Sens. 2019, 11, 140. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xin, Z.; Zhou, H. Assessment of TMPA 3B42V7 and PERSIANN-CDR in Driving Hydrological Modeling in a Semi-Humid Watershed in Northeastern China. Remote Sens. 2020, 12, 3133. [Google Scholar] [CrossRef]
- Foufoula-Georgiou, E.; Guilloteau, C.; Nguyen, P.; AghaKouchak, A.; Hsu, K.-L.; Busalacchi, A.; Turk, F.J.; Peters-Lidard, C.; Oki, T.; Duan, Q.; et al. Advancing Precipitation Estimation, Prediction, and Impact Studies. Bull. Am. Meteorol. Soc. 2020, 101, E1584–E1592. [Google Scholar] [CrossRef]
- LeGates, D.R. Climate Models and Their Simulation of Precipitation. Energy Environ. 2014, 25, 1163–1175. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Roca, R.; Del Genio, A.; Dewitte, B.; Petersen, W.; Zhang, F. Is Precipitation a Good Metric for Model Performance? Bull. Am. Meteorol. Soc. 2019, 100, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Shukla, J.; Palmer, T.N.; Hagedorn, R.; Hoskins, B.; Kinter, J.; Marotzke, J.; Miller, M.; Slingo, J. Toward a New Generation of World Climate Research and Computing Facilities. Bull. Am. Meteorol. Soc. 2010, 91, 1407–1412. [Google Scholar] [CrossRef]
- Palmer, T.; Stevens, B. The Scientific Challenge of Understanding and Estimating Climate Change. Proc. Natl. Acad. Sci. USA 2019, 116, 24390–24395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loehle, C. The Epistemological Status of General Circulation Models. Clim. Dyn. 2017, 50, 1719–1731. [Google Scholar] [CrossRef]
- Maslin, M.; Austin, P. Climate Models at Their Limit? Nature 2012, 486, 183–184. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, P.; Zhou, T.; Roberts, M.J.; Schiemann, R. Added Value of High Resolution Models in Simulating Global Precipitation Characteristics. Atmos. Sci. Lett. 2016, 17, 646–657. [Google Scholar] [CrossRef]
- Giorgi, F. Thirty Years of Regional Climate Modeling: Where Are We and Where Are We Going Next? J. Geophys. Res. Atmos. 2019, 124, 5696–5723. [Google Scholar] [CrossRef] [Green Version]
- Tapiador, F.J.; Navarro, A.; Moreno, R.; Sánchez, J.L.; García-Ortega, E. Regional Climate Models: 30 Years of Dynamical Downscaling. Atmos. Res. 2020, 235, 104785. [Google Scholar] [CrossRef]
- Lucarini, V.; Danihlik, R.; Kriegerova, I.; Speranza, A. Does the Danube Exist? Versions of Reality Given by Various Regional Climate Models and Climatological Data Sets. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Mascaro, G.; Viola, F.; Deidda, R. Evaluation of Precipitation from EURO-CORDEX Regional Climate Simulations in a Small-Scale Mediterranean Site. J. Geophys. Res. Atmos. 2018, 123, 1604–1625. [Google Scholar] [CrossRef]
- Stefanidis, S.; Dafis, S.; Stathis, D. Evaluation of Regional Climate Models (RCMs) Performance in Simulating Seasonal Precipitation over Mountainous Central Pindus (Greece). Water 2020, 12, 2750. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Moreno, R.; Navarro, A.; Sánchez, J.L.; García-Ortega, E. Climate Classifications from Regional and Global Climate Models: Performances for Present Climate Estimates and Expected Changes in the Future at High Spatial Resolution. Atmos. Res. 2019, 228, 107–121. [Google Scholar] [CrossRef]
- Demory, M.-E.; Berthou, S.; Fernández, J.; Sørland, S.L.; Brogli, R.; Roberts, M.J.; Beyerle, U.; Seddon, J.; Haarsma, R.; Schär, C.; et al. European Daily Precipitation According to EURO-CORDEX Regional Climate Models (RCMs) and High-Resolution Global Climate Models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev. 2020, 13, 5485–5506. [Google Scholar] [CrossRef]
- Kumar, P.; Kishtawal, C.M.; Pal, P.K. Impact of ECMWF, NCEP, and NCMRWF Global Model Analysis on the WRF Model Forecast over Indian Region. Theor. Appl. Clim. 2015, 127, 143–151. [Google Scholar] [CrossRef]
- Kumar, P.; Kishtawal, C.M.; Pal, P.K. Impact of Satellite Rainfall Assimilation on Weather Research and Forecasting Model Predictions over the Indian Region. J. Geophys. Res. Atmos. 2014, 119, 2017–2031. [Google Scholar] [CrossRef]
- Pan, X.; Li, X.; Cheng, G.; Hong, Y. Effects of 4D-Var Data Assimilation Using Remote Sensing Precipitation Products in a WRF Model over the Complex Terrain of an Arid Region River Basin. Remote Sens. 2017, 9, 963. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Tian, X.; Li, X.; Xie, Z.; Shao, A.; Lu, C. Assimilating Doppler Radar Radial Velocity and Reflectivity Observations in the Weather Research and Forecasting Model by a Proper Orthogonal-Decomposition-Based Ensemble, Three-Dimensional Variational Assimilation Method. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Ricciardelli, E.; Di Paola, F.; Gentile, S.; Cersosimo, A.; Cimini, D.; Gallucci, D.; Geraldi, E.; LaRosa, S.; Nilo, S.T.; Ripepi, E.; et al. Analysis of Livorno Heavy Rainfall Event: Examples of Satellite-Based Observation Techniques in Support of Numerical Weather Prediction. Remote Sens. 2018, 10, 1549. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M.; Heinzeller, D.; Hartmann, H.; Berg, W.V.D.; Steeneveld, G.-J. Assessment of MPAS Variable Resolution Simulations in the Grey-Zone of Convection against WRF Model Results and Observations. Clim. Dyn. 2018, 55, 253–276. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Duda, M.G.; Fowler, L.D.; Park, S.-H.; Ringler, T.D. A Multiscale Nonhydrostatic Atmos. Model Using Centroidal Voronoi Tesselations and C-Grid Staggering. Mon. Weather Rev. 2012, 140, 3090–3105. [Google Scholar] [CrossRef] [Green Version]
- Ha, S.; Snyder, C.; Skamarock, W.C.; Anderson, J.; Collins, N. Ensemble Kalman Filter Data Assimilation for the Model for Prediction Across Scales (MPAS). Mon. Weather. Rev. 2017, 145, 4673–4692. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Kawamiya, M.; Hajima, T.; Tachiiri, K.; Watanabe, S.; Yokohata, T. Two Decades of Earth System Modeling with an Emphasis on Model for Interdisciplinary Research on Climate (MIROC). Prog. Earth Planet. Sci. 2020, 7, 1–13. [Google Scholar] [CrossRef]
- Knutti, R. Should We Believe Model Predictions of Future Climate Change? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2008, 366, 4647–4664. [Google Scholar] [CrossRef]
- Palmer, T. Climate Forecasting: Build High-Resolution Global Climate Models. Nat. Cell Biol. 2014, 515, 338–339. [Google Scholar] [CrossRef] [Green Version]
- Fox-Rabinovitz, M.; Coté, J.; Dugas, B.; Déqué, M.; McGregor, J.L.; Belochitski, A. Stretched-Grid Model Intercomparison Project: Decadal Regional Climate Simulations with Enhanced Variable and Uni-Form-Resolution GCMs. Theor. Appl. Clim. 2008, 100, 159–178. [Google Scholar] [CrossRef]
- Huang, X.; Rhoades, A.M.; Ullrich, P.A.; Zarzycki, C.M. An evaluation of the Variable-ResolutionCESMfor Modeling California’s Climate. J. Adv. Model. Earth Syst. 2016, 8, 345–369. [Google Scholar] [CrossRef] [Green Version]
- Khain, A.; Ovtchinnikov, M.; Pinsky, M.; Pokrovsky, A.; Krugliak, H. Notes on the State-of-the-Art Numerical Modeling of Cloud Microphysics. Atmos. Res. 2000, 55, 159–224. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Berne, A.; Raupach, T.; Navarro, A.; Lee, G.; Haddad, Z.S. Objective Characterization of Rain Microphysics: Validating a Scheme Suitable for Weather and Climate Models. J. Hydrometeorol. 2018, 19, 929–946. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Sánchez, J.-L.; García-Ortega, E. Empirical Values and Assumptions in the Microphysics of Numerical Models. Atmos. Res. 2019, 215, 214–238. [Google Scholar] [CrossRef]
- Morrison, H.; Van Lier-Walqui, M.; Fridlind, A.M.; Grabowski, W.W.; Harrington, J.Y.; Hoose, C.; Korolev, A.; Kumjian, M.R.; Milbrandt, J.A.; Pawlowska, H.; et al. Confronting the Challenge of Modeling Cloud and Precipitation Microphysics. J. Adv. Model. Earth Syst. 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Milbrandt, J.A.; Morrison, H.; Ii, D.T.D.; Paukert, M. A Triple-Moment Representation of Ice in the Predicted Particle Properties (P3) Microphysics Scheme. J. Atmos. Sci. 2021, 78, 439–458. [Google Scholar] [CrossRef]
- Alfonso, L.; Zamora, J.M. A Two-Moment Machine Learning Parameterization of the Autoconversion Process. Atmos. Res. 2021, 249, 105269. [Google Scholar] [CrossRef]
- Nair, A.A.; Yu, F. Using Machine Learning to Derive Cloud Condensation Nuclei Number Concentrations from Commonly Available Measurements. Atmos. Chem. Phys. Discuss. 2020, 20, 12853–12869. [Google Scholar] [CrossRef]
- Seifert, A.; Rasp, S. Potential and Limitations of Machine Learning for Modeling Warm-Rain Cloud Microphysical Processes. J. Adv. Model. Earth Syst. 2020, 12, 002301. [Google Scholar] [CrossRef]
- Kidd, C.; Takayabu, Y.N.; Skofronick-Jackson, G.M.; Huffman, G.J.; Braun, S.A.; Kubota, T.; Turk, F.J. The Global Precipitation Measurement (GPM) Mission. In Regional Assessment of Climate Change in the Mediterranean; Metzler, J.B., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1, pp. 3–23. [Google Scholar]
- Levizzani, V.; Cattani, E. Satellite Remote Sensing of Precipitation and the Terrestrial Water Cycle in a Changing Climate. Remote Sens. 2019, 11, 2301. [Google Scholar] [CrossRef] [Green Version]
- Michaelides, S. Editorial for Special Issue “Remote Sensing of Precipitation”. Remote Sens. 2019, 11, 389. [Google Scholar] [CrossRef] [Green Version]
- Tapiador, F.; Navarro, A.; Levizzani, V.; García-Ortega, E.; Huffman, G.; Kidd, C.; Kucera, P.; Kummerow, C.; Masunaga, H.; Petersen, W.; et al. Global Precipitation Measurements for Validating Climate Models. Atmos. Res. 2017, 197, 1–20. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.; Braithwaite, D.; Hsu, K.-L.; Joyce, R.; Kidd, C.; Nelkin, E.; Sorooshian, S.; Tan, J.; Xie, P. NASA Global Precipitation Measurement (GPM) Integrated Multi-SatellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Document Version 5.2; Algorithm Theoretical Basis; Document Version 5.2; NASA/GSFC: Greenbelt, MD, USA, 2018.
- Anagnostou, M.N.; Kalogiros, J.; Anagnostou, E.N.; Papadopoulos, A. Experimental Results on Rainfall Estimation in Complex Terrain with a Mobile X-Band Polarimetric Weather Radar. Atmos. Res. 2009, 94, 579–595. [Google Scholar] [CrossRef]
- Anagnostou, M.N.; Nikolopoulos, E.I.; Kalogiros, J.; Anagnostou, E.N.; Marra, F.; Mair, E.; Bertoldi, G.; Tappeiner, U.; Borga, M. Advancing Precipitation Estimation and Streamflow Simulations in Complex Terrain with X-Band Dual-Polarization Radar Observations. Remote Sens. 2018, 10, 1258. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, A.; Tanelli, S.; Heymsfield, G.M.; Tian, L. The Dual Wavelength Ratio Knee: A Signature of Multiple Scattering in Airborne Ku–Ka Observations. J. Appl. Meteorol. Clim. 2014, 53, 1790–1808. [Google Scholar] [CrossRef]
- Biswas, S.K.; Chandrasekar, V. Cross-Validation of Observations between the GPM Dual-Frequency Precipitation Radar and Ground Based Dual-Polarization Radars. Remote Sens. 2018, 10, 1773. [Google Scholar] [CrossRef] [Green Version]
- Adirosi, E.; Baldini, L.; Tokay, A. Rainfall and DSD Parameters Comparison between Micro Rain Radar, Two-Dimensional Video and Parsivel2 Disdrometers, and S-Band Dual-Polarization Radar. J. Atmos. Ocean. Technol. 2020, 37, 621–640. [Google Scholar] [CrossRef]
- Garcia-Benadi, A.; Bech, J.; Gonzalez, S.; Udina, M.; Codina, B.; Georgis, J.-F. Precipitation Type Classification of Micro Rain Radar Data Using an Improved Doppler Spectral Processing Methodology. Remote Sens. 2020, 12, 4113. [Google Scholar] [CrossRef]
- Kalina, E.A.; Friedrich, K.; Ellis, S.M.; Burgess, D.W. Comparison of Disdrometer and X-Band Mobile Radar Observations in Convective Precipitation. Mon. Weather. Rev. 2014, 142, 2414–2435. [Google Scholar] [CrossRef] [Green Version]
- Kidd, C.; Becker, A.; Huffman, G.J.; Muller, C.L.; Joe, P.; Skofronick-Jackson, G.; Kirschbaum, D.B. So, How Much of the Earth’s Surface Is Covered by Rain Gauges? Bull. Am. Meteorol. Soc. 2017, 98, 69–78. [Google Scholar] [CrossRef]
- Rodda, J.C.; Dixon, H. Rainfall Measurement Revisited. Weather 2012, 67, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Tapiador, F.J.; Turk, F.; Petersen, W.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J.; et al. Global Precipitation Measurement: Methods, Datasets and Applications. Atmos. Res. 2012, 104–105, 70–97. [Google Scholar] [CrossRef]
- Codeluppi, G.; Cilfone, A.; Davoli, L.; Ferrari, G. LoRaFarM: A LoRaWAN-Based Smart Farming Modular IoT Architecture. Sensors 2020, 20, 2028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gsangaya, K.R.; Hajjaj, S.S.H.; Sultan, M.T.H.; Hua, L.S. Portable, Wireless, and Effective Internet of Things-Based Sensors for Precision Agriculture. Int. J. Environ. Sci. Technol. 2020, 17, 3901–3916. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tapiador, F.J.; Villalba-Pradas, A.; Navarro, A.; García-Ortega, E.; Lim, K.-S.S.; Kim, K.; Ahn, K.D.; Lee, G. Future Directions in Precipitation Science. Remote Sens. 2021, 13, 1074. https://doi.org/10.3390/rs13061074
Tapiador FJ, Villalba-Pradas A, Navarro A, García-Ortega E, Lim K-SS, Kim K, Ahn KD, Lee G. Future Directions in Precipitation Science. Remote Sensing. 2021; 13(6):1074. https://doi.org/10.3390/rs13061074
Chicago/Turabian StyleTapiador, Francisco J., Anahí Villalba-Pradas, Andrés Navarro, Eduardo García-Ortega, Kyo-Sun Sunny Lim, Kwonil Kim, Kwang Deuk Ahn, and Gyuwon Lee. 2021. "Future Directions in Precipitation Science" Remote Sensing 13, no. 6: 1074. https://doi.org/10.3390/rs13061074
APA StyleTapiador, F. J., Villalba-Pradas, A., Navarro, A., García-Ortega, E., Lim, K.-S. S., Kim, K., Ahn, K. D., & Lee, G. (2021). Future Directions in Precipitation Science. Remote Sensing, 13(6), 1074. https://doi.org/10.3390/rs13061074