Using Aerial Photogrammetry to Assess Stock-Wide Marine Turtle Nesting Distribution, Abundance and Cumulative Exposure to Industrial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey Location
2.2. Beach Spatial Data Layer
2.3. Survey Methods and Design
2.4. Post-Processing of Aerial Imagery
2.5. Turtle Activity
2.6. Track Counts
2.7. Inter-Observer and Intra-Observer Error
2.8. Ground-Truthing
2.9. Overlap with Industrial Sites and Protected Areas
3. Results
3.1. General Turtle Activity
3.2. Flatback Turtle Activity
3.3. Inter-Observer and Intra-Observer Error
3.4. Ground-Truthing
3.5. Flatback Abundance and Density Estimates
3.6. Exposure to Industrial Activity
3.7. Inclusion in Protected Areas
4. Discussion
4.1. Pilbara Turtle Rookeries; Protection versus Exposure to Industrial Activity
4.2. Limitations of Large-Scale Digitized Surveys for Marine Turtles
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halpern, B.S.; Frazier, M.; Potapenko, J.; Casey, K.S.; Koenig, K.; Longo, C.; Lowndes, J.S.; Rockwood, R.C.; Selig, E.R.; Selkoe, K.A.; et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 2015, 6, 7615. [Google Scholar] [CrossRef] [Green Version]
- Halpern, B.S.; McLeod, K.L.; Rosenberg, A.A.; Crowder, L.B. Managing for cumulative impacts in ecosystem-based management through ocean zoning. Ocean Coast. Manag. 2008, 51, 203–211. [Google Scholar] [CrossRef]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A Global Map of Human Impact on Marine Ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, S.M.; Hazen, E.L.; Bograd, S.J.; Halpern, B.S.; Breed, G.A.; Nickel, B.; Teutschel, N.M.; Crowder, L.B.; Benson, S.; Dutton, P.H.; et al. Cumulative human impacts on marine predators. Nat. Commun. 2013, 4, 2688. [Google Scholar] [CrossRef] [Green Version]
- Bjorndal, K.A.; Bowen, B.W.; Chaloupka, M.; Crowder, L.B.; Heppell, S.S.; Jones, C.M.; Lutcavage, M.E.; Policansky, D.; Solow, A.R.; Witherington, B.E. Better Science Needed for Restoration in the Gulf of Mexico. Science 2011, 331, 537–538. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, M.M.P.B.; Allstadt, A.J.; Ceriani, S.A.; Godfrey, M.H.; Gredzens, C.; Helmers, D.; Ingram, D.; Pate, M.; Radeloff, V.C.; Shaver, D.J.; et al. Potential adaptability of marine turtles to climate change may be hindered by coastal development in the USA. Reg. Environ. Chang. 2020, 20, 1–14. [Google Scholar] [CrossRef]
- Shimada, T.; Limpus, C.; Jones, R.; Hamann, M. Aligning habitat use with management zoning to reduce vessel strike of sea turtles. Ocean Coast. Manag. 2017, 142, 163–172. [Google Scholar] [CrossRef]
- Miller, E.A.; McClenachan, L.; Uni, Y.; Phocas, G.; Hagemann, M.E.; Van Houtan, K.S. The historical development of complex global trafficking networks for marine wildlife. Sci. Adv. 2019, 5, eaav5948. [Google Scholar] [CrossRef] [Green Version]
- Wilson, P.; Thums, M.; Pattiaratchi, C.; Whiting, S.; Pendoley, K.; Ferreira, L.C.; Meekan, M. High predation of marine turtle hatchlings near a coastal jetty. Biol. Conserv. 2019, 236, 571–579. [Google Scholar] [CrossRef]
- Kamrowski, R.; Limpus, C.; Moloney, J.; Hamann, M. Coastal light pollution and marine turtles: Assessing the magnitude of the problem. Endanger. Species Res. 2012, 19, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Tulloch, V.J.; Tulloch, A.I.; Visconti, P.; Halpern, B.S.; Watson, J.E.; Evans, M.C.; Auerbach, N.A.; Barnes, M.; Beger, M.; Chadès, I.; et al. Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Front. Ecol. Environ. 2015, 13, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Rees, A.; Alfaro-Shigueto, J.; Barata, P.; Bjorndal, K.A.; Bolten, A.B.; Bourjea, J.; Broderick, A.C.; Campbell, L.; Cardona, L.; Carreras, C.; et al. Are we working towards global research priorities for management and conservation of sea turtles? Endanger. Species Res. 2016, 31, 337–382. [Google Scholar] [CrossRef] [Green Version]
- Pendoley, K.L.; Whittock, P.A.; Vitenbergs, A.; Bell, C. Twenty years of turtle tracks: Marine turtle nesting activity at remote locations in the Pilbara, Western Australia. Aust. J. Zool. 2016, 64, 217–226. [Google Scholar] [CrossRef]
- Kamrowski, R.L.; Limpus, C.; Jones, R.; Anderson, S.; Hamann, M. Temporal changes in artificial light exposure of marine turtle nesting areas. Glob. Chang. Biol. 2014, 20, 2437–2449. [Google Scholar] [CrossRef] [PubMed]
- Hart, K.M.; Iverson, A.R.; Fujisaki, I.; Lamont, M.M.; Bucklin, D.; Shaver, D.J. Marine Threats Overlap Key Foraging Habitat for Two Imperiled Sea Turtle Species in the Gulf of Mexico. Front. Mar. Sci. 2018, 5, 336. [Google Scholar] [CrossRef]
- Whittock, P.A.; Pendoley, K.L.; Hamann, M. Using habitat suitability models in an industrial setting: The case for internesting flatback turtles. Ecosphere 2016, 7, 01551. [Google Scholar] [CrossRef] [Green Version]
- Thums, M.; Rossendell, J.; Guinea, M.; Ferreira, L. Horizontal and vertical movement behaviour of flatback turtles and spatial overlap with industrial development. Mar. Ecol. Prog. Ser. 2018, 602, 237–253. [Google Scholar] [CrossRef]
- Limpus, C. A Biological Review of Australian Marine Turtles-5. Flatback Turtle Natator Depressus (Garman); Environmental Protection Agency: Brisbane, QLD, Australia, 2007. [Google Scholar]
- Heide-Jørgensen, M.P.; Laidre, K.; Borchers, D.; Samarra, F.I.P.; Stern, H. Increasing abundance of bowhead whales in West Greenland. Biol. Lett. 2007, 3, 577–580. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, P.C.H. Nesting of the Leatherback Turtle, Dermochelys coriacea in Pacific Mexico, with a New Estimate of the World Population Status. Copeia 1982, 1982, 741. [Google Scholar] [CrossRef]
- Hopkins-Murphy, S.R. Population Trends and Nesting Distribution of the Loggerhead Turtle (Caretta Caretta) in South Carolina 1980–1997: Final Report to the US Fish and Wildlife Service; South Carolina State Documents Depository: Columbia, SC, USA, 2001. [Google Scholar]
- Hitipeuw, C.; Dutton, P.H.; Benson, S.; Thebu, J.; Bakarbessy, J. Population Status and Internesting Movement of Leatherback Turtles, Dermochelys coriacea, Nesting on the Northwest Coast of Papua, Indonesia. Chelonian Conserv. Biol. 2007, 6, 28–36. [Google Scholar] [CrossRef]
- McGowan, A.; Broderick, A.C.; Frett, G.; Gore, S.; Hastings, M.; Pickering, A.; Wheatley, D.; White, J.; Witt, M.J.; Godley, B.J. Down but not out: Marine turtles of the British Virgin Islands. Anim. Conserv. 2008, 11, 92–103. [Google Scholar] [CrossRef]
- Witt, M.J.; Baert, B.; Broderick, A.C.; Formia, A.; Fretey, J.; Gibudi, A.; Mounguengui, G.A.M.; Moussounda, C.; Ngouessono, S.; Parnell, R.J.; et al. Aerial surveying of the world’s largest leatherback turtle rookery: A more effective methodology for large-scale monitoring. Biol. Conserv. 2009, 142, 1719–1727. [Google Scholar] [CrossRef]
- Darmon, G.; Miaud, C.; Claro, F.; Doremus, G.; Galgani, F. Risk assessment reveals high exposure of sea turtles to marine debris in French Mediterranean and metropolitan Atlantic waters. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2017, 141, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Lauriano, G.; Panigada, S.; Casale, P.; Pierantonio, N.; Donovan, G. Aerial survey abundance estimates of the loggerhead sea turtle Caretta caretta in the Pelagos Sanctuary, northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 2011, 437, 291–302. [Google Scholar] [CrossRef]
- Houghton, J.D.R.; Doyle, T.K.; Wilson, M.W.; Davenport, J.; Hays, G.C. Jellyfish Aggregations and Leatherback Turtle Foraging Patterns in a Temperate Coastal Environment. Ecology 2006, 87, 1967–1972. [Google Scholar] [CrossRef]
- Marsh, H.; Saalfeld, W. Aerial Surveys of Sea Turtles in the Northern Great Barrier-Reef Marine Park. Wildl. Res. 1989, 16, 239–249. [Google Scholar] [CrossRef]
- Preen, A.R.; Marsh, H.; Lawler, I.R.; Prince, R.I.T.; Shepherd, R. Distribution and Abundance of Dugongs, Turtles, Dolphins and other Megafauna in Shark Bay, Ningaloo Reef and Exmouth Gulf, Western Australia. Wildl. Res. 1997, 24, 185–208. [Google Scholar] [CrossRef]
- Wallace, B.P.; DiMatteo, A.D.; Hurley, B.J.; Finkbeiner, E.M.; Bolten, A.B.; Chaloupka, M.Y.; Hutchinson, B.J.; Abreu-Grobois, F.A.; Amorocho, D.; Bjorndal, K.A.; et al. Regional Management Units for Marine Turtles: A Novel Framework for Prioritizing Conservation and Research across Multiple Scales. PLoS ONE 2010, 5, e15465. [Google Scholar] [CrossRef] [Green Version]
- Kemper, G.; Weidauer, A.; Coppack, T. Monitoring seabirds and marine mammals by georeferenced aerial photography. International Archives of the Photogrammetry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 689–694. [Google Scholar] [CrossRef]
- Rees, A.F.; Avens, L.; Ballorain, K.; Bevan, E.; Broderick, A.C.; Carthy, R.R.; Christianen, M.J.; Duclos, G.; Heithaus, M.R.; Johnston, D.W.; et al. The potential of unmanned aerial systems for sea turtle research and conservation: A review and future directions. Endanger. Species Res. 2018, 35, 81–100. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, A.; Kelly, N.; Peel, D. Unmanned Aerial Vehicles (UAVs) for Surveying Marine Fauna: A Dugong Case Study. PLoS ONE 2013, 8, e79556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colefax, A.P.; Butcher, P.A.; Kelaher, B.P. The potential for unmanned aerial vehicles (UAVs) to conduct marine fauna surveys in place of manned aircraft. ICES J. Mar. Sci. 2018, 75, 1–8. [Google Scholar] [CrossRef]
- Thaxter, C.B.; Burton, N.H. High-Definition Imagery for Surveying Seabirds and Marine Mammals: A review of Recent Trials and Development of Protocols; British Trust for Ornithology Report Commissioned by Cowrie Ltd.: London, UK, 2009. [Google Scholar]
- Fitzsimmons, N.N.; Pittard, S.D.; McIntyre, N.; Jensen, M.P.; Guinea, M.; Hamann, M.; Kennett, R.; Leis, B.; Limpus, C.J.; Limpus, D.J.; et al. Phylogeography, genetic stocks, and conservation implications for an Australian endemic marine turtle. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 30, 440–460. [Google Scholar] [CrossRef]
- Limpus, C.J.; Fien, L. A Biological Review of Australian Marine Turtles; The State of Queensland, Environmental Protection Agency: Brisbane, QLD, Australia, 2009. [Google Scholar]
- Pendoley, K.L. Sea Turtles and the Environmental Management of Industrial Activities in North West Western Australia. Doctoral Dissertation, Murdoch University, Perth, Australia, 2005. [Google Scholar]
- Geomorphology Smartline ESRI Geodatabase. Available online: http://www.ozcoasts.gov.au/coastal/smartline.jsp#1 (accessed on 31 May 2018).
- Llewellyn, D. National Native Title Registar. Available online: http://www.nntt.gov.au/assistance/Geospatial/Pages/DataDownload.aspx (accessed on 31 May 2018).
- Schroeder, B.; Murphy, S. Population surveys (ground and aerial) on nesting beaches. Res. Manag. Tech. Conserv. Sea Turt. 1999, 4, 45–55. [Google Scholar]
- Bureau of Meteorology. Tide Predictions for Australia, South Pacific and Antarctica. Available online: http://www.bom.gov.au/australia/tides/ (accessed on 31 May 2018).
- QGIS Development Team QGIS Geographic Information System. Open Source Geospatial Foundation. 2016. Available online: http://www.qgis (accessed on 31 May 2018).
- Commonwealth of Australia. Recovery Plan for Marine Turtles in Australia. Available online: https://www.environment.gov.au/system/files/resources/46eedcfc-204b-43de-99c5-4d6f6e72704f/files/recovery-plan-marine-turtles-2017.pdf. (accessed on 7 February 2021).
- Department of Transport (DoT) (WA) Coastal Infrastructure DOT (DOT-020). Available online: https://catalogue.data.wa.gov.au/dataset/coastal-infrastructure-polys (accessed on 31 May 2018).
- Airbus SPOT-6 Satellite Sensor. Satellite Imagery. Available online: http://www.intelligence-airbusds.com/ (accessed on 31 May 2018).
- Landgate. WA Now Mosaic. Available online: https://catalogue.data.wa.gov.au/dataset/wa-now-aerial-photography-mosaic (accessed on 31 May 2018).
- Chaloupka, M. Estimating Key Demographic Parameters for the Flatback Turtle Population That Nests on Delambre Island (Western Australia); Rio Tinto Internal Report: London, UK, 2017; p. 44. [Google Scholar]
- Chevron. Gorgon Gas Development and Jansz Feed Gas Pipeline: Five-Year Environmental Performance Report (10–15); Chevron: Perth, Western Australia, 2015; p. 290. [Google Scholar]
- Waayers, D.; Stubbs, J. A Decade of Monitoring Flatback Turtles in Port Hedland, Western Australia, 2004/05–2013/14. Imbricata Environmental: Perth, Australia, 2016. [Google Scholar] [CrossRef]
- Quadrant. Quadrant Environmental Monitoring Program—Varanus and Airlie Islands Turtle Monitoring—Annual Report 2017/18; Department of Biodiversity, Conservation and Attractions (DBCA): Perth, Western Australia, 2018; p. 70. [Google Scholar]
- Grage, A. Marine Environmental Impact Assessment: Considering Cumulative and Synergistic Impacts within the Australian Legal Framework. Ph.D. Thesis, University of Wollongong, Wollongong, Australia, 2018. [Google Scholar]
- Willsteed, E.A.; Jude, S.; Gill, A.B.; Birchenough, S.N. Obligations and aspirations: A critical evaluation of offshore wind farm cumulative impact assessments. Renew. Sustain. Energy Rev. 2018, 82, 2332–2345. [Google Scholar] [CrossRef]
- DEC. Management Plan for the Montebello/Barrow Islands Marine Conservation Reserves 2007–2017; Department of Environment and Conservation: Perth, Australia, 2007; p. 135.
- Department of Biodiversity Conservation and Attractions. Pilbara Inshore Islands Nature Reserves and Proposed Additions Draft Management Plan; DBCA: Perth, Australia, 2020.
- Kamrowski, R.L.; Limpus, C.; Pendoley, K.; Hamann, M. Influence of industrial light pollution on the sea-finding behaviour of flatback turtle hatchlings. Wildl. Res. 2014, 41, 421–434. [Google Scholar] [CrossRef]
- Whittock, P.A.; Pendoley, K.L.; Hamann, M. Flexible foraging: Post-nesting flatback turtles on the Australian continental shelf. J. Exp. Mar. Biol. Ecol. 2016, 477, 112–119. [Google Scholar] [CrossRef]
- Whittock, P.; Pendoley, K.; Hamann, M.; Pendoley, K. Inter-nesting distribution of flatback turtles Natator depressus and industrial development in Western Australia. Endanger. Species Res. 2014, 26, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Pettex, E.; Laran, S.; Authier, M.; Blanck, A.; Dorémus, G.; Falchetto, H.; Lambert, C.; Monestiez, P.; Stéfan, E.; Van Canneyt, O.; et al. Using large scale surveys to investigate seasonal variations in seabird distribution and abundance. Part II: The Bay of Biscay and the English Channel. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017, 141, 86–101. [Google Scholar] [CrossRef]
- Mannocci, L.; Laran, S.; Monestiez, P.; Dorémus, G.; Van Canneyt, O.; Watremez, P.; Ridoux, V. Predicting top predator habitats in the Southwest Indian Ocean. Ecography 2013, 37, 261–278. [Google Scholar] [CrossRef]
- Whiting, A.U.; Thomson, A.; Chaloupka, M.; Limpus, C.J. Seasonality, abundance and breeding biology of one of the largest populations of nesting flatback turtles, Natator depressus: Cape Domett, Western Australia. Aust. J. Zool. 2008, 56, 297–303. [Google Scholar] [CrossRef]
- Maire, F.; Alvarez, L.M.; Hodgson, A. Automating marine mammal detection in aerial images captured during wildlife surveys: A deep learning approach. In Australasian Joint Conference on Artificial Intelligence; Springer: Cham, Switzerland, 2015; pp. 379–385. [Google Scholar]
- Maire, F.; Mejias, L.; Hodgson, A. A Convolutional Neural Network for Automatic Analysis of Aerial Imagery. In Proceedings of the 2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Wollongong, NSW, Australia, 25–27 November 2014; pp. 1–8. [Google Scholar]
- Gray, P.C.; Fleishman, A.B.; Klein, D.J.; McKown, M.W.; Bézy, V.S.; Lohmann, K.J.; Johnston, D.W. A Convolutional Neural Network for Detecting Sea Turtles in Drone Imagery. Methods Ecol. Evol. 2018, 10, 345–355. [Google Scholar] [CrossRef]
- Dujon, A.; Schofield, G. Importance of machine learning for enhancing ecological studies using information-rich imagery. Endanger. Species Res. 2019, 39, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Chabot, D.; Dillon, C.; Francis, C.M. An approach for using off-the-shelf object-based image analysis software to detect and count birds in large volumes of aerial imagery. Avian Conserv. Ecol. 2018, 13, 13. [Google Scholar] [CrossRef]
- Franklin, S.E.; Ahmed, O.S. Deciduous tree species classification using object-based analysis and machine learning with unmanned aerial vehicle multispectral data. Int. J. Remote Sens. 2018, 39, 5236–5245. [Google Scholar] [CrossRef]
- Thums, M.; Rossendell, J.; Fisher, R.; Guinea, M.L. Nesting ecology of flatback sea turtles Natator depressus from Delambre Island, Western Australia. Mar. Freshw. Res. 2019, 71, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Nowacek, D.P.; Clark, C.W.; Mann, D.; Miller, P.J.O.; Rosenbaum, H.C.; Golden, J.S.; Jasny, M.; Kraska, J.; Southall, B.L. Marine seismic surveys and ocean noise: Time for coordinated and prudent planning. Front. Ecol. Environ. 2015, 13, 378–386. [Google Scholar] [CrossRef] [Green Version]
Number of Beaches | % in Terrestrial Reserves | % in Marine Reserves | % in Both Terrestrial and Marine Reserves | % Not in Protected Areas | % Protected & within 5 km of Industrial Site | % Protected & further than 5 km away from Industrial Site | % Unprotected & within 15 km of Industrial Site | % Unprotected & More than 15 km away from Industrial Site | |
---|---|---|---|---|---|---|---|---|---|
All beaches with turtle activity | 375 | 276, 74% | 60, 16% | 278, 74% | 97, 26% | 79, 21% | 199, 53% | 50, 13% | 47, 13% |
Beaches with no turtle activity | 240 | 92, 38% | 14, 0.06% | 92, 38% | 148, 62% | 22, 9% | 70, 29% | 84, 35% | 64, 27% |
Low abundance flatback beaches | 118 | 90, 76% | 23, 20% | 91, 77% | 27, 23% | 31, 26% | 60, 51% | 11, 9% | 16, 14% |
Medium abundance flatback beaches | 24 | 21, 87% | 3, 13% | 21, 87% | 3, 13% | 7, 29% | 14, 58% | 0 | 3, 13% |
High abundance flatback beaches | 29 | 21, 72% | 0 | 21, 72% | 8, 28% | 8, 27% | 13, 45% | 5, 18% | 3, 10% |
Very high abundance flatback beaches | 3 | 1, 34% | 0 | 1, 34% | 2, 66% | 0 | 1, 34% | 0 | 2, 66% |
All beaches with fresh flatback activity | 174 | 133, 76% | 26, 15% | 134, 77% | 40, 23% | 46, 26% | 88, 51% | 16, 9% | 24, 14% |
Unassessed beaches | 29 | 1, 4% | 2, 7% | 3, 10% | 26, 90% | 1, 3% | 2, 7% | 14, 48% | 12, 42% |
Total number of beaches | 644 | 369, 57% | 76, 12% | 373, 58% | 271, 42% | 102, 16% | 271, 42% | 148, 23% | 123, 19% |
Rookery | Included in Protected Area | Distance to Closest Industrial Site | Number of Flatback tracks·night−1 [new-fresh] | Estimated Nesting Females per Year [mean (min-max)] | Relative Size (% of Tracks at 174 Surveyed Nesting Beaches) [new-fresh] | Relative Size (% of Tracks at Monitored Rookeries) [new-fresh] | Relative Size (% of Annual Nesting Females per Year at Monitored Rookeries) [mean (min-max)] | References |
---|---|---|---|---|---|---|---|---|
Delambre Island * | Yes | >15 km | 222–222 | 3300 (2700–3900) | 20.9–17.8 | 40.6–34.9 | 40.9 (39.9–40.4) | [48] |
Mundabullangana * | No | >15 km | 153–155 | 1805 (1692–2017) | 14.4–12.5 | 28.0–24.4 | 22.4 (20.9–25.0) | [49] |
Barrow Island * | Yes | <5 km | 96–147 | 1953 (1706–2309) | 9.0–11.8 | 17.6–23.1 | 24.2 (23.9–25.2) | [49] |
Rosemary Island | Yes | >15 km | 108–108 | N/A | 10.2–8.7 | N/A | N/A | N/A |
Legendre Island | No | >15 km | 76–77 | N/A | 7.1–6.2 | N/A | N/A | N/A |
Thevenard Island * | Yes | <5 km | 51–62 | 420 (251–587) | 4.8–5.0 | 9.3–9.7 | 5.2 (3.7–6.1) | DBCA Unpublished data |
Cemetery Beach * | No | <5 km | 12–23 | 242 (122–439) | 1.1–1.8 | 2.2–3.6 | 3.0 (1.8–4.5) | [50] |
Varanus Island * | Yes | <5 km | 9–15 | 230 (80–370) | 0.8–1.2 | 1.6–2.4 | 2.9 (2.7–2.9) | [51] |
Bells Beach * | No | <5 km | 4–12 | 119 (112–127) | 0.4–1.0 | 0.7–1.9 | 1.5 (1.3–1.7) | [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fossette, S.; Loewenthal, G.; Peel, L.R.; Vitenbergs, A.; Hamel, M.A.; Douglas, C.; Tucker, A.D.; Mayer, F.; Whiting, S.D. Using Aerial Photogrammetry to Assess Stock-Wide Marine Turtle Nesting Distribution, Abundance and Cumulative Exposure to Industrial Activity. Remote Sens. 2021, 13, 1116. https://doi.org/10.3390/rs13061116
Fossette S, Loewenthal G, Peel LR, Vitenbergs A, Hamel MA, Douglas C, Tucker AD, Mayer F, Whiting SD. Using Aerial Photogrammetry to Assess Stock-Wide Marine Turtle Nesting Distribution, Abundance and Cumulative Exposure to Industrial Activity. Remote Sensing. 2021; 13(6):1116. https://doi.org/10.3390/rs13061116
Chicago/Turabian StyleFossette, Sabrina, Graham Loewenthal, Lauren R. Peel, Anna Vitenbergs, Melanie A. Hamel, Corrine Douglas, Anton D. Tucker, Florian Mayer, and Scott D. Whiting. 2021. "Using Aerial Photogrammetry to Assess Stock-Wide Marine Turtle Nesting Distribution, Abundance and Cumulative Exposure to Industrial Activity" Remote Sensing 13, no. 6: 1116. https://doi.org/10.3390/rs13061116
APA StyleFossette, S., Loewenthal, G., Peel, L. R., Vitenbergs, A., Hamel, M. A., Douglas, C., Tucker, A. D., Mayer, F., & Whiting, S. D. (2021). Using Aerial Photogrammetry to Assess Stock-Wide Marine Turtle Nesting Distribution, Abundance and Cumulative Exposure to Industrial Activity. Remote Sensing, 13(6), 1116. https://doi.org/10.3390/rs13061116