Analysis of Ocean Bottom Pressure Anomalies and Seismic Activities in the MedRidge Zone
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobslaw, H.; Boergens, E.; Dill, R. COST-G GravIS RL01 Ocean Bottom Pressure Anomalies. V. 0002. GFZ Data Services. Available online: https://dataservices.gfz-potsdam.de/gravis/showshort.php?id=escidoc:5219908 (accessed on 19 January 2021).
- Poropat, L.; Dobslaw, H.; Zhang, L.; Macrander, A.; Boebel, O.; Thomas, M. Time variations in ocean bottom pressure from a few hours to many years: In situ data, numerical models, and GRACE Satellite Gravimetry. J. Geophys. Res. Oceans 2018, 123, 5612–5623. [Google Scholar] [CrossRef]
- JPL. ECCO Ocean Bottom Pressure (Monthly). Available online: https://grace.jpl.nasa.gov/data/get-data/ocean-bottom-pressure (accessed on 12 February 2021).
- Bingham, R.J.; Hughes, C.W. The relationship between sea-level and bottom pressure variability in an eddy-permitting ocean model. Geophys. Res. Lett. 2008, 35, L03602. [Google Scholar] [CrossRef] [Green Version]
- Chambers, D.P. Evaluation of new GRACE time-variable gravity data over the ocean. Geophys. Res. Lett. 2006, 33, L17603. [Google Scholar] [CrossRef]
- Milburn, H.; Nakamura, A.; Gonzalez, F. Real-time tsunami reporting from the deep ocean. In Proceedings of the OCEANS 96 MTS/IEEE Conference, The Coastal Ocean—Prospects for the 21st Century, Fort Lauderdale, FL, USA, 23–26 September 1996; pp. 390–394. [Google Scholar]
- Ponte, R.M.; Stammer, D.; Marshall, J. Oceanic signals in observed motions of the Earth’s pole of rotation. Nature 1998, 391, 476–479. [Google Scholar] [CrossRef]
- Ray, R.D. Precise comparisons of bottom-pressure and altimetric ocean tides. J. Geophys. Res. Oceans 2013, 118, 4570–4584. [Google Scholar] [CrossRef] [Green Version]
- Ray, R.D.; Erofeeva, S.Y. Long-period tidal variations in the length of day. J. Geophys. Res. Solid Earth 2014, 119, 1498–1509. [Google Scholar] [CrossRef]
- Frankel, H. The Continental Drift Debate. In Scientific Controversies: Case Studies in the Resolution and Closure of Disputes in Science and Technology; Engelhardt, H.T., Jr., Caplan, A.L., Eds.; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Condie, K.C. Plate Tectonics and Crustal Evolution; Butterworth-Heinemann: Oxford, UK, 1997; p. 288. [Google Scholar] [CrossRef]
- Meissner, R. The Little Book of Planet Earth; Copernicus Books: New York, NY, USA, 2002. [Google Scholar]
- Schubert, G.; Turcotte, D.L.; Olson, P. Mantle Convection in the Earth and Planets; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Turcotte, D.L.; Schubert, G. Plate Tectonics. Geodynamics; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Emery, K.O.; Heezen, B.; Allan, T.D. Bathymetry of the Eastern Mediterranean sea. Deep-Sea Res. 1966, 13, 173–192. [Google Scholar] [CrossRef]
- Heezen, B.C.; Ewing, M. The Mid Oceanic Ridge. In The Seas; Hill, M.N., Ed.; Interscience: New York, NY, USA, 1963; pp. 388–410. [Google Scholar]
- Huguen, C.; Chamot-Rooke, N.; Loubrieu, B.; Mascle, J. Morphology of a pre-collisional, salt-bearing, accretionary complex: The Mediterranean Ridge (Eastern Mediterranean). Mar. Geophys. Res. 2006, 27, 61–75. [Google Scholar] [CrossRef]
- Huguen, C. Volcanisme Boueux et Déformation Récente à Actuelle au sein de la Ride Méditerranéenne, d’après les Données de la Campagne PRISMED II. Available online: http://geologie-alpine.ujf-grenoble.fr/articles/GA_1999__75__135_0.pdf (accessed on 19 January 2021).
- Kopf, A.; Mascle, J.; Klaeschen, D. The Mediterranean Ridge: A mass balance across the fastest growing accretionary complex on Earth. J. Geophys. Res. 2003, 108, 2372. [Google Scholar] [CrossRef]
- Dewey, J.F.; Şengor, C. Aegean and sur-rounding regions: Complex multiplate and continuum tectonics in a convergent zone. Geol. Soc. Am. Bull. 1979, 90, 84–92. [Google Scholar] [CrossRef]
- Kreemer, C.; Chamot-Rooke, N. Contemporary kineatics of the southern Aegean and the Mediterranean Ridge. Geophys. J. Int. 2004, 157, 1377–1392. [Google Scholar] [CrossRef] [Green Version]
- Le Pichon, X.; Chamot-Rooke, N.; Lallemant, S.; Noomen, R.; Veis, G. Geodetic determination of the kinematics of central Greece with respect to Europe: Implications for Eastern Mediterranean tectonics. J. Geophys. Res. 1995, 100, 12675–12690. [Google Scholar] [CrossRef]
- McClusky, S.; Balassanian, S.; Barka, A.; Demir, C.; Ergintav, S.; Georgiev, I.; Gurkan, O.; Hamburger, M.; Hurst, K.; Kahle, H.; et al. Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res. 2000, 105, 5695–5719. [Google Scholar] [CrossRef]
- Olivet, J.L.; Bonnin, J.; Beuzart, P.; Auzende, J.M. Cinématique des plaques et paléogéographie: Une revue. Bull. Société Géologique France 1982, 7, 875–892. [Google Scholar] [CrossRef]
- Reillinger, R.E.; McClusky, S.C.; Oral, M.B.; King, R.W.; Toksoz, M.N.; Barka, A.A.; Kinik, I.; Lenk, O.; Sanli, I. Global positioning system measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone. J. Geophys. Res. Solid Earth 1997, 102, 9983–9999. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Papageorgiou, A. Large earthquakes and tsunamis in the Mediterranean and its connected seas. In Extreme Natural Hazards, Disaster Risks, and Societal Implications; Ismail-Zadeh, A., Fucugaughi, J., Kijko, A., Takeuchi, K., Zaliapin, I., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 252–266. [Google Scholar]
- Papadopoulos, G.A.; Gràcia, E.; Urgeles, R.; Sallares, V.; De Martini, P.M.; Pantosti, D.; González, M.; Yalcinere, A.C.; Mascle, J.; Sakellariou, D.; et al. Historical and pre-historical tsunamis in the Mediterranean and its connected seas: Geological signatures, generation mechanisms and coastal impacts. Mar. Geol. 2014, 354, 81–109. [Google Scholar] [CrossRef]
- IRIS Earthquake Browser. Available online: https://ds.iris.edu/ieb/index.html (accessed on 20 January 2021).
- The MathWorks. MATLAB User’s Guide; The MathWorks Inc.: Natick, MA, USA, 1993. [Google Scholar]
- USGS. Earthquake Magnitude, Energy Release, and Shaking Intensity. Available online: https://www.usgs.gov/natural-hazards/earthquake-hazards/science/earthquake-magnitude-energy-release-and-shaking-intensity (accessed on 11 February 2021).
- Chen, J.; Wilson, C.R.; Kuang, W.; Chao, B.F. Interannual oscillations in Earth rotation. J. Geophys. Res. Solid Earth 2019, 124. [Google Scholar] [CrossRef]
- Peltier, W.R. Global sea level and Earth rotation. Science 1988, 240, 895–901. [Google Scholar] [CrossRef]
- Wu, P.; Peltier, W.R. Pleistocene deglaciation and the Earth’s rotation: A new analysis. Geophys. J. R. Astron. Soc. 1984, 76, 753–791. [Google Scholar] [CrossRef] [Green Version]
- Buffett, B.A. A mechanism for decade fluctuations in the length of day. Geophys. Res. Lett. 1996, 23, 3803–3806. [Google Scholar] [CrossRef]
- Hide, R.; Clayton, R.W.; Hager, B.H.; Spieth, M.A.; Voorhies, C.V. Topographic core-mantle coupling and fluctuations in the Earth’s rotation. In Relating Geophysical Structures and Processes: The Jeffreys Volume, Geophysical Monograph Series; Aki, K., Dmowska, R., Eds.; American Geophysical Union: Washington, DC, USA, 1993; Volume 76, pp. 107–120. [Google Scholar]
- Jault, D.; Gire, C.; Le Mouel, J.L. Westward drift, core motions, and exchanges of angular momentum between core and mantle. Nature 1988, 333, 353–356. [Google Scholar] [CrossRef]
- Kuang, W.; Chao, B.F. Geodynamo modeling and core-mantle interactions. In Earth’s Core: Dynamics, Structure, Rotation, Geodynamics Series; Dehant, V., Kreager, K., Karato, C., Zatman, S., Eds.; American Geophysical Union: Washington, DC, USA, 2003; Volume 31, pp. 193–212. [Google Scholar]
- Mound, J.E.; Buffett, B.A. Interannual oscillations in length of day: Implications for the structure of the mantle and core. J. Geophys. Res. 2003, 108, 2334. [Google Scholar] [CrossRef]
- Mound, J.E.; Buffett, B.A. Mechanisms of core-mantle angular momentum exchange and the observed spectral properties of torsional oscillations. J. Geophys. Res. 2005, 110, B08103. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutoglu, H.S.; Becek, K. Analysis of Ocean Bottom Pressure Anomalies and Seismic Activities in the MedRidge Zone. Remote Sens. 2021, 13, 1242. https://doi.org/10.3390/rs13071242
Kutoglu HS, Becek K. Analysis of Ocean Bottom Pressure Anomalies and Seismic Activities in the MedRidge Zone. Remote Sensing. 2021; 13(7):1242. https://doi.org/10.3390/rs13071242
Chicago/Turabian StyleKutoglu, Hakan S., and Kazimierz Becek. 2021. "Analysis of Ocean Bottom Pressure Anomalies and Seismic Activities in the MedRidge Zone" Remote Sensing 13, no. 7: 1242. https://doi.org/10.3390/rs13071242
APA StyleKutoglu, H. S., & Becek, K. (2021). Analysis of Ocean Bottom Pressure Anomalies and Seismic Activities in the MedRidge Zone. Remote Sensing, 13(7), 1242. https://doi.org/10.3390/rs13071242