Analysis of Ocean Bottom Pressure Anomalies and Seismic Activities in the MedRidge Zone
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobslaw, H.; Boergens, E.; Dill, R. COST-G GravIS RL01 Ocean Bottom Pressure Anomalies. V. 0002. GFZ Data Services. Available online: https://dataservices.gfz-potsdam.de/gravis/showshort.php?id=escidoc:5219908 (accessed on 19 January 2021).
- Poropat, L.; Dobslaw, H.; Zhang, L.; Macrander, A.; Boebel, O.; Thomas, M. Time variations in ocean bottom pressure from a few hours to many years: In situ data, numerical models, and GRACE Satellite Gravimetry. J. Geophys. Res. Oceans 2018, 123, 5612–5623. [Google Scholar] [CrossRef]
- JPL. ECCO Ocean Bottom Pressure (Monthly). Available online: https://grace.jpl.nasa.gov/data/get-data/ocean-bottom-pressure (accessed on 12 February 2021).
- Bingham, R.J.; Hughes, C.W. The relationship between sea-level and bottom pressure variability in an eddy-permitting ocean model. Geophys. Res. Lett. 2008, 35, L03602. [Google Scholar] [CrossRef]
- Chambers, D.P. Evaluation of new GRACE time-variable gravity data over the ocean. Geophys. Res. Lett. 2006, 33, L17603. [Google Scholar] [CrossRef]
- Milburn, H.; Nakamura, A.; Gonzalez, F. Real-time tsunami reporting from the deep ocean. In Proceedings of the OCEANS 96 MTS/IEEE Conference, The Coastal Ocean—Prospects for the 21st Century, Fort Lauderdale, FL, USA, 23–26 September 1996; pp. 390–394. [Google Scholar]
- Ponte, R.M.; Stammer, D.; Marshall, J. Oceanic signals in observed motions of the Earth’s pole of rotation. Nature 1998, 391, 476–479. [Google Scholar] [CrossRef]
- Ray, R.D. Precise comparisons of bottom-pressure and altimetric ocean tides. J. Geophys. Res. Oceans 2013, 118, 4570–4584. [Google Scholar] [CrossRef]
- Ray, R.D.; Erofeeva, S.Y. Long-period tidal variations in the length of day. J. Geophys. Res. Solid Earth 2014, 119, 1498–1509. [Google Scholar] [CrossRef]
- Frankel, H. The Continental Drift Debate. In Scientific Controversies: Case Studies in the Resolution and Closure of Disputes in Science and Technology; Engelhardt, H.T., Jr., Caplan, A.L., Eds.; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Condie, K.C. Plate Tectonics and Crustal Evolution; Butterworth-Heinemann: Oxford, UK, 1997; p. 288. [Google Scholar] [CrossRef]
- Meissner, R. The Little Book of Planet Earth; Copernicus Books: New York, NY, USA, 2002. [Google Scholar]
- Schubert, G.; Turcotte, D.L.; Olson, P. Mantle Convection in the Earth and Planets; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Turcotte, D.L.; Schubert, G. Plate Tectonics. Geodynamics; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Emery, K.O.; Heezen, B.; Allan, T.D. Bathymetry of the Eastern Mediterranean sea. Deep-Sea Res. 1966, 13, 173–192. [Google Scholar] [CrossRef]
- Heezen, B.C.; Ewing, M. The Mid Oceanic Ridge. In The Seas; Hill, M.N., Ed.; Interscience: New York, NY, USA, 1963; pp. 388–410. [Google Scholar]
- Huguen, C.; Chamot-Rooke, N.; Loubrieu, B.; Mascle, J. Morphology of a pre-collisional, salt-bearing, accretionary complex: The Mediterranean Ridge (Eastern Mediterranean). Mar. Geophys. Res. 2006, 27, 61–75. [Google Scholar] [CrossRef]
- Huguen, C. Volcanisme Boueux et Déformation Récente à Actuelle au sein de la Ride Méditerranéenne, d’après les Données de la Campagne PRISMED II. Available online: http://geologie-alpine.ujf-grenoble.fr/articles/GA_1999__75__135_0.pdf (accessed on 19 January 2021).
- Kopf, A.; Mascle, J.; Klaeschen, D. The Mediterranean Ridge: A mass balance across the fastest growing accretionary complex on Earth. J. Geophys. Res. 2003, 108, 2372. [Google Scholar] [CrossRef]
- Dewey, J.F.; Şengor, C. Aegean and sur-rounding regions: Complex multiplate and continuum tectonics in a convergent zone. Geol. Soc. Am. Bull. 1979, 90, 84–92. [Google Scholar] [CrossRef]
- Kreemer, C.; Chamot-Rooke, N. Contemporary kineatics of the southern Aegean and the Mediterranean Ridge. Geophys. J. Int. 2004, 157, 1377–1392. [Google Scholar] [CrossRef]
- Le Pichon, X.; Chamot-Rooke, N.; Lallemant, S.; Noomen, R.; Veis, G. Geodetic determination of the kinematics of central Greece with respect to Europe: Implications for Eastern Mediterranean tectonics. J. Geophys. Res. 1995, 100, 12675–12690. [Google Scholar] [CrossRef]
- McClusky, S.; Balassanian, S.; Barka, A.; Demir, C.; Ergintav, S.; Georgiev, I.; Gurkan, O.; Hamburger, M.; Hurst, K.; Kahle, H.; et al. Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res. 2000, 105, 5695–5719. [Google Scholar] [CrossRef]
- Olivet, J.L.; Bonnin, J.; Beuzart, P.; Auzende, J.M. Cinématique des plaques et paléogéographie: Une revue. Bull. Société Géologique France 1982, 7, 875–892. [Google Scholar] [CrossRef]
- Reillinger, R.E.; McClusky, S.C.; Oral, M.B.; King, R.W.; Toksoz, M.N.; Barka, A.A.; Kinik, I.; Lenk, O.; Sanli, I. Global positioning system measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone. J. Geophys. Res. Solid Earth 1997, 102, 9983–9999. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Papageorgiou, A. Large earthquakes and tsunamis in the Mediterranean and its connected seas. In Extreme Natural Hazards, Disaster Risks, and Societal Implications; Ismail-Zadeh, A., Fucugaughi, J., Kijko, A., Takeuchi, K., Zaliapin, I., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 252–266. [Google Scholar]
- Papadopoulos, G.A.; Gràcia, E.; Urgeles, R.; Sallares, V.; De Martini, P.M.; Pantosti, D.; González, M.; Yalcinere, A.C.; Mascle, J.; Sakellariou, D.; et al. Historical and pre-historical tsunamis in the Mediterranean and its connected seas: Geological signatures, generation mechanisms and coastal impacts. Mar. Geol. 2014, 354, 81–109. [Google Scholar] [CrossRef]
- IRIS Earthquake Browser. Available online: https://ds.iris.edu/ieb/index.html (accessed on 20 January 2021).
- The MathWorks. MATLAB User’s Guide; The MathWorks Inc.: Natick, MA, USA, 1993. [Google Scholar]
- USGS. Earthquake Magnitude, Energy Release, and Shaking Intensity. Available online: https://www.usgs.gov/natural-hazards/earthquake-hazards/science/earthquake-magnitude-energy-release-and-shaking-intensity (accessed on 11 February 2021).
- Chen, J.; Wilson, C.R.; Kuang, W.; Chao, B.F. Interannual oscillations in Earth rotation. J. Geophys. Res. Solid Earth 2019, 124. [Google Scholar] [CrossRef]
- Peltier, W.R. Global sea level and Earth rotation. Science 1988, 240, 895–901. [Google Scholar] [CrossRef]
- Wu, P.; Peltier, W.R. Pleistocene deglaciation and the Earth’s rotation: A new analysis. Geophys. J. R. Astron. Soc. 1984, 76, 753–791. [Google Scholar] [CrossRef]
- Buffett, B.A. A mechanism for decade fluctuations in the length of day. Geophys. Res. Lett. 1996, 23, 3803–3806. [Google Scholar] [CrossRef]
- Hide, R.; Clayton, R.W.; Hager, B.H.; Spieth, M.A.; Voorhies, C.V. Topographic core-mantle coupling and fluctuations in the Earth’s rotation. In Relating Geophysical Structures and Processes: The Jeffreys Volume, Geophysical Monograph Series; Aki, K., Dmowska, R., Eds.; American Geophysical Union: Washington, DC, USA, 1993; Volume 76, pp. 107–120. [Google Scholar]
- Jault, D.; Gire, C.; Le Mouel, J.L. Westward drift, core motions, and exchanges of angular momentum between core and mantle. Nature 1988, 333, 353–356. [Google Scholar] [CrossRef]
- Kuang, W.; Chao, B.F. Geodynamo modeling and core-mantle interactions. In Earth’s Core: Dynamics, Structure, Rotation, Geodynamics Series; Dehant, V., Kreager, K., Karato, C., Zatman, S., Eds.; American Geophysical Union: Washington, DC, USA, 2003; Volume 31, pp. 193–212. [Google Scholar]
- Mound, J.E.; Buffett, B.A. Interannual oscillations in length of day: Implications for the structure of the mantle and core. J. Geophys. Res. 2003, 108, 2334. [Google Scholar] [CrossRef]
- Mound, J.E.; Buffett, B.A. Mechanisms of core-mantle angular momentum exchange and the observed spectral properties of torsional oscillations. J. Geophys. Res. 2005, 110, B08103. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutoglu, H.S.; Becek, K. Analysis of Ocean Bottom Pressure Anomalies and Seismic Activities in the MedRidge Zone. Remote Sens. 2021, 13, 1242. https://doi.org/10.3390/rs13071242
Kutoglu HS, Becek K. Analysis of Ocean Bottom Pressure Anomalies and Seismic Activities in the MedRidge Zone. Remote Sensing. 2021; 13(7):1242. https://doi.org/10.3390/rs13071242
Chicago/Turabian StyleKutoglu, Hakan S., and Kazimierz Becek. 2021. "Analysis of Ocean Bottom Pressure Anomalies and Seismic Activities in the MedRidge Zone" Remote Sensing 13, no. 7: 1242. https://doi.org/10.3390/rs13071242
APA StyleKutoglu, H. S., & Becek, K. (2021). Analysis of Ocean Bottom Pressure Anomalies and Seismic Activities in the MedRidge Zone. Remote Sensing, 13(7), 1242. https://doi.org/10.3390/rs13071242