Quantification of the Environmental Impacts of Highway Construction Using Remote Sensing Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Calculation of Ecological Indicators
2.2.1. Normalized Difference Vegetation Index
2.2.2. Normalized Difference Moisture Index
2.2.3. Land Surface Temperature Retrieval
2.3. Remote Sensing Approach for Assessing Ecological Effects of Highway in Time and Space
2.4. Land Use and Land Cover Classification Using Google Earth Engine
2.5. Identification of the Road-Effect Zone
2.6. Landscape Patterns
2.7. Establishment of an Ecological Assessment Model
3. Results
3.1. Impacts of Highway Construction on Land Use/Cover
3.2. Dynamics of Landscape Patterns
3.3. Changes in Ecological Conditions
3.4. Overall Change in Ecological Quality Index
4. Discussion
4.1. The Effect Distance of Highway
4.2. Environmental Recovery after Highway Construction
4.3. Overall Change of EQI
4.4. A Remote Sensing Approach for Monitoring the Ecological Impacts of Infrastructure Projects
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weiss, D.J.; Nelson, A.; Gibson, H.; Temperley, W.; Peedell, S.; Lieber, A.; Hancher, M.; Poyart, E.; Belchior, S.; Fullman, N. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 2018, 553, 333. [Google Scholar] [CrossRef]
- Dulac, J. Global Land Transport Infrastructure Requirements; International Energy Agency: Paris, France, 2013; Volume 20, p. 2014. [Google Scholar]
- Perz, S.G. Sustainable development: The promise and perils of roads. Nature 2014, 513, 178. [Google Scholar] [CrossRef] [PubMed]
- Creutzig, F.; Jochem, P.; Edelenbosch, O.Y.; Mattauch, L.; van Vuuren, D.P.; McCollum, D.; Minx, J. Transport: A roadblock to climate change mitigation? Science 2015, 350, 911–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, G.; Angeloni, L.M.; Wittemyer, G.; Fristrup, K.M.; Crooks, K.R. Road traffic noise modifies behaviour of a keystone species. Anim. Behav. 2014, 94, 135–141. [Google Scholar] [CrossRef]
- Torres, A.; Jaeger, J.A.; Alonso, J.C. Assessing large-scale wildlife responses to human infrastructure development. Proc. Natl. Acad. Sci. USA 2016, 113, 8472–8477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brady, S.P.; Richardson, J.L. Road ecology: Shifting gears toward evolutionary perspectives. Front. Ecol. Environ. 2017, 15, 91–98. [Google Scholar] [CrossRef]
- Meijer, J.R.; Huijbregts, M.A.; Schotten, K.C.; Schipper, A.M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 2018, 13, 064006. [Google Scholar] [CrossRef] [Green Version]
- Southworth, J.; Marsik, M.; Qiu, Y.; Perz, S.; Cumming, G.; Stevens, F.; Rocha, K. Roads as drivers of change: Trajectories across the tri-national frontier in MAP, the Southwestern Amazon. Remote Sens. 2011, 3, 1047–1066. [Google Scholar] [CrossRef] [Green Version]
- Ibisch, P.L.; Hoffmann, M.T.; Kreft, S.; Pe’er, G.; Kati, V.; Biber-Freudenberger, L.; DellaSala, D.A.; Vale, M.M.; Hobson, P.R.; Selva, N. A global map of roadless areas and their conservation status. Science 2016, 354, 1423–1427. [Google Scholar] [CrossRef]
- Forman, R.T.; Alexander, L.E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 1998, 29, 207–231. [Google Scholar] [CrossRef] [Green Version]
- Klarenberg, G.; Muñoz-Carpena, R.; Campo-Bescós, M.A.; Perz, S.G. Highway paving in the southwestern Amazon alters long-term trends and drivers of regional vegetation dynamics. Heliyon 2018, 4, e00721. [Google Scholar] [CrossRef] [PubMed]
- Forman, R.T. Estimate of the area affected ecologically by the road system in the United States. Conserv. Biol. 2000, 14, 31–35. [Google Scholar] [CrossRef]
- Song, Y.; Jin, L.; Wang, H. Vegetation changes along the Qinghai-Tibet Plateau engineering corridor since 2000 induced by climate change and human activities. Remote Sens. 2018, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Forman, R.T.; Deblinger, R.D. The ecological road-effect zone of a Massachusetts (USA) suburban highway. Conserv. Biol. 2000, 14, 36–46. [Google Scholar] [CrossRef]
- Carr, L.W.; Fahrig, L. Effect of road traffic on two amphibian species of differing vagility. Conserv. Biol. 2001, 15, 1071–1078. [Google Scholar] [CrossRef]
- Boarman, W.; Sazaki, M. A highway’s road-effect zone for desert tortoises (Gopherus agassizii). J. Arid Environ. 2006, 65, 94–101. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Hecnar, S.J.; Fahrig, L. Quantifying the road-effect zone: Threshold effects of a motorway on anuran populations in Ontario, Canada. Ecol. Soc. 2009, 14, 24. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.; Palacín, C.; Seoane, J.; Alonso, J.C. Assessing the effects of a highway on a threatened species using before–during–after and before–during–after-Control–Impact designs. Biol. Conserv. 2011, 144, 2223–2232. [Google Scholar] [CrossRef]
- Wu, C.-F.; Lin, Y.-P.; Chiang, L.-C.; Huang, T. Assessing highway’s impacts on landscape patterns and ecosystem services: A case study in Puli Township, Taiwan. Landsc. Urban Plan. 2014, 128, 60–71. [Google Scholar] [CrossRef]
- Assis, J.C.; Giacomini, H.C.; Ribeiro, M.C. Road Permeability Index: Evaluating the heterogeneous permeability of roads for wildlife crossing. Ecol. Indic. 2019, 99, 365–374. [Google Scholar] [CrossRef]
- Guisande, C.; Rueda-Quecho, A.J.; Rangel-Silva, F.A.; Ríos-Vasquez, J.M. EIA: An algorithm for the statistical evaluation of an environmental impact assessment. Ecol. Indic. 2018, 93, 1081–1088. [Google Scholar] [CrossRef]
- Schäfer, R.B.; Bundschuh, M.; Rouch, D.A.; Szöcs, E.; Peter, C.; Pettigrove, V.; Schulz, R.; Nugegoda, D.; Kefford, B.J. Effects of pesticide toxicity, salinity and other environmental variables on selected ecosystem functions in streams and the relevance for ecosystem services. Sci. Total Environ. 2012, 415, 69–78. [Google Scholar] [CrossRef]
- Wu, L.; Ye, K.; Gong, P.; Xing, J. Perceptions of governments towards mitigating the environmental impacts of expressway construction projects: A case of China. J. Clean. Prod. 2019, 236, 117704. [Google Scholar] [CrossRef]
- Giunta, M. Assessment of the environmental impact of road construction: Modelling and prediction of fine particulate matter emissions. Build. Environ. 2020, 176, 106865. [Google Scholar] [CrossRef]
- Jones, J.A.; Swanson, F.J.; Wemple, B.C.; Snyder, K.U. Effects of roads on hydrology, geomorphology, and disturbance patches in stream networks. Conserv. Biol. 2000, 14, 76–85. [Google Scholar] [CrossRef]
- Mo, W.; Wang, Y.; Zhang, Y.; Zhuang, D. Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing. Sci. Total Environ. 2017, 574, 1000–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gülci, S.; Akay, A.E.; Oğuz, H.; Gülci, N. Assessment of the road impacts on coniferous species within the road-effect zone using NDVI analysis approach. Fresenius Environ. Bull. 2017, 26, 1654–1662. [Google Scholar]
- Alphan, H.; Derse, M.A. Change detection in Southern Turkey using normalized difference vegetation index (NDVI). J. Environ. Eng. Landsc. Manag. 2013, 21, 12–18. [Google Scholar] [CrossRef]
- Vollmer, D.; Shaad, K.; Souter, N.J.; Farrell, T.; Dudgeon, D.; Sullivan, C.A.; Fauconnier, I.; Macdonald, G.M.; Mccartney, M.P.; Power, A.G.; et al. Integrating the social, hydrological and ecological dimensions of freshwater health: The Freshwater Health Index. Sci. Total Environ. 2018, 627, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Zhang, Z.; Gao, J.; Xie, Z.; Zhao, M.; Wang, E. Evaluating landscape ecological sensitivity of an estuarine island based on landscape pattern across temporal and spatial scales. Ecol. Indic. 2019, 101, 221–237. [Google Scholar] [CrossRef]
- Clements, G.R. The environmental and social impacts of roads in Southeast Asia. Ph.D. Thesis, James Cook University, Townsville, Australia, 2013. [Google Scholar]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the Satellite-Derived NDVI to Sssess Ecological Responses to Environmental Change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Nedbal, V.; Brom, J. Impact of highway construction on land surface energy balance and local climate derived from LANDSAT satellite data. Sci. Total Environ. 2018, 633, 658–667. [Google Scholar] [CrossRef]
- Liu, M.; Yang, W.; Zhu, X.; Chen, J.; Chen, X.; Yang, L.; Helmer, E.H. An Improved Flexible Spatiotemporal DAta Fusion (IFSDAF) method for producing high spatiotemporal resolution normalized difference vegetation index time series. Remote Sens. Environ. 2019, 227, 74–89. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Xu, C.; Liu, W.; Qi, Y.; Wo, X. Vegetation variation of mid-subtropical forest based on MODIS NDVI data—A case study of Jinggangshan City, Jiangxi Province. Acta Ecol. Sin. 2014, 34, 7–12. [Google Scholar] [CrossRef]
- Karan, S.K.; Samadder, S.R.; Maiti, S.K. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands. J. Environ. Manag. 2016, 182, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Hardisky, M.; Klemas, V.; Smart, M. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of. Spartina Alterniflora 1983, 49, 77–83. [Google Scholar]
- Zhang, H.; Gorelick, S.M.; Zimba, P.V.; Zhang, X. A remote sensing method for estimating regional reservoir area and evaporative loss. J. Hydrol. 2017, 555, 213–227. [Google Scholar] [CrossRef]
- Rozenstein, O.; Qin, Z.; Derimian, Y.; Karnieli, A. Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors 2014, 14, 5768–5780. [Google Scholar] [CrossRef]
- Owen, T.; Carlson, T.; Gillies, R. An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. Int. J. Remote Sens. 1998, 19, 1663–1681. [Google Scholar] [CrossRef]
- Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Li, W.; Cao, Q.; Lang, K.; Wu, J. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature. Sci. Total Environ. 2017, 586, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-C.; Hu, B.K.; Myint, S.W.; Feng, C.-C.; Chow, W.T.; Passy, P.F. Patterns of land change and their potential impacts on land surface temperature change in Yangon, Myanmar. Sci. Total Environ. 2018, 643, 738–750. [Google Scholar] [CrossRef]
- Simwanda, M.; Ranagalage, M.; Estoque, R.C.; Murayama, Y. Spatial analysis of surface urban heat islands in four rapidly growing African Cities. Remote Sens. 2019, 11, 1645. [Google Scholar] [CrossRef] [Green Version]
- Fluet-Chouinard, E.; Lehner, B.; Rebelo, L.-M.; Papa, F.; Hamilton, S.K. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 2015, 158, 348–361. [Google Scholar] [CrossRef]
- Feng, S.; Liu, S.; Huang, Z.; Jing, L.; Zhao, M.; Peng, X.; Yan, W.; Wu, Y.; Lv, Y.; Smith, A.R. Inland water bodies in China: Features discovered in the long-term satellite data. Proc. Natl. Acad. Sci. USA 2019, 116, 25491–25496. [Google Scholar] [CrossRef] [Green Version]
- Roedenbeck, I.A.; Fahrig, L.; Findlay, C.S.; Houlahan, J.E.; Jaeger, J.A.; Klar, N.; Kramer-Schadt, S.; van der Grift, E.A. The Rauischholzhausen agenda for road ecology. Ecol. Soc. 2007, 12, 11. [Google Scholar] [CrossRef]
- Abo-Qudais, S.; Alhiary, A. Effect of distance from road intersection on developed traffic noise levels. Can. J. Civ. Eng. 2004, 31, 533–538. [Google Scholar] [CrossRef]
- Raaschou-Nielsen, O.; Andersen, Z.J.; Hvidberg, M.; Jensen, S.S.; Ketzel, M.; Sørensen, M.; Hansen, J.; Loft, S.; Overvad, K.; Tjønneland, A. Air pollution from traffic and cancer incidence: A Danish cohort study. Environ. Health 2011, 10, 67. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-C.; Kendall, M.; Thurston, G.D. Personal Exposures to Traffic-Related Air Pollution and Acute Respiratory Health among Bronx School Children. Environ. Health Perspect. 2011, 119, 559. [Google Scholar]
- Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; C McDonald, M.; Hoover, D.; Butman, R.; Striegl, E.M.; Humborg, C. Global carbon dioxide emissions from inland waters. Nature 2013, 503, 355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, C.; Wu, C. Examining the impacts of urban biophysical compositions on surface urban heat island: A spectral unmixing and thermal mixing approach. Remote Sens. Environ. 2013, 131, 262–274. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Zhao, F.; Yan, H.; Zhang, F.; Wei, X. Impacts of urbanization-induced land-use changes on ecosystem services: A case study of the Pearl River Delta Metropolitan Region, China. Ecol. Indic. 2019, 98, 228–238. [Google Scholar] [CrossRef]
- Li, H.; Peng, J.; Liu, Y.; Hu, Y. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecol. Indic. 2017, 82, 50–60. [Google Scholar] [CrossRef]
- Raiter, K.G.; Prober, S.M.; Possingham, H.P.; Westcott, F.; Hobbs, R.J. Linear infrastructure impacts on landscape hydrology. J. Environ. Manag. 2018, 206, 446–457. [Google Scholar] [CrossRef]
- Fei, W.; Zhao, S. Urban land expansion in China’s six megacities from 1978 to 2015. Sci. Total Environ. 2019, 664, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Cui, B.; Zhang, H.; Fan, X.; Zhang, Z.; Lei, X. A landscape approach for wetland change detection (1979–2009) in the Pearl River Estuary. Procedia Environ. Sci. 2010, 2, 1265–1278. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Zhao, S.; Liu, S. Spatial scaling of multiple landscape features in the conterminous United States. Landsc. Ecol. 2019, 35, 223–247. [Google Scholar] [CrossRef]
- McGarigal, K. FRAGSTATS Help; University of Massachusetts: Amherst, MA, USA, 2015. [Google Scholar]
- Ramezani, H.; Holm, S.; Allard, A.; Ståhl, G. Monitoring landscape metrics by point sampling: Accuracy in estimating Shannon’s diversity and edge density. Environ. Monit. Assess. 2010, 164, 403–421. [Google Scholar] [CrossRef] [PubMed]
- Herold, M.; Scepan, J.; Clarke, K.C. The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environ. Plan. A 2002, 34, 1443–1458. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Chen, J.; Wu, H.; Hou, D.; Zhang, W.; Zhang, J.; Zhou, X.; Chen, L. A landscape shape index-based sampling approach for land cover accuracy assessment. Sci. China Earth Sci. 2016, 59, 2263–2274. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, J.; Wang, Y. Efficiency of landscape metrics characterizing urban land surface temperature. Landsc. Urban Plan. 2018, 180, 36–53. [Google Scholar] [CrossRef]
- He, H.S.; DeZonia, B.E.; Mladenoff, D.J. J. An aggregation index (AI) to quantify spatial patterns of landscapes. Landsc. Ecol. 2000, 15, 591–601. [Google Scholar]
- Hou, H.; Wang, R.; Murayama, Y. Scenario-based modelling for urban sustainability focusing on changes in cropland under rapid urbanization: A case study of Hangzhou from 1990 to 2035. Sci. Total Environ. 2019, 661, 422–431. [Google Scholar] [CrossRef]
- Karlson, M.; Mörtberg, U.; Balfors, B. Road ecology in environmental impact assessment. Environ. Impact Assess. Rev. 2014, 48, 10–19. [Google Scholar] [CrossRef]
- El-Gafy, M.; Abdelrazig, Y.; Abdelhamid, T. Environmental impact assessment for transportation projects: Case study using remote-sensing technology, geographic information systems, and spatial modeling. J. Urban Plan. Dev. 2011, 137, 153–158. [Google Scholar] [CrossRef]
- Ying, X.; Zeng, G.M.; Chen, G.Q.; Tang, L.; Wang, K.L.; Huang, D.Y. Combining AHP with GIS in synthetic evaluation of eco-environment quality—A case study of Hunan Province, China. Ecol. Model. 2007, 209, 97–109. [Google Scholar] [CrossRef]
- Foody, G.M. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sens. Environ. 2020, 239, 111630. [Google Scholar] [CrossRef]
- Zhou, T.; Luo, X.; Hou, Y.; Xiang, Y.; Peng, S. Quantifying the effects of road width on roadside vegetation and soil conditions in forests. Landsc. Ecol. 2020, 35, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Liu, S.; Zhou, D. Prevalent vegetation growth enhancement in urban environment. Proc. Natl. Acad. Sci. USA 2016, 113, 6313–6318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, W.; Zhao, S.; Liu, S. Vegetation growth enhancement in urban environments of the Conterminous United States. Glob. Chang. Biol. 2018, 24, 4084–4094. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, D.E.; Finlay, J.C. Road dust biases NDVI and alters edaphic properties in Alaskan arctic tundra. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rahul, J.; Jain, M.K. An investigation in to the impact of particulate matter on vegetation along the national highway: A review. Res. J. Environ. Sci. 2014, 8, 356–372. [Google Scholar] [CrossRef] [Green Version]
- Angold, G. The impact of a road upon adjacent heathland vegetation: Effects on plant species composition. J. Appl. Ecol. 1997, 34, 409–417. [Google Scholar] [CrossRef]
- Redling, K.; Elliott, E.; Bain, D.; Sherwell, J. Highway contributions to reactive nitrogen deposition: Tracing the fate of vehicular NOx using stable isotopes and plant biomonitors. Biogeochemistry 2013, 116, 261–274. [Google Scholar] [CrossRef]
- Li, D.; Liao, W.; Rigden, A.J.; Liu, X.; Wang, D.; Malyshev, S.; Shevliakova, E. Urban heat island: Aerodynamics or imperviousness? Sci. Adv. 2019, 5, eaau4299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunert, N.; Aparecido LM, T.; Higuchi, N.; dos Santos, J.; Trumbore, S. Higher tree transpiration due to road-associated edge effects in a tropical moist lowland forest. Agric. For. Meteorol. 2015, 213, 183–192. [Google Scholar] [CrossRef]
- Pariente, S.; Helena, Z.; Eyal, S.; Anatoly, F.G.; Michal, Z. Road side effect on lead content in sandy soil. Catena 2019, 174, 301–307. [Google Scholar] [CrossRef]
- Liang, J.; Liu, Y.; Ying, L.; Li, P.; Xu, Y.; Shen, Z. Road impacts on spatial patterns of land use and landscape fragmentation in three parallel rivers region, Yunnan Province, China. Chin. Geogr. Sci. 2014, 24, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Spellerberg, I. Ecological effects of roads and traffic: A literature review. Glob. Ecol. Biogeogr. Lett. 1998, 7, 317–333. [Google Scholar] [CrossRef]
- Kleinschroth, F.; Laporte, N.; Laurance, W.F.; Goetz, S.J.; Ghazoul, J. Road expansion and persistence in forests of the Congo Basin. Nat. Sustain. 2019, 2, 628–634. [Google Scholar] [CrossRef]
- Deljouei, A.; Sadeghi SM, M.; Abdi, E.; Bernhardt-Römermann, M.; Pascoe, E.L.; Marcantonio, M. The impact of road disturbance on vegetation and soil properties in a beech stand, Hyrcanian forest. Eur. J. Res. 2018, 137, 759–770. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Zhang, M.; Zhang, C. Impacts of climate change and human activities on vegetation cover in hilly southern China. Ecol. Eng. 2015, 81, 451–461. [Google Scholar] [CrossRef]
- Igondova, E.; Pavlickova, K.; Majzlan, O. The ecological impact assessment of a proposed road development (the Slovak approach). Environ. Impact Assess. Rev. 2016, 59, 43–54. [Google Scholar] [CrossRef]
- Yuan, W.; Li, X.; Liang, S.; Cui, X.; Dong, W.; Liu, S.; Xia, J.; Chen, Y.; Liu, D.; Zhu, W. Characterization of locations and extents of afforestation from the Grain for Green Project in China. Remote Sens. Lett. 2014, 5, 221–229. [Google Scholar] [CrossRef]
- Hu, X.; Xu, H. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Reymondin, L.; Argote, K.; Jarvis, A.; Navarrete, C.; Coca, A.; Grossman, D.; Villalba, A.; Suding, P. Road Impact Assessment Using Remote Sensing Methodology for Monitoring Land-Use Change in Latin America: Results of Five Case Studies; Inter-American Development Bank: Washington, DC, USA, 2013. [Google Scholar]
Landsat Scene ID | Path | Row | Data |
---|---|---|---|
LC81250422013194LGN00 | 125 | 42 | 13 July 2013 |
LC81250422014165LGN00 | 125 | 42 | 14 June 2014 |
LC81250422015104LGN00 | 125 | 42 | 14 April 2015 |
LC81250422016107LGN00 | 125 | 42 | 16 April 2016 |
LC81250422017125LGN00 | 125 | 42 | 5 May 2017 |
LC81250422018144LGN00 | 125 | 42 | 24 May 2018 |
Landscape Metrics | Acronym | Range | Unit | Description |
---|---|---|---|---|
Percentage of landscape | PLAND | 0 < PLAND ≤ 100 | % | The percentage the landscape of the corresponding patch type. |
Patch density | PD | PD > 0 | number/100 ha | The number of patches per 100 hectares. |
Edge density | ED | ED ≥ 0 | m/ha | The length of edge relative to the area of the patch of a land cover type. |
Landscape shape index | LSI | LSI > 0 | / | A perimeter-to-area ratio for the landscape as a whole, indicating the shape complexity of the landscape. |
Aggregation Index | AI | 0 < AI ≤ 100 | % | Degree of aggregation of landscape patch aggregation. |
Factor | Ecological Indicator | Weight |
---|---|---|
Vegetation | NDVI | 0.3 |
Moisture | NDMI | 0.3 |
Surface temperature | LST | 0.2 |
Topography | Slope | 0.1 |
Elevation | DEM | 0.1 |
Year | LULC | Landscape Index | ||||
---|---|---|---|---|---|---|
PLAND | PD | ED | LSI | AI | ||
2013 | Built-up | 4.71 | 5.22 | 25.48 | 38.81 | 61.15 |
Water | 0.76 | 0.18 | 1.80 | 6.79 | 84.98 | |
Cropland | 18.05 | 6.70 | 60.77 | 48.00 | 75.51 | |
Forest | 76.48 | 1.57 | 52.66 | 23.37 | 94.36 | |
2015 | Built-up | 11.00 | 4.57 | 43.28 | 43.05 | 71.89 |
Water | 1.00 | 0.04 | 1.70 | 5.67 | 89.47 | |
Cropland | 15.72 | 11.01 | 64.23 | 54.23 | 70.27 | |
Forest | 72.29 | 2.70 | 61.42 | 27.32 | 93.17 | |
2017 | Built-up | 11.05 | 8.21 | 55.77 | 55.17 | 62.18 |
Water | 1.04 | 0.07 | 1.87 | 6.12 | 88.14 | |
Cropland | 13.89 | 7.73 | 49.39 | 44.67 | 72.84 | |
Forest | 74.01 | 1.86 | 46.07 | 21.52 | 94.49 | |
2018 | Built-up | 13.74 | 9.19 | 64.06 | 56.72 | 66.66 |
Water | 0.96 | 0.07 | 1.77 | 5.97 | 88.53 | |
Cropland | 15.35 | 11.29 | 62.21 | 53.00 | 70.59 | |
Forest | 69.95 | 2.18 | 58.89 | 26.84 | 93.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Liu, S.; Jing, L.; Zhu, Y.; Yan, W.; Jiang, B.; Liu, M.; Lu, W.; Ning, Y.; Wang, Z.; et al. Quantification of the Environmental Impacts of Highway Construction Using Remote Sensing Approach. Remote Sens. 2021, 13, 1340. https://doi.org/10.3390/rs13071340
Feng S, Liu S, Jing L, Zhu Y, Yan W, Jiang B, Liu M, Lu W, Ning Y, Wang Z, et al. Quantification of the Environmental Impacts of Highway Construction Using Remote Sensing Approach. Remote Sensing. 2021; 13(7):1340. https://doi.org/10.3390/rs13071340
Chicago/Turabian StyleFeng, Shuailong, Shuguang Liu, Lei Jing, Yu Zhu, Wende Yan, Bingchun Jiang, Maochou Liu, Weizhi Lu, Ying Ning, Zhao Wang, and et al. 2021. "Quantification of the Environmental Impacts of Highway Construction Using Remote Sensing Approach" Remote Sensing 13, no. 7: 1340. https://doi.org/10.3390/rs13071340
APA StyleFeng, S., Liu, S., Jing, L., Zhu, Y., Yan, W., Jiang, B., Liu, M., Lu, W., Ning, Y., Wang, Z., Li, Q., & Jia, J. (2021). Quantification of the Environmental Impacts of Highway Construction Using Remote Sensing Approach. Remote Sensing, 13(7), 1340. https://doi.org/10.3390/rs13071340