Detection of Leek Rust Disease under Field Conditions Using Hyperspectral Proximal Sensing and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Field
2.2. Visual Assessment of Rust Disease Severity
2.3. Sensor Setup
2.4. Hyperspectral Library Building
2.5. Preprocessing and Model Selection
- Changing the wavebands used as model input based on (a) manual selection of wavebands and (b) applying wavelength selection algorithms
- Changing the smoothing window
- Changing and combining classifiers
- Including first and/or second derivative data in the model input
- Including ratios and indices in the model input
- Performing principle component analysis (PCA) and/or linear discriminant analysis as a dimensionality reduction step
- Training label manipulation by changing labels in the hyperspectral library of problematic spectra, intentionally feeding ‘falsely’ labelled data to the model to increase model performance (see Section 2.6, Final Disease Detection Workflow) [49]
2.6. Final Disease Detection Workflow
3. Results
3.1. Data Exploration
3.2. Preprocessing and Model Selection
3.2.1. Preprocessing
- Feature selection: feature selection algorithms did not yield better modelling results, due to the high correlation between neighbouring bands. However, the adapted feature selection strategy where the algorithm was used to select the best waveband for each region of the spectrum, and then the best wavebands overall, also did not yield better results than visual waveband selection based on the spectra in Figure 5 and Figure 6.
- Changing the smoothing window: the smoothing window was important, but did not greatly affect model performance within a given range. During the iterations of the preprocessing optimization (Figure 4), it became clear that any change in smoothing window within the range of 21 to 55 did not greatly alter the classification results.
- Including ratios and indices in the model input: several indices were tested, including normalized difference vegetation index, the red edge position index and variations on the ratio vegetation index [55,56]. None of these indices seemed to significantly improve model classification compared to the use of single wavebands, even when these indices were combined with other indices or with individual wavebands.
- Performing PCA and/or LDA as a dimensionality reduction step.
- Changing the wavebands used as model input based on manual selection of wavebands.
- Including first and/or second derivative data in the model input.
- Training label manipulation by changing labels in the hyperspectral library of problematic spectra, intentionally feeding ‘falsely’ labelled data to the model.
- Changing and combining classifiers.
3.2.2. Model Diagnostics
3.2.3. Classification of Unlabelled Data
4. Discussion
4.1. Measurement Setup
4.2. Preprocessing and Model Selection
4.3. Optimal Wavebands for Detecting Leek Rust Disease
4.4. Challenges and Future Perspective
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohnenkamp, D.; Behmann, J.; Mahlein, A.-K. In-Field Detection of Yellow Rust in Wheat on the Ground Canopy and UAV Scale. Remote Sens. 2019, 11, 2495. [Google Scholar] [CrossRef] [Green Version]
- Agrios, G. Plant Pathology, 5th ed.; Academic Press: San Diego, CA, USA, 2005. [Google Scholar] [CrossRef]
- Whetton, R.L.; Waine, T.W.; Mouazen, A.M. Hyperspectral measurements of yellow rust and fusarium head blight in cereal crops: Part 2: On-line field measurement. Biosyst. Eng. 2018, 167, 144–158. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- De Clercq, H.; Peusens, D.; Roldan-Ruiz, I.; Van Bockstaele, E. Causal relationships between inbreeding, seed characteristics and plant performance in leek (Allium porrum L.). Euphytica 2003, 134, 103–115. [Google Scholar] [CrossRef]
- Smilde, W.; Van Nes, M.; Reinink, K.; Kik, C. Genetical studies of resistance to Phytophthora porri in Allium porrum, using a new early screening method. Euphytica 1997, 93, 345–352. [Google Scholar] [CrossRef]
- Declercq, B.; Van Buyten, E.; Claeys, S.; Cap, N.; De Nies, J.; Pollet, S.; Höfte, M. Molecular characterization of Phytophthora porri and closely related species and their pathogenicity on leek (Allium porrum). Eur. J. Plant Pathol. 2010, 127, 341–350. [Google Scholar] [CrossRef]
- Gilles, T.; Kennedy, R. Effects of an Interaction Between Inoculum Density and Temperature on Germination of Puccinia allii Urediniospores and Leek Rust Progress. Phytopathology 2003, 93, 413–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruycker, E.D.; Reyke, L.D.; Plovie, N.; Callens, D.; Roosterd, L.D.; Cardoen, I.; Delobelle, I.; Tierry, L.; van de Steene, F.; Hofte, M. Ziekten En Plagen in Prei; 2004; p. 23. [Google Scholar]
- Cap, N.; De Rooster, L.; Darwich, S. Roestbestrijding in Prei. Proeftuin Nieuws, 3 July 2014; 32–35. [Google Scholar]
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- de Jong, P.D.; Daamen, R.A.; Rabbinge, R. The reduction of chemical control of leek rust, a simulation study. Eur. J. Plant Pathol. 1995, 101, 687–693. [Google Scholar] [CrossRef] [Green Version]
- Taylor, G.A.; Torres, H.B.; Ruiz, F.; Marin, M.N.; Chaves, D.M.; Arboleda, L.T.; Parra, C.; Carrillo, H.; Mouazen, A.M. pH Measurement IoT System for Precision Agriculture Applications. IEEE Lat. Am. Trans. 2019, 17, 823–832. [Google Scholar] [CrossRef]
- Mahlein, A.-K. Plant Disease Detection by Imaging Sensors—Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Dis. 2016, 100, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouazen, A.M. Delineation of Soil Management Zones for Variable-Rate Fertilization. Adv. Agron. 2017, 143, 175–245. [Google Scholar] [CrossRef]
- Behmann, J.; Mahlein, A.-K.; Rumpf, T.; Römer, C.; Plümer, L. A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precis. Agric. 2015, 16, 239–260. [Google Scholar] [CrossRef]
- Grisham, M.P.; Johnson, R.M.; Zimba, P.V. Detecting Sugarcane yellow leaf virus infection in asymptomatic leaves with hyperspectral remote sensing and associated leaf pigment changes. J. Virol. Methods 2010, 167, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Pu, R.; Huang, W.; Yuan, L.; Luo, J.; Wang, J. Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses. Field Crop. Res. 2012, 134, 165–174. [Google Scholar] [CrossRef]
- Clarkson, J.P.; Kennedy, R.; Phelps, K.; Davies, J.; Bowtell, J. Quantifying the effect of reduced doses of propiconazole (Tilt) and initial disease incidence on leek rust development. Plant Pathol. 1997, 46, 952–963. [Google Scholar] [CrossRef]
- De Jong, P. Disease Management of Leek Rust, a Study at Field, Farm and Regional Level. 1995. Available online: https://edepot.wur.nl/206535 (accessed on 31 March 2021).
- Doherty, M.A.; Preece, T. Bacillus cereus prevents germination of uredospores of Puccinia allii and the development of rust disease of leek, Allium porrum, in controlled environments. Physiol. Plant Pathol. 1978, 12, 123–132. [Google Scholar] [CrossRef]
- Huang, J.W. Control of Chinese Leek Rust with a Plant Nutrient Formulation. Plant Pathol. Bull. 1994, 3, 9–17. [Google Scholar]
- Jennings, D.M.; Ford-Lloyd, B.; Butler, G.M. Effect of plant age, leaf position and leaf segment on infection of leek by leek rust, Puccinia allii. Plant Pathol. 1990, 39, 591–597. [Google Scholar] [CrossRef]
- Jong, P.D.; Bree, J. Analysis of the spatial distribution of rust-infected leek plants with the Black-White join-count statistic. Eur. J. Plant Pathol. 1995, 101, 133–137. [Google Scholar] [CrossRef]
- Roberts, A.M.; Walters, D.R. Nitrogen assimilation and metabolism in rusted leek leaves. Physiol. Mol. Plant Pathol. 1988, 32, 229–235. [Google Scholar] [CrossRef]
- Roberts, A.M.; Walters, D.R. Shoot: Root interrelationships in leeks infected with the rust, Puccinia allii Rud.: Growth and nutrient relations. New Phytol. 1989, 111, 223–228. [Google Scholar] [CrossRef]
- Smith, B.M.; Crowther, T.C.; Clarkson, J.P.; Trueman, L. Partial resistance to rust (Puccinia allii) in cultivated leek (Allium ampeloprasum ssp. porrum): Estimation and improvement. Ann. Appl. Biol. 2000, 137, 43–51. [Google Scholar] [CrossRef]
- Theunissen, J.; Schelling, G. Pest and disease management by intercropping: Suppression of thrips and rust in leek. Int. J. Pest Manag. 1996, 42, 227–234. [Google Scholar] [CrossRef]
- Guo, A.; Huang, W.; Ye, H.; Dong, Y.; Ma, H.; Ren, Y.; Ruan, C. Identification of Wheat Yellow Rust Using Spectral and Texture Features of Hyperspectral Images. Remote Sens. 2020, 12, 1419. [Google Scholar] [CrossRef]
- Whetton, R.L.; Waine, T.W.; Mouazen, A.M. Optimising configuration of a hyperspectral imager for on-line field measurement of wheat canopy. Biosyst. Eng. 2017, 155, 84–95. [Google Scholar] [CrossRef]
- Apan, A.; Held, A.; Phinn, S.; Markley, J. Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery. Int. J. Remote Sens. 2004, 25, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Lamb, D.W.; Niu, Z.; Zhang, Y.; Liu, L.; Wang, J. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis. Agric. 2007, 8, 187–197. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, L.; Pu, R.; Loraamm, R.W.; Yang, G.; Wang, J. Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat. Comput. Electron. Agric. 2014, 100, 79–87. [Google Scholar] [CrossRef]
- Moshou, D.; Bravo, C.; West, J.; Wahlen, S.; McCartney, A.; Ramon, H. Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks. Comput. Electron. Agric. 2004, 44, 173–188. [Google Scholar] [CrossRef]
- Whetton, R.L.; Hassall, K.L.; Waine, T.W.; Mouazen, A.M. Hyperspectral measurements of yellow rust and fusarium head blight in cereal crops: Part 1: Laboratory study. Biosyst. Eng. 2018, 166, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Paulus, S.; Mahlein, A.-K. Technical workflows for hyperspectral plant image assessment and processing on the greenhouse and laboratory scale. GigaScience 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Mahlein, A.-K.; Kuska, M.; Behmann, J.; Polder, G.; Walter, A. Hyperspectral Sensors and Imaging Technologies in Phytopathology: State of the Art. Annu. Rev. Phytopathol. 2018, 56, 535–558. [Google Scholar] [CrossRef]
- Mishra, P.; Asaari, M.S.M.; Herrero-Langreo, A.; Lohumi, S.; Diezma, B.; Scheunders, P. Close range hyperspectral imaging of plants: A review. Biosyst. Eng. 2017, 164, 49–67. [Google Scholar] [CrossRef]
- Appeltans, S.; Guerrero, A.; Nawar, S.; Pieters, J.; Mouazen, A. Practical Recommendations for Hyperspectral and Thermal Proximal Disease Sensing in Potato and Leek Fields. Remote. Sens. 2020, 12, 1939. [Google Scholar] [CrossRef]
- Xie, C.; Shao, Y.; Li, X.; He, Y. Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging. Sci. Rep. 2015, 5, 16564. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Rasti, B.; Scheunders, P.; Ghamisi, P.; Licciardi, G.; Chanussot, J. Noise Reduction in Hyperspectral Imagery: Overview and Application. Remote Sens. 2018, 10, 482. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. JMLR 2011, 12, 2825–2830. [Google Scholar]
- Abdulridha, J.; Ehsani, R.; De Castro, A. Detection and Differentiation between Laurel Wilt Disease, Phytophthora Disease, and Salinity Damage Using a Hyperspectral Sensing Technique. Agriculture 2016, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Rinnan, Å.; Berg, F.V.D.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Fisk, I.D. Near-Infrared spectroscopy and hyperspectral imaging for non-destructive quality assessment of cereal grains. Appl. Spectrosc. Rev. 2018, 53, 667–687. [Google Scholar] [CrossRef] [Green Version]
- Lowe, A.; Harrison, N.; French, A.P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 2017, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 2010, 72, 1–13. [Google Scholar] [CrossRef]
- Heaton, J. An Empirical Analysis of Feature Engineering for Predictive Modeling. In Proceedings of the Conference Proceedings-IEEE SOUTH-EASTCON, Norfolk, VA, USA, 30 March–3 April 2016. [Google Scholar] [CrossRef] [Green Version]
- Serneels, S.; Lambin, E.F. Proximate causes of land-use change in Narok District, Kenya: A spatial statistical model. Agric. Ecosyst. Environ. 2001, 85, 65–81. [Google Scholar] [CrossRef] [Green Version]
- Murchie, E.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malacara, D. Color vision and colorimetry: Theory and applications. Color Res. Appl. 2002, 28, 77–78. [Google Scholar] [CrossRef]
- Hunt, E.R.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.; Perry, E.M.; Akhmedov, B. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Guo, L.; Chen, S.; Linderman, M.; Mouazen, A.M.; Yu, L.; Chen, Y.; Liu, Y.; Liu, Y.; Cheng, H.; et al. Exploring the potential of airborne hyperspectral image for estimating topsoil organic carbon: Effects of fractional-order derivative and optimal band combination algorithm. Geoderma 2020, 365. [Google Scholar] [CrossRef]
- Curran, P.J.; Dungan, J.L.; Gholz, H.L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol. 1990, 7, 33–48. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, R.; Tsuda, S.; Tamiya, S.; Itoh, A.; Nishiwaki, K.; Murakami, N.; Shibuya, Y.; Hirafuji, M.; Nuske, S. Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosyst. Eng. 2016, 148, 1–10. [Google Scholar] [CrossRef]
- Bravo, C.; Moshou, D.; Oberti, R.; West, J.S.; McCartney, A.; Bodria, L.; Ramon, H.; Orberti, R.; West, J.S.; McCartney, A.; et al. Foliar Disease Detection in the Field Using Optical Sensor Fusion. Agric. Eng. Int. CIGR J. 2004, VI, 8. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. 1974; NASA/GSFC Type III Final Report, Greenbelt, Md, 371. [Google Scholar]
- Gómez-Chova, L.; Alonso, L.; Guanter, L.; Valls, G.C.-; Calpe, J.; Moreno, J. Correction of systematic spatial noise in push-broom hyperspectral sensors: Application to CHRIS/PROBA images. Appl. Opt. 2008, 47, F46–F60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauriegel, E.; Giebel, A.; Geyer, M.; Schmidt, U.; Herppich, W. Early detection of Fusarium infection in wheat using hyper-spectral imaging. Comput. Electron. Agric. 2011, 75, 304–312. [Google Scholar] [CrossRef]
- Krishna, G.; Sahoo, R.N.; Pargal, S.; Gupta, V.K.; Sinha, P.; Bhagat, S.; Saharan, M.; Singh, R.; Chattopadhyay, C. Assessing Wheat Yellow Rust Disease through Hyperspectral Remote Sensing. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2014, XL8, 1413–1416. [Google Scholar] [CrossRef] [Green Version]
Measurement Description | Bottelare | PCG | |
---|---|---|---|
Measurement days | 12 days: weekly from March 2019–May 2019 | 2 days: 19 December 2018 and 14 February 2019 | |
#plots scanned | 16 | 2 | |
Total # scans | 384: 2 scans per plot, taken at 12 timepoints | 12: 3 scans per plot, taken at two timepoints | |
Total # of plants scanned | 8640: 20 plants per scan | 120: 10 plants per scan | |
Disease pressure at the time of measurement, scored following the EPPO PP 1/120(2) Guideline | Disease pressure too low to measure (only a few plants per plot showing mild symptoms) | One plot at 10.32 % leaf surface area infected (highly diseased) One plot at 0.84 % leaf surface area infected (early disease) | |
Infection Statistics | Bottelare | PCG (Low Infection) | PCG (High Infection) |
Mean leaf are infected (%) | Under detection limit | 0.84 | 10.32 |
Standard deviation of infected leaf area | Under detection limit | 0.62 | 4.60 |
Training Dataset | |
---|---|
Rust | PCG experimental field, 3 locations from the heavy disease pressure plot, measured in December |
Healthy | Bottelare, 1 plot, measured PI 50 * |
Weeds | Bottelare,1 plot, measured PI 30 |
Soil | PCG experimental field, 1 plot, measured in December |
Healthy (R) | Rust (R) | Weeds (R) | Soil (R) | |
---|---|---|---|---|
Healthy (P) | 2091 | 150 | 662 | 0 |
Rust (P) | 0 | 0 | 0 | 0 |
Weeds (P) | 1183 | 892 | 4085 | 0 |
Soil (P) | 0 | 68 | 668 | 3226 |
Precision | 81.4% | True pos. rate | 100% | |
Accuracy | 94.3% | False pos. rate | 7.5% | |
PLR * | 13.3138 | False neg. rate | 0% | |
F1 score | 0.8976 | True neg. rate | 92.5% |
Healthy (R) | Rust (R) | Weeds (R) | |
---|---|---|---|
Healthy (P) | 3163 | 0 | 1127 |
Rust (P) | 0 | 932 | 9 |
Weeds (P) | 62 | 172 | 4304 |
Precision (%) | 99% | True pos. rate | 84.4% |
Accuracy (%) | 98.1% | False pos. rate | 0.10% |
PLR * | 812.780 | False neg. rate | 15.58% |
F1 score | 0.9115 | True neg. rate | 99.90% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Appeltans, S.; Pieters, J.G.; Mouazen, A.M. Detection of Leek Rust Disease under Field Conditions Using Hyperspectral Proximal Sensing and Machine Learning. Remote Sens. 2021, 13, 1341. https://doi.org/10.3390/rs13071341
Appeltans S, Pieters JG, Mouazen AM. Detection of Leek Rust Disease under Field Conditions Using Hyperspectral Proximal Sensing and Machine Learning. Remote Sensing. 2021; 13(7):1341. https://doi.org/10.3390/rs13071341
Chicago/Turabian StyleAppeltans, Simon, Jan G. Pieters, and Abdul M. Mouazen. 2021. "Detection of Leek Rust Disease under Field Conditions Using Hyperspectral Proximal Sensing and Machine Learning" Remote Sensing 13, no. 7: 1341. https://doi.org/10.3390/rs13071341
APA StyleAppeltans, S., Pieters, J. G., & Mouazen, A. M. (2021). Detection of Leek Rust Disease under Field Conditions Using Hyperspectral Proximal Sensing and Machine Learning. Remote Sensing, 13(7), 1341. https://doi.org/10.3390/rs13071341