Responses of Summer Upwelling to Recent Climate Changes in the Taiwan Strait
Abstract
:1. Introduction
2. Materials and Methods
2.1. SST Data
2.2. Characterization of Upwelling Based on SST and Wind
2.3. Wind Data and Ekman Transport
2.4. Other Data
2.5. Statistical Method
3. Results
4. Discussion
4.1. Changes of Upwelling Intensity
4.2. Difference of Upwelling Systems between PTU, DSU, and TBU
4.3. Relationship with Canonical ENSO and ENSO Modoki
4.4. Impacts on SST
4.5. Implications for the Upwelling Ecosystem
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chavez, F.; Pennington, J.; Castro, C.; Ryan, J.; Michisaki, R.; Schlining, B.; Walz, P.; Buck, K.; McFadyen, A.; Collins, C. Biological and chemical consequences of the 1997–1998 el niño in central california waters. Prog. Oceanogr. 2002, 54, 205–232. [Google Scholar] [CrossRef]
- Bakun, A.; Field, D.B.; Redondo-Rodriguez, A.; Weeks, S.J. Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems. J. Glob. Chang. Biol. 2010, 16, 1213–1228. [Google Scholar] [CrossRef]
- Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 1990, 247, 198–201. [Google Scholar] [CrossRef] [Green Version]
- McGregor, H.; Dima, M.; Fischer, H.W.; Mulitza, S. Rapid 20th-century increase in coastal upwelling off northwest africa. Science 2007, 315, 637–639. [Google Scholar] [CrossRef]
- Sydeman, W.; García-Reyes, M.; Schoeman, D.; Rykaczewski, R.; Thompson, S.; Black, B.A.; Bograd, S. Climate change and wind intensification in coastal upwelling ecosystems. Science 2014, 345, 77–80. [Google Scholar] [CrossRef]
- Sousa, M.C.; Ribeiro, A.; Des, M.; Gomez-Gesteira, M.; de Castro, M.; Dias, J.M. Nw iberian peninsula coastal upwelling future weakening: Competition between wind intensification and surface heating. Sci. Total. Environ. 2020, 703, 134808. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Gouhier, T.C.; Menge, B.A.; Ganguly, A.R. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 2015, 518, 390–394. [Google Scholar] [CrossRef]
- Rykaczewski, R.R.; Dunne, J.P.; Sydeman, W.J.; García-Reyes, M.; Black, B.A.; Bograd, S.J. Poleward displacement of coastal upwelling-favorable winds in the ocean’s eastern boundary currents through the 21st century. Geophys. Res. Lett. 2015, 42, 6424–6431. [Google Scholar] [CrossRef]
- Varela, R.; Álvarez, I.; Santos, F.; DeCastro, M.; Gómez-Gesteira, M. Has upwelling strengthened along worldwide coasts over 1982–2010? Sci. Rep. 2015, 5, 1–15. [Google Scholar] [CrossRef]
- Relvas, P.; Luís, J.; Santos, A.M.P. Importance of the mesoscale in the decadal changes observed in the northern canary upwelling system. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, Z.; Shen, C.C.; Zhou, R.; Song, S.; Shi, Z.; Chen, T.; Wei, G.; DeLong, K.L. Recent 121-year variability of western boundary upwelling in the northern south china sea. Geophys. Res. Lett. 2013, 40, 3180–3183. [Google Scholar] [CrossRef]
- Jan, S.; Wang, J.; Chern, C.-S.; Chao, S.-Y. Seasonal variation of the circulation in the taiwan strait. J. Mar. Syst. 2002, 35, 249–268. [Google Scholar] [CrossRef]
- Hong, H.S.; Chai, F.; Zhang, C.Y.; Huang, B.Q.; Jiang, Y.W.; Hu, J.Y. An overview of physical and biogeochemical processes and ecosystem dynamics in the taiwan strait. Cont. Shelf Res. 2011, 31, S3–S12. [Google Scholar] [CrossRef]
- Hu, J.Y.; Kawamura, H.; Hong, H.S.; Pan, W.R. A review of research on the upwelling in the taiwan strait. Bull. Mar. Sci. 2003, 73, 605–628. [Google Scholar]
- Tang, D.; Kester, D.R.; Ni, I.H.; Kawamura, H.; Hong, H. Upwelling in the taiwan strait during the summer monsoon detected by satellite and shipboard measurements. Remote Sens. Environ. 2002, 83, 457–471. [Google Scholar] [CrossRef]
- Jiang, Y.; Chai, F.; Wan, Z.; Zhang, X.; Hong, H. Characteristics and mechanisms of the upwelling in the southern taiwan strait: A three-dimensional numerical model study. J. Oceanogr. 2011, 67, 699–708. [Google Scholar] [CrossRef]
- Hu, J.-y.; Kawamura, H.; Hong, H.-s.; Suetsugu, M.; Lin, M.-s. Hydrographic and satellite observations of summertime upwelling in the taiwan strait: A preliminary description. Terr. Atmos. Ocean. Sci. 2001, 12, 415–430. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Yan, X.H.; Jiang, Y. Coastal cape and canyon effects on wind-driven upwelling in northern taiwan strait. J. Geophys. Res. Ocean. 2014, 119, 4605–4625. [Google Scholar] [CrossRef]
- Cai, W.; Lennon, G. Upwelling in the taiwan strait in response to wind stress, ocean circulation and topography. Estuar. Coast. Shelf Sci. 1988, 26, 15–31. [Google Scholar]
- Huang, B.; Xiang, W.; Zeng, X.; Chiang, K.-P.; Tian, H.; Hu, J.; Lan, W.; Hong, H. Phytoplankton growth and microzooplankton grazing in a subtropical coastal upwelling system in the taiwan strait. Cont. Shelf Res. 2011, 31, S48–S56. [Google Scholar] [CrossRef]
- Xiao, H. Studies of coastal upwelling in western taiwan strait. J. Oceanogr. Taiwan Strait 1988, 7, 135–142. [Google Scholar]
- Wang, Y.; Kang, J.-H.; Ye, Y.-Y.; Lin, G.-M.; Yang, Q.-L.; Lin, M. Phytoplankton community and environmental correlates in a coastal upwelling zone along western taiwan strait. J. Mar. Syst. 2016, 154, 252–263. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Hong, H.S.; Ru, C.M.; Shang, S.L. Evolution of a coastal upwelling event during summer 2004 in the southern taiwan strait. Acta Oceanol. Sin. 2011, 30, 1–6. [Google Scholar] [CrossRef]
- Shang, S.L.; Zhang, C.Y.; Hong, H.S.; Shang, S.P.; Chai, F. Short-term variability of chlorophyll associated with upwelling events in the taiwan strait during the southwest monsoon of 1998. Deep Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 1113–1127. [Google Scholar] [CrossRef]
- Tang, D.L.; Kawamura, H.; Guan, L. Long-time observation of annual variation of taiwan strait upwelling in summer season. Adv. Space Res. 2004, 33, 307–312. [Google Scholar] [CrossRef]
- Hong, H.; Zhang, C.; Shang, S.; Huang, B.; Li, Y.; Li, X.; Zhang, S. Interannual variability of summer coastal upwelling in the taiwan strait. Cont. Shelf Res. 2009, 29, 479–484. [Google Scholar] [CrossRef]
- Belkin, I.M.; Lee, M.A. Long-term variability of sea surface temperature in taiwan strait. Clim. Chang. 2014, 124, 821–834. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Huang, Y.; Ding, W. Enhancement of zhe-min coastal water in the taiwan strait in winter. J. Oceanogr. 2020, 76, 197–209. [Google Scholar] [CrossRef]
- Jacox, M.G.; Fiechter, J.; Moore, A.M.; Edwards, C.A. Enso and the c alifornia c urrent coastal upwelling response. J. Geophys. Res. Ocean. 2015, 120, 1691–1702. [Google Scholar] [CrossRef]
- Roy, C.; Reason, C. Enso related modulation of coastal upwelling in the eastern atlantic. Prog. Oceanogr. 2001, 49, 245–255. [Google Scholar] [CrossRef]
- Wolter, K.; Timlin, M.S. Measuring the strength of enso events—how does 1997/98 rank? Weather 1998, 53, 315–324. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El niño modoki and its possible teleconnection. J. Geophys. Res. Ocean. 2007, 112, C11. [Google Scholar] [CrossRef]
- Shang, S.; Zhang, C.; Hong, H.; Liu, Q.; Wong, G.T.F.; Hu, C.; Huang, B. Hydrographic and biological changes in the taiwan strait during the 1997–1998 el nino winter. Geophys. Res. Lett. 2005, 32, 4. [Google Scholar] [CrossRef] [Green Version]
- Kuo, N.J.; Ho, C.R. Enso effect on the sea surface wind and sea surface temperature in the taiwan strait. Geophys. Res. Lett 2004, 31, L13309. [Google Scholar] [CrossRef]
- Saha, K.; Zhao, X.; Zhang, H.; Casey, K.; Zhang, D.; Baker-Yeboah, S.; Kilpatrick, K.; Evans, R.; Ryan, T.; Relph, J. Avhrr Pathfinder Version 5.3 Level 3 Collated (l3c) Global 4km Sea Surface Temperature for 1981-Present; NOAA National Centers for Environmental Information: Washington, DC, USA, 2018. [Google Scholar]
- Qiu, C.; Wang, D.; Kawamura, H.; Guan, L.; Qin, H. Validation of avhrr and tmi-derived sea surface temperature in the northern south china sea. Cont. Shelf Res. 2009, 29, 2358–2366. [Google Scholar] [CrossRef]
- O’Carroll, A.G.; Armstrong, E.M.; Beggs, H.M.; Bouali, M.; Casey, K.S.; Corlett, G.K.; Dash, P.; Donlon, C.J.; Gentemann, C.L.; Høyer, J.L. Observational needs of sea surface temperature. Front. Mar. Sci. 2019, 6, 420. [Google Scholar] [CrossRef]
- Kuo, N.-J.; Zheng, Q.; Ho, C.-R. Satellite observation of upwelling along the western coast of the south china sea. Remote Sens. Environ. 2000, 74, 463–470. [Google Scholar] [CrossRef]
- Pond, S.; Pickard, G.L. Introductory Dynamical Oceanography, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1983. [Google Scholar]
- Trenberth, K.E.; Large, W.G.; Olson, J.G. The mean annual cycle in global ocean wind stress. J. Phys. Oceanogr. 1990, 20, 1742–1760. [Google Scholar] [CrossRef] [Green Version]
- Cropper, T.E.; Hanna, E.; Bigg, G.R. Spatial and temporal seasonal trends in coastal upwelling off northwest africa, 1981–2012. Deep Sea Res. I 2014, 86, 94–111. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.W.; Bhang, K.J.; Park, S.S. Effective visualization for the spatiotemporal trend analysis of the water quality in the nakdong river of korea. Ecol. Inform. 2010, 5, 281–292. [Google Scholar] [CrossRef]
- Cleveland, W.S. Robust locally weighted regression and smoothing scatter plots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Richards, R.P.; Baker, D.B. Trends in water quality in leaseq rivers and streams (northwestern ohio), 1975–1995. J. Environ. Qual. 2002, 31, 90–96. [Google Scholar] [CrossRef]
- Xie, L.; Zong, X.; Yi, X.; Li, M. The interannual variation and long-term trend of qiongdong upwelling. Oceanol. Limnol. Sin. 2016, 47, 43–51. [Google Scholar]
- Yang, S.; Mao, X.; Jiang, W. Interannual variation of coastal upwelling in summer in zhejiang, china. Period. Ocean Univ. China 2020, 50, 1–8. [Google Scholar]
- Pérez, F.F.; Padín, X.A.; Pazos, Y.; Gilcoto, M.; Cabanas, M.; Pardo, P.C.; Doval, M.D.; FARINA-BUSTO, L. Plankton response to weakening of the iberian coastal upwelling. Glob. Chang. Biol. 2010, 16, 1258–1267. [Google Scholar] [CrossRef] [Green Version]
- García-Reyes, M.; Sydeman, W.J.; Schoeman, D.S.; Rykaczewski, R.R.; Black, B.A.; Smit, A.J.; Bograd, S.J. Under pressure: Climate change, upwelling, and eastern boundary upwelling ecosystems. Front. Mar. Sci. 2015, 2, 109. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Chang, C.P.; Fu, C.; Qi, Y.; Robock, A.; Robinson, D.; Zhang, H.m. Steady decline of east asian monsoon winds, 1969–2000: Evidence from direct ground measurements of wind speed. J. Geophys. Res. Atmos. 2006, 111, D24111. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Z.; Yang, S.; Kumar, A.; Zhang, R.; Xue, Y.; Jha, B. Role of thermal condition over asia in the weakening asian summer monsoon under global warming background. J. Clim. 2012, 25, 3431–3436. [Google Scholar] [CrossRef]
- Wang, D.; Shu, Y.; Xue, H.; Hu, J.; Chen, J.; Zhuang, W.; Zu, T.; Xu, J. Relative contributions of local wind and topography to the coastal upwelling intensity in the northern south china sea. J. Geophys. Res. Ocean. 2014, 119, 2550–2567. [Google Scholar] [CrossRef]
- Zhang, W.Z.; Shi, F.; Hong, H.S.; Shang, S.P.; Kirby, J.T. Tide-surge interaction intensified by the taiwan strait. J. Geophys. Res. Ocean. 2010, 115, C6. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Wu, R.; Fu, X. Pacific–east asian teleconnection: How does enso affect east asian climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- Pan, J.; Yan, X.-H.; Zheng, Q.; Liu, W.T.; Klemas, V.V. Interpretation of scatterometer ocean surface wind vector eofs over the northwestern pacific. Remote Sens. Environ. 2003, 84, 53–68. [Google Scholar] [CrossRef]
- Li, N.; Shang, S.P.; Shang, S.L.; Zhang, C.Y. On the consistency in variations of the south china sea warm pool as revealed by three sea surface temperature datasets. Remote Sens. Environ. 2007, 109, 118–125. [Google Scholar] [CrossRef]
- Chen, Z.; Wen, Z.; Wu, R.; Zhao, P.; Cao, J. Influence of two types of el niños on the east asian climate during boreal summer: A numerical study. Clim. Dyn. 2014, 43, 469–481. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, S. Impacts of different types of el niño on the east asian climate: Focus on enso cycles. J. Clim. 2012, 25, 7702–7722. [Google Scholar] [CrossRef]
- Weng, H.; Ashok, K.; Behera, S.K.; Rao, S.A.; Yamagata, T. Impacts of recent el niño modoki on dry/wet conditions in the pacific rim during boreal summer. Clim. Dyn. 2007, 29, 113–129. [Google Scholar] [CrossRef]
- Feng, J.; Li, J. Influence of el niño modoki on spring rainfall over south china. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Yeh, S.-W.; Kug, J.-S.; Dewitte, B.; Kwon, M.-H.; Kirtman, B.P.; Jin, F.-F.J.N. El niño in a changing climate. Nature 2009, 461, 511–514. [Google Scholar] [CrossRef]
- Varela, R.; Lima, F.P.; Seabra, R.; Meneghesso, C.; Gómez-Gesteira, M. Coastal warming and wind-driven upwelling: A global analysis. Sci. Total. Environ. 2018, 639, 1501–1511. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.; Gómez-Gesteira, M.; Varela, R.; Ruiz-Ochoa, M.; Días, J.M. Influence of upwelling on sst trends in la guajira system. J. Geophys. Res. Ocean. 2016, 121, 2469–2480. [Google Scholar] [CrossRef] [Green Version]
- Casey, K.S.; Cornillon, P. Global and regional sea-surface temperature trends. J. Clim. 2001, 14, 3801–3818. [Google Scholar] [CrossRef] [Green Version]
- Liao, E.H.; Lu, W.F.; Yan, X.H.; Jiang, Y.W.; Kidwell, A. The coastal ocean response to the global warming acceleration and hiatus. Sci. Rep. 2015, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.; de Castro, M.; Gómez-Gesteira, M.; Álvarez, I. Differences in coastal and oceanic sst warming rates along the canary upwelling ecosystem from 1982 to 2010. Cont. Shelf Res. 2012, 47, 1–6. [Google Scholar] [CrossRef]
- Sousa, M.C.; Alvarez, I.; de Castro, M.; Gomez-Gesteira, M.; Dias, J.M. Seasonality of coastal upwelling trends under future warming scenarios along the southern limit of the canary upwelling system. Prog. Oceanogr. 2017, 153, 16–23. [Google Scholar] [CrossRef]
- Arellano, B.; Rivas, D. Coastal upwelling will intensify along the baja california coast under climate change by mid-21st century: Insights from a gcm-nested physical-npzd coupled numerical ocean model. J. Mar. Syst. 2019, 199, 103207. [Google Scholar] [CrossRef]
- Seabra, R.; Varela, R.; Santos, A.; Gómez-Gesteira, M.; Meneghesso, C.; Wethey, D.; Lima, F. Reduced nearshore warming associated with eastern boundary upwelling systems. Front. Mar. Sci. 2019, 6, 104. [Google Scholar] [CrossRef] [Green Version]
- Xiu, P.; Chai, F.; Curchitser, E.N.; Castruccio, F.S. Future changes in coastal upwelling ecosystems with global warming: The case of the california current system. Sci. Rep. 2018, 8, 2866. [Google Scholar] [CrossRef]
- Di Lorenzo, E. The future of coastal ocean upwelling. Nature 2015, 518, 310–311. [Google Scholar] [CrossRef]
- Miranda, P.; Alves, J.; Serra, N. Climate change and upwelling: Response of iberian upwelling to atmospheric forcing in a regional climate scenario. Clim. Dyn. 2013, 40, 2813–2824. [Google Scholar] [CrossRef]
- Chavez, F.P.; Messié, M. A comparison of eastern boundary upwelling ecosystems. Prog. Oceanogr. 2009, 83, 80–96. [Google Scholar] [CrossRef]
- Lass, H.-U.; Mohrholz, V.; Nausch, G.; Siegel, H. On phosphate pumping into the surface layer of the eastern gotland basin by upwelling. J. Mar. Syst. 2010, 80, 71–89. [Google Scholar] [CrossRef]
- Dugdale, R.; Wilkerson, F. New production in the upwelling center at point conception, california: Temporal and spatial patterns. Deep Sea Res. Part A Oceanogr. Res. Pap. 1989, 36, 985–1007. [Google Scholar] [CrossRef]
- Largier, J.L. Upwelling bays: How coastal upwelling controls circulation, habitat, and productivity in bays. Annu. Rev. Mar. Sci. 2020, 12, 415–447. [Google Scholar] [CrossRef] [PubMed]
- Mitchell-Innes, B.; Walker, D. Short-term variability during an anchor station study in the southern benguela upwelling system: Phytoplankton production and biomass in relation to specie changes. Prog. Oceanogr. 1991, 28, 65–89. [Google Scholar] [CrossRef]
- Bettencourt, J.H.; Rossi, V.; Renault, L.; Haynes, P.; Morel, Y.; Garçon, V. Effects of upwelling duration and phytoplankton growth regime on dissolved-oxygen levels in an idealized iberian peninsula upwelling system. Nonlinear Process. Geophys. 2020, 27, 277–294. [Google Scholar] [CrossRef]
- Zhong, Y.; Hu, J.; Laws, E.A.; Liu, X.; Chen, J.; Huang, B. Plankton community responses to pulsed upwelling events in the southern taiwan strait. ICES J. Mar. Sci. 2019, 76, 2374–2388. [Google Scholar] [CrossRef]
R | Qcross | |||||
---|---|---|---|---|---|---|
PTU | DSU | TBU | PTU | DSU | TBU | |
1982–1999 | 610.0 ± 480.0 | 559.5 ± 461.3 | 564.8 ± 427.9 | 256 ± 160.3 | 174.4 ± 94.9 | 220.8 ± 87.0 |
2000–2019 | 326.1 ± 250.2 | 433.2 ± 329.3 | 356.6 ± 276.6 | 185.9 ± 84.3 | 149.0 ± 55.3 | 187.1 ± 52.8 |
Change rate | −46% | −22% | −37% | −27% | −14% | −15% |
Lag(month) | R(p) | Qcross(p) |
---|---|---|
0 | −0.205(0.216) | −0.218(0.187) |
−3 | 0.430(<0.01) | 0.331(<0.05) |
−6 | 0.470(<0.01) | 0.330(<0.05) |
−9 | 0.451(<0.01) | 0.312(0.056) |
−12 | 0.526(<0.01) | 0.443(<0.05) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C. Responses of Summer Upwelling to Recent Climate Changes in the Taiwan Strait. Remote Sens. 2021, 13, 1386. https://doi.org/10.3390/rs13071386
Zhang C. Responses of Summer Upwelling to Recent Climate Changes in the Taiwan Strait. Remote Sensing. 2021; 13(7):1386. https://doi.org/10.3390/rs13071386
Chicago/Turabian StyleZhang, Caiyun. 2021. "Responses of Summer Upwelling to Recent Climate Changes in the Taiwan Strait" Remote Sensing 13, no. 7: 1386. https://doi.org/10.3390/rs13071386
APA StyleZhang, C. (2021). Responses of Summer Upwelling to Recent Climate Changes in the Taiwan Strait. Remote Sensing, 13(7), 1386. https://doi.org/10.3390/rs13071386