High-Resolution Mangrove Forests Classification with Machine Learning Using Worldview and UAV Hyperspectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Survey and Data Collection
2.3. Remotely Sensed Data and Preprocessing
2.3.1. UAV Hyperspectral Image
2.3.2. WorldView-2 Images
2.4. Feature Construction and Selection Method
2.5. Classification and Validation
2.5.1. Random Forest Classifier
2.5.2. Support Vector Machine Classifier
2.5.3. Accuracy Assessment
3. Results and Discussion
3.1. Feature Selection and Applicability Analysis
3.2. Accuracy Assessment
3.3. Comparison of Mangrove Mapping and Analysis of Drivers
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Index | Abbreviation | Formula | Reference |
---|---|---|---|
By WV-2 Image | |||
Atmospherically Resistant Vegetation Index 2 | ARVI2 | [64] | |
Blue-wide Dynamic Range Vegetation Index | BWDRVI | [65] | |
Canopy Chlorophyll Content Index | CCCI | [66] | |
Corrected Transformed Vegetation Index | CTVI | [67] | |
Chlorophyll vegetation index | CVI | [68] | |
Differenced Vegetation Index 75 | DVI75 | [69] | |
Differenced Vegetation Index 85 | DVI85 | [69] | |
Differenced Vegetation Index 73 | DVI73 | [70] | |
Enhanced Vegetation Index | EVI | [71] | |
Enhanced Vegetation Index 2 | EVI2 | [72] | |
Green atmospherically resistant vegetation index | GARI | [73] | |
Global Environment Monitoring Index | GEMI | [48] | |
Ideal vegetation index | IVI | [74] | |
Log Ratio | LogR | [75] | |
Normalized Difference Vegetation Index 75 | NDVI75 | [76] | |
Normalized Difference Vegetation Index 85 | NDVI85 | [76] | |
Normalized Difference Vegetation Index 86 | NDVI86 | [77] | |
Normalized Difference Vegetation Index 83 | NDVI83 | [78] | |
Normalized Difference Water Index 37 | NDWI37 | [79] | |
Normalized Difference Water Index 38 | NDWI38 | [79] | |
Simple Ratio 75 | SR75 | [80] | |
Simple Ratio 85 | SR85 | [79] | |
Transformed Soil Adjusted Vegetation Index | TSAVI | [81,82,83] | |
By UAV Hyperspectral Image | |||
Bow Curvature Reflectance Index | BCRI | [84] | |
Carotenoid Reflectance Index 1 | CRI1 | [85] | |
Carotenoid Reflectance Index 2 | CRI2 | [85] | |
Gitelson2 | Gitelson2 | [86] | |
Modified Soil Adjusted Vegetation Index | MSAVI | [87,88] | |
Normalized Difference Vegetation Index 750 | NDVI750 | [77] | |
Normalized Difference Vegetation Index 800 | NDVI800 | [76] | |
Optimized Soil Adjusted Vegetation Index 2 | OSAVI2 | [89] | |
Renormalized Difference Vegetation Index | RDVI | [90] | |
Red Edge Position Index | REP | [91] | |
Reflectance at the inflexion point | Rre | [91] | |
Red‒Green Ratio Index | RG | [92] | |
Photochemical Reflectance Index | PRI | [93] | |
Simple Ratio 750 | SR750 | [94] | |
Simple Ratio 890 | SR890 | [80] |
Textural Features | Formulation | Reference |
---|---|---|
Mean | [36] | |
Variance | [95] | |
Homogeneity | [36] | |
Angular Second Moment | [51] | |
Contrast | [51] | |
Dissimilarity | [51] | |
Entropy | [96] | |
Correlation | [96] |
References
- Pearce, D. Nature’s services: Societal dependence on natural ecosystems. Science 1997, 277, 1783–1784. [Google Scholar] [CrossRef]
- Cummings, C.A.; Todhunter, P.E.; Rundquist, B.C. Using the Hazus-MH flood model to evaluate community relocation as a flood mitigation response to terminal lake flooding: The case of Minnewaukan, North Dakota, USA. Appl. Geogr. 2012, 32, 889–895. [Google Scholar] [CrossRef]
- Heenkenda, M.K.; Joyce, K.E.; Maier, S.W.; de Bruin, S. Quantifying mangrove chlorophyll from high spatial resolution imagery. ISPRS J. Photogramm. 2015, 108, 234–244. [Google Scholar] [CrossRef]
- Edward, B.B.; Sally, D.H.; Chris, K.; Evamaria, W.K.; Adrian, C.S.; Brian, R.S. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Abdel-Aziz, S.M.; Aeron, A.; Garg, N. Microbes in Food and Health, 1st ed.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Marois, D.E.; Mitsch, W.J. Coastal protection from tsunamis and cyclones provided by mangrove wetlands—A review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 71–83. [Google Scholar] [CrossRef]
- Alongi, D.M. The Energetics of Mangrove Forests; Springer International Publishing: Cham, Switzerland, 2009. [Google Scholar]
- Bindu, G.; Rajan, P.; Jishnu, E.S.; Ajith, J.K. Carbon stock assessment of mangroves using remote sensing and geographic information system. Egypt. J. Remote Sens. Space Sci. 2020, 23, 1–9. [Google Scholar] [CrossRef]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- NASA Study Maps the Roots of Global Mangrove Loss. Available online: https://climate.nasa.gov/news/3009/nasa-study-maps-the-roots-of-global-mangrove-loss/ (accessed on 18 August 2020).
- Prakash, H.J.; Samanta, S.; Rani, C.N.; Misra, A.; Giri, S.; Pramanick, N.; Gupta, K.; Datta, M.S.; Chanda, A.; Mukhopadhyay, A.; et al. Mangrove classification using airborne hyperspectral AVIRIS-NG and comparing with other spaceborne hyperspectral and multispectral data. Egypt. J. Remote Sens. Space Sci. 2021, 24, 273–281. [Google Scholar]
- Ivan, V.; Jennifer, L.B.; Joanna, K.Y. Mangrove Forests: One of the World’s Threatened Major Tropical Environments. BioScience 2001, 51, 807–815. [Google Scholar]
- Daniel, A.F.; Kerrylee, R.; Catherine, E.L.; Ken, W.K.; Stuart, E.H.; Shing, Y.L.; Richard, L.; Jurgenne, P.; Anusha, R.; Suhua, S. The State of the World’s Mangrove Forests: Past, Present, and Future. Annu. Rev. Env. Resour. 2019, 44, 89–115. [Google Scholar]
- Jordan, R.C.; Alysa, M.D.; Brenna, M.S.; Michael, K.S. Monitoring mangrove forest dynamics in Campeche, Mexico, using Landsat satellite data. Remote Sens. Appl. Soc. Environ. 2018, 9, 60–68. [Google Scholar]
- Lorenzo, E.N.; De Jesus, B.R.J.; Jara, R.S. Assessment of mangrove forest deterioration in Zamboanga Peninsula, Philippines using LANDSAT MSS data. In Proceedings of the Thirteenth International Symposium on Remote Sensing of Environment, Environmental Research Institute of Michigan, Ann Arbor, MI, USA, 23–27 April 1979. [Google Scholar]
- Judd, J.H.E.W. Using Remote Sensing Techniques to Distinguish and Monitor Black Mangrove (Avicennia Germinans). J. Coast. Res. 1989, 5, 737–745. [Google Scholar]
- Holmgren, P.; Thuresson, T. Satellite remote sensing for forestry planning—A review. Scand. J. For. Res. 1998, 13, 90–110. [Google Scholar] [CrossRef]
- Long, B.G.; Skewes, T.D. GIS and remote sensing improves mangrove mapping. In Proceedings of the 7th Australasian Remote Sensing Conference Proceedings, Melbourne, Australia, 1–4 March 1994. [Google Scholar]
- Wang, L.; Silván-Cárdenas, J.L.; Sousa, W.P. Neural Network Classification of Mangrove Species from Multi-seasonal Ikonos Imagery. Photogramm. Eng. Remote Sens. 2008, 74, 921–927. [Google Scholar] [CrossRef]
- Tang, H.; Liu, K.; Zhu, Y.; Wang, S.; Song, S. Mangrove community classification based on worldview-2 image and SVM method. Acta Sci. Nat. Univ. Sunyatseni 2015, 54, 102. [Google Scholar]
- Tian, J.; Wang, L.; Li, X.; Gong, H.; Shi, C.; Zhong, R.; Liu, X. Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 22–31. [Google Scholar] [CrossRef]
- Qiaosi, L.; Frankie, K.K.W.; Tung, F. Classification of Mangrove Species Using Combined WordView-3 and LiDAR Data in Mai Po Nature Reserve, Hong Kong. Remote Sens. 2019, 11, 2114. [Google Scholar]
- Dezhi, W.; Bo, W.; Penghua, Q.; Yanjun, S.; Qinghua, G.; Xincai, W. Artificial Mangrove Species Mapping Using Pléiades-1: An Evaluation of Pixel-Based and Object-Based Classifications with Selected Machine Learning Algorithms. Remote Sens. 2018, 10, 294. [Google Scholar]
- Wang, M.; Cao, W.; Guan, Q.; Wu, G.; Jiang, C.; Yan, Y.; Su, X. Potential of texture metrics derived from high-resolution PLEIADES satellite data for quantifying aboveground carbon of Kandelia candel mangrove forests in Southeast China. Wetl. Ecol. Manag. 2018, 26, 789–803. [Google Scholar] [CrossRef]
- Wang, L.; Sousa, W.P.; Gong, P.; Biging, G.S. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sens. Environ. 2004, 91, 432–440. [Google Scholar] [CrossRef]
- Neukermans, G.; Dahdouh-Guebas, F.J.G.K.; Kairo, J.G.; Koedam, N. Mangrove species and stand mapping in Gazi bay (Kenya) using quickbird satellite imagery. J. Spat. Sci. 2008, 53, 75–86. [Google Scholar] [CrossRef]
- Wang, L.; Sousa, W.P.; Gong, P. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. Int. J. Remote Sens. 2004, 25, 5655–5668. [Google Scholar] [CrossRef]
- Mark, A.B.; Peter, S.; Roel, R.L. Long-term Changes in Plant Communities Influenced by Key Deer Herbivory. Nat. Areas J. 2006, 26, 235–243. [Google Scholar]
- Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z.; et al. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Pham, T.D.; Xia, J.; Baier, G.; Le, N.N.; Yokoya, N. Mangrove Species Mapping Using Sentinel-1 and Sentinel-2 Data in North Vietnam. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar]
- Liu, C.C.; Chen, Y.Y.; Chen, C.W. Application of multi-scale remote sensing imagery to detection and hazard analysis. Nat. Hazards 2013, 65, 2241–2252. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Martín-Torres, F.J.; Kumar, R. UAVs as remote sensing platform in glaciology: Present applications and future prospects. Remote Sens. Environ. 2016, 175, 196–204. [Google Scholar] [CrossRef]
- Claudia, K.; Andrea, B.; Steffen, G.; Tuan, V.Q.; Stefan, D. Remote Sensing of Mangrove Ecosystems: A Review. Remote Sens. 2011, 3, 878–928. [Google Scholar]
- Cao, J.; Leng, W.; Liu, K.; Liu, L.; He, Z.; Zhu, Y. Object-Based Mangrove Species Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface Models. Remote Sens. 2018, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Dennis, C.D.; Steven, E.F.; Monique, G.D. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar]
- Franklin, S.E.; Ahmed, O.S.; Williams, G. Northern Conifer Forest Species Classification Using Multispectral Data Acquired from an Unmanned Aerial Vehicle. Photogramm. Eng. Remote Sens. 2017, 83, 501–507. [Google Scholar] [CrossRef]
- Herbeck, L.S.; Krumme, U.; Andersen, T.R.J.; Jennerjahn, T.C. Decadal trends in mangrove and pond aquaculture cover on Hainan (China since 1966: Mangrove loss, fragmentation and associated biogeochemical changes. Estuar. Coast. Shelf Sci. 2018, 233, 106531. [Google Scholar] [CrossRef]
- Yang, Z.; Xue, Y.; Su, S.; Wang, X.; Lin, Z.; Chen, H. Survey of Plant Community Characteristics in Bamenwan Mangrove of Wenchang City. J. Landsc. Res. 2018, 10, 93–96. [Google Scholar]
- Li, M.S.; Lee, S.Y. Mangroves of China: A brief review. For. Ecol. Manag. 1997, 96, 241–259. [Google Scholar] [CrossRef]
- Qiu, P.; Wang, D.; Zou, X.; Yang, X.; Xie, G.; Xu, S.; Zhong, Z. Finer Resolution Estimation and Mapping of Mangrove Biomass Using UAV LiDAR and WorldView-2 Data. Forests 2019, 10, 871. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Mao, D.; Wang, Z.; Li, L.; Man, W.; Jia, M.; Ren, C.; Zhang, Y. Rapid Invasion of Spartina alterniflora in the Coastal Zone of Mainland China: New Observations from Landsat OLI Images. Remote Sens. 2018, 10, 1933. [Google Scholar] [CrossRef] [Green Version]
- Shridhar, D.J.; Somashekhar, S.V.; Alvarinho, J.L. A Synoptic Review on Deriving Bathymetry Information Using Remote Sensing Technologies: Models, Methods and Comparisons. Adv. Remote Sens. 2015, 4, 147. [Google Scholar]
- Muditha, H.; Karen, J.; Stefan, M.; Renee, B. Mangrove Species Identification: Comparing WorldView-2 with Aerial Photographs. Remote Sens. 2014, 6, 6064–6088. [Google Scholar]
- Deidda, M.; Sanna, G. Pre-processing of high resolution satellite images for sea bottom classification. Eur. J. Remote Sens. 2012, 44, 83–95. [Google Scholar] [CrossRef]
- Ahamed, T.; Tian, L.; Zhang, Y.; Ting, K.C. A review of remote sensing methods for biomass feedstock production. Biomass Bioenergy 2011, 35, 2455–2469. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Govender, M.; Chetty, K.; Bulcock, H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water SA 2007, 33, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Stow, D.A.; Gong, P. Examining the effect of spatial resolution and texture window size on classification accuracy: An urban environment case. Int. J. Remote Sens. 2004, 25, 2177–2192. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, H.; Lin, H.; Fang, C. Textural–Spectral Feature-Based Species Classification of Mangroves in Mai Po Nature Reserve from Worldview-3 Imagery. Remote Sens. 2015, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Darst, B.F.; Malecki, K.C.; Engelman, C.D. Using recursive feature elimination in random forest to account for correlated variables in high dimensional data. BMC Genet. 2018, 19, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leo, B. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar]
- Sveinsson, J.; Joelsson, S.; Benediktsson, J.A. Random Forest Classification of Remote Sensing Data. Signal Image Process. Remote Sens. 2006, 978, 327–338. [Google Scholar]
- Vladimir, C.; Yunqian, M. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17, 113–126. [Google Scholar]
- Qiang, W.; Ding-Xuan, Z. SVM Soft Margin Classifiers: Linear Programming versus Quadratic Programming. Neural Comput. 2005, 17, 1160–1187. [Google Scholar]
- Lien, T.H.P.; Lars, B. Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms. ISPRS J. Photogramm. 2017, 128, 86–97. [Google Scholar]
- Hong, H.; Guo, X.; Hua, Y. Variable selection using Mean Decrease Accuracy and Mean Decrease Gini based on Random Forest. In Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science, Beijing, China, 26–28 August 2016. [Google Scholar]
- Lee, H.; Kim, J.; Jung, S.; Kim, M.; Kim, S. Case Dependent Feature Selection using Mean Decrease Accuracy for Convective Storm Identification. In Proceedings of the 2019 International Conference on Fuzzy Theory and Its Applications, New Taipei City, Taiwan, 7–10 November 2019. [Google Scholar]
- Flores-de-Santiago, F.; Kovacs, J.M.; Flores-Verdugo, F. Seasonal changes in leaf chlorophyll a content and morphology in a sub-tropical mangrove forest of the Mexican Pacific. Mar. Ecol. Prog. Ser. 2012, 444, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Penuelas, J.; Filella, I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci. 1998, 3, 151–156. [Google Scholar] [CrossRef]
- Tatem, A.J.; Lewis, H.G.; Atkinson, P.M.; Nixon, M.S. Super-resolution land cover pattern prediction using a Hopfield neural network. Remote Sens. Environ. 2002, 79, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Hancock, D.W.; Dougherty, C.T. Relationships between Blue- and Red-based Vegetation Indices and Leaf Area and Yield of Alfalfa. Crop Sci. 2007, 47, 2547–2556. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Thompson, T. Coincident detection of crop water stress, nitrogen status, and canopy density using ground based multispectral data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Perry, C.R.; Lautenschlager, L.F. Functional equivalence of spectral vegetation indexes. Remote Sens. Environ. 1984, 14, 169–182. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E. A broad-band leaf chlorophyll estimator at the canopy scale for variable rate nitrogen fertilization. Sustaining the Millenium Development Goals. In Proceedings of the 33th International Symposium on Remote Sensing of Environment, Stresa, Italy, 4–9 May 2009. [Google Scholar]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Tucker, C.J.; Elgin, J.H.; Iii, M.M.; Fan, C.J. Monitoring corn and soybean crop development with hand-held radiometer spectral data. Remote Sens. Environ. 1979, 8, 237–248. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a 2-band enhanced vegetation index without a blue band. Remote Sens Environ. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G.; Engineer, I.O.E.A. TSAVI: A Vegetation Index Which Minimizes Soil Brightness Effects on LAI and APAR Estimation. In Proceedings of the 12th Canadian Symposium on Remote Sensing Symposium, Vancouver, BC, Canada, 10–14 July 1989; pp. 1355–1358. [Google Scholar]
- Krishnan, P.; Alexander, J.D.; Butler, B.J.; Hummel, J.W. Reflectance Technique for Predicting Soil Organic Matter. Soil Sci. Soc. Am. J. 1980, 44, 1282–1285. [Google Scholar] [CrossRef]
- Hope, A.S. Estimation of wheat canopy resistance using combined remotely sensed spectral reflectance and thermal observations. Remote Sens. Environ. 1988, 24, 369–383. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Buschmann, C.; Nagel, E. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int. J. Remote Sens. 1993, 14, 711–722. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Birth, G.S.; Mcvey, G.R. Measuring the Color of Growing Turf with a Reflectance Spectrophotometer. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Huete, A.R.; Post, D.F.; Jackson, R.D. Soil spectral effects on 4-space vegetation discrimination. Remote Sens. Environ. 1984, 15, 155–165. [Google Scholar] [CrossRef]
- Li, S.; He, Y.; Guo, X. Exploration of Loggerhead Shrike Habitats in Grassland National Park of Canada Based on in Situ Measurements and Satellite-Derived Adjusted Transformed Soil-Adjusted Vegetation Index (ATSAVI). Remote Sens. 2013, 5, 432–453. [Google Scholar]
- Jin, X.; Du, J.; Liu, H.; Wang, Z.; Song, K. Remote estimation of soil organic matter content in the Sanjiang Plain, Northest China: The optimal band algorithm versus the GRA-ANN model. Agric. For. Meteorol. 2016, 218, 250–260. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Zur, Y.; Stark, R.; Gritz, U. Non-destructive and remote sensing techniques for estimation of vegetation status. Pap. Nat. 2001, 273, 205–210. [Google Scholar]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- JG, Q.; Chehbouni, A.R.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Envrion. 1994, 48, 119–126. [Google Scholar]
- Main, R.; Cho, M.A.; Mathieu, R.; Kennedy, M.M.O.; Ramoelo, A.; Koch, S. An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS J. Photogramm. Remote Sens. 2011, 66, 751–761. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Cho, M.A.; Sobhan, I.M.; Skidmore, A.K. Estimating fresh grass/herb biomass from HYMAP data using the red-edge position. Remote Sens. Model. Ecosyst. Sustain. 2006, 6289, 629805. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Aparicio, N.; Viliegas, D.; Royo, C.; Casadesus, J.; Araus, J.L. Effect of sensor view angle on the assessment of agronomic traits by ground level hyper-spectral reflectance measurements in durum wheat under contrasting Mediterranean conditions. Int. J. Remote Sens. 2004, 25, 1131–1152. [Google Scholar] [CrossRef]
- Boochs, F.; Kupfer, G.; Dockter, K.; Kühbauch, W. Shape of the red edge as vitality indicator for plants. Int. J. Remote Sens. 1990, 11, 1741–1753. [Google Scholar] [CrossRef]
- Milosevic, M.; Jankovic, D.; Peulic, A. Thermography based breast cancer detection using texture features and minimum variance quantization. EXCLI J. 2014, 13, 1204. [Google Scholar] [PubMed]
- Alharan, A.F.H.; Fatlawi, H.K.; Ali, N.S. A cluster-based feature selection method for image texture classification. Indones. J. Electr. Eng. Comput. Sci. 2019, 14, 1433–1442. [Google Scholar] [CrossRef]
Vegetation Types | Training | Testing | GPS Point | ||
---|---|---|---|---|---|
Samples | Pixels | Samples | Pixels | ||
Bruguiera sexangula (BS) | 66 | 250 | 66 | 100 | 16 |
Sonneratia caseolaris (SC) | 76 | 146 | 76 | 54 | 7 |
Hibiscus tiliaceus Linn. (HL) | 54 | 194 | 54 | 106 | 9 |
Rhizophora apiculata Blume (RB) | 51 | 168 | 51 | 82 | 18 |
Coconut palm (CP) | 40 | 66 | 40 | 34 | 7 |
Impervious surface (IS) | 49 | 150 | 49 | 50 | 6 |
Water | 92 | 267 | 92 | 133 | 10 |
Total | 428 | 1241 | 428 | 559 | 73 |
Parameters | Specification |
---|---|
Weight | 720 g |
FOV | 36.5° |
Physical pixel size | 5.5 μm |
Focal length | 9 mm |
Spectral range | 500‒900 nm |
Bands | 45 |
FWHM | 5‒13 nm |
Power supply | LIPO battery |
Data storage | Flash memory |
Quantized value | 12 bit |
Object Features | UAV Hyperspectral Image | WV-2 Image |
---|---|---|
Spectral bands | 45 Spectral bands | 8 Spectral bands |
The first three bands obtained by PCA | The first three bands obtained by PCA | |
Vegetation indices | BCRI, CRI1, CRI2, Gitelson2, MSAVI, NDVI750, NDVI800, OSAVI2, PRI, RDVI, REP, RG, Rre, SR750, SR890 | ARVI2, BWDRVI, CCCI, CTVI, CVI, DVI75, DVI85, DVI73, EVI, EVI2, GARI, GEMI, IVI, LogR, NDVI75, NDVI85, NDVI83, NDVI86, NDWI37, NDWI38, SR75, SR85, TSAVI |
Textural index | contrast, correlation, dissimilarity, entropy, homogeneity, mean, sm, variance | contrast, correlation, dissimilarity, entropy, homogeneity, mean, sm, variance |
RF | Overall Accuracy: 95.89% | Kappa Coefficient: 0.95 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SVM | Overall Accuracy: 95.35% | Kappa Coefficient: 0.94 | |||||||||||||||
SVM | BS | SC | HL | RB | CP | IS | Water | UA | |||||||||
RF | |||||||||||||||||
BS | 100 | 100 | 0 | 0 | 2 | 2 | 5 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0.93 | 0.96 | |
SC | 0 | 0 | 54 | 51 | 1 | 0 | 1 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0.93 | 0.93 | |
HL | 0 | 0 | 0 | 0 | 101 | 102 | 6 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0.94 | 0.98 | |
RB | 0 | 0 | 0 | 0 | 2 | 2 | 70 | 73 | 1 | 0 | 0 | 0 | 0 | 0 | 0.96 | 0.97 | |
CP | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 2 | 30 | 31 | 0 | 0 | 0 | 0 | 1 | 0.86 | |
IS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 49 | 43 | 1 | 0 | 0.98 | 1.00 | |
Water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 7 | 132 | 133 | 0.99 | 0.94 | |
PA | 1 | 1 | 1 | 0.94 | 0.95 | 0.96 | 0.85 | 0.89 | 0.88 | 0.91 | 0.98 | 0.86 | 0.99 | 1 |
RF | Overall Accuracy: 91.78% | Kappa Coefficient: 0.90 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SVM | Overall Accuracy: 84.93% | Kappa Coefficient: 0.82 | |||||||||||||||
SVM | BS | SC | HL | RB | CP | IS | Water | UA | |||||||||
RF | |||||||||||||||||
BS | 14 | 12 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0.82 | 0.86 | |
SC | 0 | 0 | 7 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | |
HL | 1 | 2 | 0 | 0 | 8 | 8 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0.80 | 0.67 | |
RB | 1 | 2 | 0 | 0 | 0 | 1 | 16 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0.94 | 0.84 | |
CP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 5 | 0 | 0 | 0 | 0 | 1 | 1 | |
IS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 5 | 0 | 1 | 1 | 0.83 | |
Water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 10 | 9 | 1 | 0.90 | |
PA | 0.88 | 0.75 | 1 | 1 | 0.89 | 0.89 | 0.89 | 0.89 | 0.86 | 0.71 | 1 | 0.83 | 1 | 0.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Zhang, L.; Yan, M.; Qi, J.; Fu, T.; Fan, S.; Chen, B. High-Resolution Mangrove Forests Classification with Machine Learning Using Worldview and UAV Hyperspectral Data. Remote Sens. 2021, 13, 1529. https://doi.org/10.3390/rs13081529
Jiang Y, Zhang L, Yan M, Qi J, Fu T, Fan S, Chen B. High-Resolution Mangrove Forests Classification with Machine Learning Using Worldview and UAV Hyperspectral Data. Remote Sensing. 2021; 13(8):1529. https://doi.org/10.3390/rs13081529
Chicago/Turabian StyleJiang, Yufeng, Li Zhang, Min Yan, Jianguo Qi, Tianmeng Fu, Shunxiang Fan, and Bowei Chen. 2021. "High-Resolution Mangrove Forests Classification with Machine Learning Using Worldview and UAV Hyperspectral Data" Remote Sensing 13, no. 8: 1529. https://doi.org/10.3390/rs13081529
APA StyleJiang, Y., Zhang, L., Yan, M., Qi, J., Fu, T., Fan, S., & Chen, B. (2021). High-Resolution Mangrove Forests Classification with Machine Learning Using Worldview and UAV Hyperspectral Data. Remote Sensing, 13(8), 1529. https://doi.org/10.3390/rs13081529