Determination of Venus’ Interior Structure with EnVision
Abstract
:1. Introduction
2. Materials and Methods
2.1. The EnVision Gravity Experiment
2.2. Methodology of Simulations
2.2.1. EnVision Doppler Noise Budget
2.2.2. The EnVision Orbital Motion
2.2.3. Simulations of the Precise Orbit Determination Process
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. EnVision Doppler Noise Budget
Noise Contribution | Ground Station Frequency Stability a | Spacecraft Transponder | Earth’s Troposphere | Interplanetary Plasma | Ground Station Mechanical Noise | Total Root Square Sum (RSS) |
---|---|---|---|---|---|---|
Standard deviation (in mm/s) | 0.003 | 0.024 | 0.022 | 0.027 b (0.104) c | 0.009 d | 0.043 b (0.109) c |
Appendix A.2 Influence of Starting Epoch of Science Phase and Initial Orbital Configuration
Appendix A.3 Venus’ Gravity Field and Interior Structure: Model and Simulation Results
Average Viscosity (Pas.s) | Q | (Degree) | |
---|---|---|---|
1022 | 85 | 0.33 | 0.0034 |
1021 | 50 | 0.58 | 0.0059 |
1020 | 27.5 | 1.04 | 0.0107 |
1019 | 16.25 | 1.76 | 0.0182 |
Mission Duration | |||
---|---|---|---|
Resolution (Accuracy) | 4 Cycles | 5 Cycles | 6 Cycles |
<170 km | 98% | 98.5% | 100% |
<140 km | 4% | 32% | 46% |
<20 mGal | 97.5% | 98.5% | 100% |
<10 mGal | 62% | 83% | 88% |
k2 Love number Tidal phase lag | 0.0014 (0.5%) 0.17° (0.0029 rad) | 0.0012 (0.4%) 0.13° (0.0022 rad) | 0.001 (0.3%) 0.1° (0.0017 rad) |
References
- Ghail, R.; Wilson, C.F.; Widemann, T.; Titov, D.; Bruzzone, L.; Helbert, J.; Vandaele, A.-C.; Marcq, E.; Dumoulin, C.; Rosen-Blatt, P.; et al. EnVision M5 Venus orbiter proposal. In Proceedings of the European Planetary Science Conference-Division Planetary Science Joint Meeting, Geneva, Switzerland, 15–20 September 2019. Abstract#1611-2. [Google Scholar]
- Mocquet, A.; Rosenblatt, P.; Dehant, V.; Verhoeven, O. The deep interior of Venus, Mars and the Earth: A brief review and the need for planetary surface-based measurements. Planet. Space Sci. 2011, 59, 1048–1061. [Google Scholar] [CrossRef]
- Smrekar, S.E.; Davaille, A.; Sotin, C. Venus interior structure and dynamics. Space Sci. Rev. 2018, 214, 34. [Google Scholar] [CrossRef]
- King, S.D. Venus resurfacing constrained by geoid and topography. J. Geophys. Res. Planets 2018, 123, 1041–1060. [Google Scholar] [CrossRef]
- Rolf, T.; Steinberger, B.; Sruthi, U.; Werner, S. Inferences on the mantle viscosity structure and the post-overturn evolutionary state of Venus. Icarus 2018, 313, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Kaula, W.M. Regional gravity fields on Venus from tracking of Magellan cycles 5 and 6. J. Geophys. Res. Space Phys. 1996, 101, 4683–4690. [Google Scholar] [CrossRef]
- Barriot, J.-P.; Valès, N.; Balmino, G.; Rosenblatt, P. A 180th degree and order model of the Venus gravity field from Magellan line of sight residual Doppler data. Geophys. Res. Lett. 1998, 25, 3743–3746. [Google Scholar] [CrossRef]
- Konopliv, A.S.; Sjogren, W.L. Venus Gravity Handbook; JPL Publication 96-2 1996; Jet Propulsion Laboratory: Pasadena, CA, USA, 1996. [Google Scholar]
- Konopliv, A.S.; Banerdt, W.B.; Sjogren, W.L. Venus gravity: 180th degree and order model. Icarus 1999, 139, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Rosenblatt, P.; Bruinsma, S.L.; Müller-Wodarg, I.C.F.; Häusler, B.; Svedhem, H.; Marty, J.C. First ever in situ observations of Venus’ polar upper atmosphere density using the tracking data of the Venus Express Atmospheric Drag Experiment (VExADE). Icarus 2012, 217, 831–838. [Google Scholar] [CrossRef]
- Goossens, S.; Lemoine, F.G.; Rosenblatt, P.; Lebonnois, S.; Mazarico, E. Analysis of Magellan and Venus express tracking data for Venus gravity field. In Proceedings of the 48th Lunar and Planetary Science Conference: The Woodlands, TX, USA, 20–24 March 2017. Abstract#1984. [Google Scholar]
- Anderson, F.S.; Smrekar, S.E. Global mapping of crustal and lithospheric thickness on Venus. J. Geophys. Res. Space Phys. 2006, 111, E08006. [Google Scholar] [CrossRef]
- Konopliv, A.S.; Yoder, C.F. Venusiank2tidal Love number from Magellan and PVO tracking data. Geophys. Res. Lett. 1996, 23, 1857–1860. [Google Scholar] [CrossRef]
- Dumoulin, C.; Tobie, G.; Verhoeven, O.; Rosenblatt, P.; Rambaux, N. Tidal constraints on the interior of Venus. J. Geophys. Res. Planets 2017, 122, 1338–1352. [Google Scholar] [CrossRef]
- James, P.B.; Zuber, M.T.; Phillips, R.J. Crustal thickness and support of topography on Venus. J. Geophys. Res. Planets 2013, 118, 859–875. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Díaz, A.; Ruiz, J.; Kirby, J.F.; Romeo, I.; Tejero, R.; Capote, R. Lithospheric structure of Venus from gravity and topography. Icarus 2015, 260, 215–231. [Google Scholar] [CrossRef] [Green Version]
- Grott, M.; Breuer, D. Implications of large elastic thicknesses for the composition and current thermal state of Mars. Icarus 2009, 201, 540–548. [Google Scholar] [CrossRef] [Green Version]
- Grott, M.; Breuer, D. On the spatial variability of the Martian elastic lithosphere thickness: Evidence for mantle plumes? J. Geophys. Res. Space Phys. 2010, 115, E03005. [Google Scholar] [CrossRef]
- Davaille, A.; Smrekar, S.E.; Tomlinson, S. Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 2017, 10, 349–355. [Google Scholar] [CrossRef]
- Gülcher, A.J.P.; Gerya, T.V.; Montési, L.G.J.; Munch, J. Corona structures driven by plume–lithosphere interactions and evidence for ongoing plume activity on Venus. Nat. Geosci. 2020, 13, 547–554. [Google Scholar] [CrossRef]
- Hoogenboom, T.; Houseman, G.A. Rayleigh-Taylor instability as a mechanism for corona formation on Venus. Icarus 2006, 180, 292–307. [Google Scholar] [CrossRef]
- Hoogenboom, T.; Smrekar, S.E.; Anderson, F.S.; Houseman, G. Admittance survey of type 1 coronae on Venus. J. Geophys. Res. Space Phys. 2004, 109, E03002. [Google Scholar] [CrossRef] [Green Version]
- Balmino, G.; Moynot, B.; Vales, N. Gravity field model of mars in spherical harmonics up to degree and order eighteen. J. Geophys. Res. Space Phys. 1982, 87, 9735–9746. [Google Scholar] [CrossRef]
- Zuber, M.T.; Lemoine, F.G.; Smith, D.E.; Konopliv, A.S.; Smrekar, S.E.; Asmar, S.W. Mars reconnaissance orbiter radio science gravity investigation. J. Geophys. Res. Space Phys. 2007, 112, 1–12. [Google Scholar] [CrossRef]
- Holmes, D.; Thompson, T.; Simpson, R.; Tyler, G.; Dehant, V.; Rosenblatt, P.; Häusler, B.; Pätzold, M.; Goltz, G.; Kahan, D.; et al. The challenges and opportunities for international cooperative radio science; Experience with mars express and venus express missions. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference 18, Honolulu, HI, USA, 18–21 August 2008. [Google Scholar]
- Ho, C.M.; Morabito, D.D.; Woo, R. Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction. Radio Sci. 2008, 43, 1–13. [Google Scholar] [CrossRef]
- Deep Space Network Note 202. Doppler Tracking; DSN 810-005, 202, Rev. C. 2019; Jet Propulsion Laboratory: Pasadena, CA, USA, 2019. [Google Scholar]
- Iess, L.; Di Benedetto, M.; James, N.; Mercolino, M.; Simone, L.; Tortora, P. Astra: Interdisciplinary study on enhancement of the end-to-end accuracy for spacecraft tracking techniques. Acta Astronaut. 2014, 94, 699–707. [Google Scholar] [CrossRef]
- Graziani, A.; Crewell, S.; Elgered, G.; Jarlemark, P.; Löhnert, U.; Martellucci, A.; Mercolino, T.; Rose, J.; Schween, J.; Tortora, P. Media calibration system for deep space missions: Preliminary design and technical aspects. In Proceedings of the 6th ESA In-ternational Workshop on Tracking, Telemetry and Command Systems for Space Applications, Darmstadt, Germany, 10–13 September 2013. [Google Scholar]
- Asmar, S.W.; Armstrong, J.W.; Iess, L.; Tortora, P. Spacecraft doppler tracking: Noise budget and accuracy achievable in precision radio science observations. Radio Sci. 2005, 40, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Notaro, V.; Iess, L.; Armstrong, J.W.; Asmar, S.W. Reducing doppler noise with multi-station tracking: The cassini test case. Acta Astronaut. 2020, 173, 45–52. [Google Scholar] [CrossRef]
- Rosenblatt, P.; Lainey, V.; Le Maistre, S.; Marty, J.C.; Dehant, V.; Pätzold, M.; Van Hoolst, T.; Häusler, B. Accurate Mars express orbits to improve the determination of the mass and ephemeris of the Martian moons. Planet. Space Sci. 2008, 56, 1043–1053. [Google Scholar] [CrossRef]
- Marty, J.C.; Balmino, G.; Duron, J.; Rosenblatt, P.; Le Maistre, S.; Rivoldini, A.; Dehant, V.; Van Hoolst, T. Martian gravity field model and its time variations from MGS and Odyssey data. Planet. Space Sci. 2009, 57, 350–363. [Google Scholar] [CrossRef]
- Konopliv, A.S.; Yoder, C.F.; Standish, E.M.; Yuan, D.-N.; Sjogren, W.L. A global solution for the Mars static and sea-sonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 2006, 182, 23–50. [Google Scholar] [CrossRef]
- Genova, A.; Goossens, S.; Lemoine, F.G.; Mazarico, E.; Neumann, G.A.; Smith, D.E.; Zuber, M.T. Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science. Icarus 2016, 272, 228–245. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, D.D.; Petit, G. (Eds.) IERS Conventions (2003); IERS Technical Note 32; BKG: Frankfurt/Main, Germany, 2004. [Google Scholar]
- Folkner, W.F.; Boggs, D.H.; Williams, J.G. Planetary Ephemeris DE430; IOM 343-R; Jet Propulsion Laboratory: Pasadena, CA, USA, 2013. [Google Scholar]
- Hedin, A.E.; Niemann, H.B.; Kasprzak, W.T.; Seiff, A. Global empirical model of the Venus thermosphere. J. Geophys. Res. Space Phys. 1983, 88, 73–84. [Google Scholar] [CrossRef]
- Pavlis, D.E.; Wimert, J.; McCarthy, J.J. GEODYN II System Description (Vols. 1–5); SGT Inc.: Greenbelt, MD, USA, 2013. [Google Scholar]
- Müller-Wodarg, I.C.F.; Bruinsma, S.; Marty, S.B.J.-C.; Svedhem, H. In Situ observations of waves in Venus’s polar lower thermosphere with Venus express aerobraking. Nat. Phys. 2016, 12, 767–771. [Google Scholar] [CrossRef] [Green Version]
- Rosenblatt, P.; Marty, J.C.; Perosanz, F.; Barriot, J.P.; Van Hoolst, T.; Dehant, V. Numerical simulations of a Mars geodesy network experiment: Effect of orbiter angular momentum desaturation on Mars’ rotation estimation. Planet. Space Sci. 2004, 52, 965–975. [Google Scholar] [CrossRef]
- Kaula, W.M. Theory of Satellite Geodesy; Blaisdell: Waltham, MA, USA, 1966. [Google Scholar]
- Rappaport, N.J.; Konopliv, A.S.; Kucinskas, A.B.; Ford, P.G. An improved 360 degree and order model of Venus topography. Icarus 1999, 139, 19–31. [Google Scholar] [CrossRef]
- Smrekar, S.E. Evidence for active hotspots on Venus from analysis of Magellan gravity data. Icarus 1994, 112, 2–26. [Google Scholar] [CrossRef]
- Margot, J.-L. Earth-based radar observations of the spin axis orientation, spin precession rate, and moment of inertia of Venus. In Proceedings of the European Planetary Science Conference-Division Planetary Science joint meeting, Geneva, Switzerland, 15–20 September 2019. Abstract#412-3. [Google Scholar]
- Lewis, J.S. Metal/silicate fractionation in the solar system. Earth Planet. Sci. Lett. 1972, 15, 286–290. [Google Scholar] [CrossRef]
- Ringwood, A.E. Composition and Origin of the Earth. Canberra, Research School of Earth Sciences 1977; Publication No 1227; Australian National University: Canberra, Australia, 1977. [Google Scholar]
Average Viscosity (Pa.s) | (Model) | |
---|---|---|
1022 | 24.5 | 85 ± 35 |
1021 | 8.5 | 50 ± 13.75 |
1020 | 2.5 | 27.5 ± 5 |
1019 | 0.9 | 16.25 ± 3.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenblatt, P.; Dumoulin, C.; Marty, J.-C.; Genova, A. Determination of Venus’ Interior Structure with EnVision. Remote Sens. 2021, 13, 1624. https://doi.org/10.3390/rs13091624
Rosenblatt P, Dumoulin C, Marty J-C, Genova A. Determination of Venus’ Interior Structure with EnVision. Remote Sensing. 2021; 13(9):1624. https://doi.org/10.3390/rs13091624
Chicago/Turabian StyleRosenblatt, Pascal, Caroline Dumoulin, Jean-Charles Marty, and Antonio Genova. 2021. "Determination of Venus’ Interior Structure with EnVision" Remote Sensing 13, no. 9: 1624. https://doi.org/10.3390/rs13091624
APA StyleRosenblatt, P., Dumoulin, C., Marty, J. -C., & Genova, A. (2021). Determination of Venus’ Interior Structure with EnVision. Remote Sensing, 13(9), 1624. https://doi.org/10.3390/rs13091624