Distribution and Evolution of Supraglacial Lakes in Greenland during the 2016–2018 Melt Seasons
Abstract
:1. Introduction
- (1)
- To present an automatic Machine Learning (ML) method for identifying the SGLs on the GrIS and mapping their spatial-temporal distribution using the Sentinel-2 imagery based on GEE.
- (2)
- To monitor the characteristics and dynamic evolution of SGLs on the GrIS during the 2016–2018 melt seasons.
2. Study Area
3. Data and Methods
3.1. Image Pre-Processing
3.2. Automatic Identification of SGLs
3.3. Production and Validation of the SGLs Dataset
4. Results
4.1. Accuracy Assessment of SGLs Extraction
4.2. Spatial Distribution of SGLs
4.3. The Dynamic Changes of SGLs
5. Discussion
5.1. Comparing with Previous Studies on SGLs Evolution
5.2. Uncertainties of SGLs
5.3. Implications of Climatic Conditions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gledhill, L.A.; Williamson, A.G. Inland advance of supraglacial lakes in north-west Greenland under recent climatic warming. Ann. Glaciol. 2017, 59, 66–82. [Google Scholar] [CrossRef] [Green Version]
- Team, I. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 2020, 579, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Selmes, N. Remote Sensing of Supraglacial Lakes on the Greenland Ice Sheet; Swansea University: Swansea, UK, 2011. [Google Scholar]
- Howat, I.M.; de la Peña, S.; van Angelen, J.H.; Lenaerts, J.T.M.; Broeke, M.R.V.D. Brief Communication “Expansion of meltwater lakes on the Greenland ice sheet”. Cryosphere 2013, 7, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Lüthje, M.; Pedersen, L.; Reeh, N.; Greuell, W. Modelling the evolution of supraglacial lakes on the West Greenland ice-sheet margin. J. Glaciol. 2006, 52, 608–618. [Google Scholar] [CrossRef] [Green Version]
- Ignéczi, Á.; Sole, A.J.; Livingstone, S.A.; Leeson, A.A.; Fettweis, X.; Selmes, N.; Gourmelen, N.; Briggs, K. Northeast sector of the Greenland Ice Sheet to undergo the greatest inland expansion of supraglacial lakes during the 21st century. Geophys. Res. Lett. 2016, 43, 9729–9738. [Google Scholar] [CrossRef] [Green Version]
- Moussavi, M.S. Quantifying Supraglacial Lake Volumes on the Greenland Ice Sheet from Spaceborne Optical Sensors; University of Colorado at Boulder: Ann Arbor, MI, USA, 2015. [Google Scholar]
- Fitzpatrick, A.A.W.; Hubbard, A.L.; Box, J.E.; Quincey, D.J.; van As, D.; Mikkelsen, A.P.B.; Doyle, S.H.; Dow, C.F.; Hasholt, B.; Jones, G.A.; et al. A decade (2002–2012) of supraglacial lake volume estimates across Russell Glacier, West. Greenland. Cryosphere 2014, 8, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Bartholomew, I.; Nienow, P.; Sole, A.; Mair, D.; Cowton, T.; King, M. Short-term variability in Greenland Ice Sheet motion forced by time-varying meltwater drainage: Implications for the relationship between subglacial drainage system behavior and ice velocity. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Tian, B.; Li, Z. Extraction of Glacial Lake Outlines in Tibet Plateau Using Landsat 8 Imagery and Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4002–4009. [Google Scholar] [CrossRef]
- Leeson, A.; Shepherd, A.; Sundal, A.V.; Johansson, M.; Selmes, N.; Briggs, K.; Hogg, A.E.; Fettweis, X. A comparison of supraglacial lake observations derived from MODIS imagery at the western margin of the Greenland ice sheet. J. Glaciol. 2013, 59, 1179–1188. [Google Scholar] [CrossRef] [Green Version]
- Sundal, A.; Shepherd, A.; Nienow, P.; Hanna, E.; Palmer, S.; Huybrechts, P. Evolution of supra-glacial lakes across the Greenland Ice Sheet. Remote Sens. Environ. 2009, 113, 2164–2171. [Google Scholar] [CrossRef]
- Williamson, A.G.; Banwell, A.F.; Willis, I.C.; Arnold, N.S. Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland. Cryosphere 2018, 12, 3045–3065. [Google Scholar] [CrossRef] [Green Version]
- Williamson, A.G.; Arnold, N.S.; Banwell, A.F.; Willis, I.C. A Fully Automated Supraglacial lake area and volume Tracking (“FAST”) algorithm: Development and application using MODIS imagery of West Greenland. Remote Sens. Environ. 2017, 196, 113–133. [Google Scholar] [CrossRef]
- Zheng, G.; Allen, S.K.; Bao, A.; Ballesteros-Cánovas, J.A.; Huss, M.; Zhang, G.; Li, J.; Yuan, Y.; Jiang, L.; Yu, T.; et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation. Nat. Clim. Chang. 2021, 11, 411–417. [Google Scholar] [CrossRef]
- Moussavi, M.; Pope, A.; Halberstadt, A.; Trusel, L.; Cioffi, L.; Abdalati, W. Antarctic Supraglacial Lake Detection Using Landsat 8 and Sentinel-2 Imagery: Towards Continental Generation of Lake Volumes. Remote Sens. 2020, 12, 134. [Google Scholar] [CrossRef] [Green Version]
- How, P.; Messerli, A.; Mätzler, E.; Santoro, M.; Wiesmann, A.; Caduff, R.; Langley, K.; Bojesen, M.H.; Paul, F.; Kääb, A.; et al. Greenland-wide inventory of ice marginal lakes using a multi-method approach. Sci. Rep. 2021, 11, 4481. [Google Scholar] [CrossRef]
- Dirscherl, M.; Dietz, A.J.; Kneisel, C.; Kuenzer, C. Automated Mapping of Antarctic Supraglacial Lakes Using a Machine Learning Approach. Remote Sens. 2020, 12, 1203. [Google Scholar] [CrossRef] [Green Version]
- Shugar, D.H.; Burr, A.; Haritashya, U.K.; Kargel, J.S.; Watson, C.S.; Kennedy, M.C.; Bevington, A.R.; Betts, R.A.; Harrison, S.; Strattman, K. Rapid worldwide growth of glacial lakes since 1990. Nat. Clim. Chang. 2020, 10, 939–945. [Google Scholar] [CrossRef]
- Hui, Y.; Ying, L.J.M.; Research, E. Advances in Methods of Surface Water Extraction Based on MODIS Data. Meteorol. Environ. Res. 2018, 9, 1–14. [Google Scholar]
- Stokes, C.R.; Sanderson, J.E.; Miles, B.; Jamieson, S.S.R.; Leeson, A. Widespread distribution of supraglacial lakes around the margin of the East Antarctic Ice Sheet. Sci. Rep. 2019, 9, 13823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, R.E.; Chu, W.; Kingslake, J.; Das, I.; Tedesco, M.; Tinto, K.J.; Zappa, C.J.; Frezzotti, M.; Boghosian, A.; Lee, W.S. Antarctic ice shelf potentially stabilized by export of meltwater in surface river. Nature 2017, 544, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Box, J.E.; Ski, K. Remote sounding of Greenland supraglacial melt lakes: Implications for subglacial hydraulics. J. Glaciol. 2007, 53, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Jawak, S.D.; Kulkarni, K.; Luis, A.J. A Review on Extraction of Lakes from Remotely Sensed Optical Satellite Data with a Special Focus on Cryospheric Lakes. Adv. Remote Sens. 2015, 04, 196–213. [Google Scholar] [CrossRef] [Green Version]
- Ouma, Y.O.; Tateishi, R. A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: An empirical analysis using Landsat TM and ETM+ data. Int. J. Remote Sens. 2006, 27, 3153–3181. [Google Scholar] [CrossRef]
- Hoekstra, M.; Jiang, M.; Clausi, D.A.; Duguay, C. Lake Ice-Water Classification of RADARSAT-2 Images by Integrating IRGS Segmentation with Pixel-Based Random Forest Labeling. Remote Sens. 2020, 12, 1425. [Google Scholar] [CrossRef]
- Xie, F.; Liu, S.; Gao, Y.; Zhu, Y.; Wu, K.; Qi, M.; Duan, S.; Tahir, A.M. Derivation of supraglacial debris cover by machine learning algorithms on the gee platform: A case study of glaciers in the Hunza valley. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 5, 417–424. [Google Scholar] [CrossRef]
- Wu, Y.; Duguay, C.R.; Xu, L. Assessment of machine learning classifiers for global lake ice cover mapping from MODIS TOA reflectance data. Remote Sens. Environ. 2020, 253, 112206. [Google Scholar] [CrossRef]
- Linhui, L.; Weipeng, J.; Huihui, W. Extracting the Forest Type from Remote Sensing Images by Random Forest. IEEE Sens. J. 2020, 21, 17447–17454. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Z.; Huang, D. Glacier Mapping Based on Random Forest Algorithm: A Case Study over the Eastern Pamir. Water 2020, 12, 3231. [Google Scholar] [CrossRef]
- Yuan, J.; Chi, Z.; Cheng, X.; Zhang, T.; Li, T.; Chen, Z. Automatic Extraction of Supraglacial Lakes in Southwest Greenland during the 2014–2018 Melt Seasons Based on Convolutional Neural Network. Water 2020, 12, 891. [Google Scholar] [CrossRef] [Green Version]
- Schröder, L.; Neckel, N.; Zindler, R.; Humbert, A. Perennial Supraglacial Lakes in Northeast Greenland Observed by Polarimetric SAR. Remote Sens. 2020, 12, 2798. [Google Scholar] [CrossRef]
- Yang, K.; Smith, L.C.; Cooper, M.G.; Pitcher, L.H.; van As, D.; Lu, Y.; Lu, X.; Li, M. Seasonal evolution of supraglacial lakes and rivers on the southwest Greenland Ice Sheet. J. Glaciol. 2021, 67, 592–602. [Google Scholar] [CrossRef]
- Qiao, L.; Mayer, C.; Liu, S.; Liu, Q. Distribution and interannual variability of supraglacial lakes on debris-covered glaciers in the Khan Tengri-Tumor Mountains, Central Asia. Environ. Res. Lett. 2015, 10, 014014. [Google Scholar] [CrossRef] [Green Version]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chi, Z.; Zinglersen, K.B.; Tian, Y.; Wang, K.; Hui, F.; Cheng, X. A new image mosaic of Greenland using Landsat-8 OLI images. Sci. Bull. 2020, 65, 522–524. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, A.B. Present Conditions in Greenland and the Kangerlussuaq Area; Posiva Oy: Eurajoki, Finland, 2010. [Google Scholar]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D. Satellite Gravity Measurements Confirm Accelerated Melting of Greenland Ice Sheet. Science 2006, 313, 1958–1960. [Google Scholar] [CrossRef]
- Mu, Y.; Wei, Y.; Wu, J.; Ding, Y.; Shangguan, D.; Zeng, D. Variations of Mass Balance of the Greenland Ice Sheet from 2002 to 2019. Remote Sens. 2020, 12, 2609. [Google Scholar] [CrossRef]
- Leeson, A.A.; Shepherd, A.; Briggs, K.; Howat, I.; Fettweis, X.; Morlighem, M.; Rignot, E. Supraglacial lakes on the Greenland ice sheet advance inland under warming climate. Nat. Clim. Chang. 2014, 5, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Howat, I.M.; Negrete, A.; Smith, B.E. The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere 2014, 8, 1509–1518. [Google Scholar] [CrossRef] [Green Version]
- Corbane, C.; Politis, P.; Kempeneers, P.; Simonetti, D.; Soille, P.; Burger, A.; Pesaresi, M.; Sabo, F.; Syrris, V.; Kemper, T. A global cloud free pixel- based image composite from Sentinel-2 data. Data Brief 2020, 31, 105737. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Ren, T.; Liu, D.; Ma, Z.; Tong, L.; Zhang, C.; Zhou, T.; Zhang, X.; Li, S. Identification of Seed Maize Fields with High Spatial Resolution and Multiple Spectral Remote Sensing Using Random Forest Classifier. Remote Sens. 2020, 12, 362. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Kang, Y.; Smith, L.C. Supraglacial Streams on the Greenland Ice Sheet Delineated from Combined Spectral–Shape Information in High-Resolution Satellite Imagery. IEEE Geosci. Remote Sens. Lett. 2013, 10, 801–805. [Google Scholar] [CrossRef]
- Selmes, N.; Murray, T.; James, T. Fast draining lakes on the Greenland Ice Sheet. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Claire, P.; Paul, M.; Ian, H.; Myoung-Jon, N.; Brian, B.; Kenneth, P.; Scott, K.; Matthew, S.; Judith, G.; Karen, T.; et al. ArcticDEM. 2018, Harvard Dataverse. Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentI(30 November 2021).
- Cappelen, J. Greenland: DMI Historical Climate Data Collection 1784–2017; Danish Meteorological Institute: Copenhagen, Denmark, 2018. [Google Scholar]
- Le clec’h, S.; Fettweis, X.; Quiquet, A.; Dumas, C.; Kageyama, M.; Charbit, S.; Wyard, C.; Ritz, C. Assessment of the Greenland ice sheet–atmosphere feedbacks for the next century with a regional atmospheric model coupled to an ice sheet model. Cryosphere 2019, 13, 373–395. [Google Scholar] [CrossRef] [Green Version]
- Hochreuther, P.; Neckel, N.; Reimann, N.; Humbert, A.; Braun, M. Fully Automated Detection of Supraglacial Lake Area for Northeast Greenland Using Sentinel-2 Time-Series. Remote Sens. 2021, 13, 205. [Google Scholar] [CrossRef]
- Turton, J.V.; Hochreuther, P.; Reimann, N.; Blau, M.T. The distribution and evolution of supraglacial lakes on 79°N Glacier (north-eastern Greenland) and interannual climatic controls. Cryosphere 2021, 15, 3877–3896. [Google Scholar] [CrossRef]
- Rowley, N.A.; Carleton, A.M.; Fegyveresi, J. Relationships of West. Greenland supraglacial melt-lakes with local climate and regional atmospheric circulation. Int. J. Climatol. 2019, 40, 1164–1177. [Google Scholar] [CrossRef]
- Hanna, E.; Fettweis, X.; Mernild, S.H.; Cappelen, J.; Ribergaard, M.H.; Shuman, C.A.; Steffen, K.; Wood, L.; Mote, T.L. Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. Int. J. Clim. 2013, 34, 1022–1037. [Google Scholar] [CrossRef] [Green Version]
- Mohajerani, Y. Record Greenland mass loss. Nat. Clim. Chang. 2020, 10, 803–804. [Google Scholar] [CrossRef]
- Sasgen, I.; Wouters, B.; Gardner, A.S.; King, M.D.; Tedesco, M.; Landerer, F.W.; Dahle, C.; Save, H.; Fettweis, X. Return to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites. Commun. Earth Environ. 2020, 1, 8. [Google Scholar] [CrossRef]
- Beven, J.L. The 2016 Atlantic Hurricane Season: Matthew Leads an Above-Average Season. Weatherwise 2017, 70, 28–35. [Google Scholar] [CrossRef]
- Leppäranta, M.; Lindgren, E.; Arvola, L. Heat balance of supraglacial lakes in the western Dronning Maud Land. Ann. Glaciol. 2016, 57, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, G.J.; Banwell, A.F.; MacAyeal, D.R. Seasonal evolution of supraglacial lakes on a floating ice tongue, Petermann Glacier, Greenland. Ann. Glaciol. 2018, 59, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Bevis, M.; Harig, C.; Khan, S.A.; Brown, A.; Simons, F.J.; Willis, M.; Fettweis, X.; van den Broeke, M.R.; Madsen, F.B.; Kendrick, E.; et al. Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing. Proc. Natl. Acad. Sci. USA 2019, 116, 1934–1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, L.; Rignot, E.; Wood, M.; Willis, J.K.; Mouginot, J.; Khan, S.A. Ocean melting of the Zachariae Isstrøm and Nioghalvfjerdsfjorden glaciers, northeast Greenland. Proc. Natl. Acad. Sci. USA 2021, 118, e2015483118. [Google Scholar] [CrossRef] [PubMed]
- Cappelen, J. Greenland: DMI Historical Climate Data Collection 1784–2018; Danish Meteorological Institute: Copenhagen, Denmark, 2019. [Google Scholar]
- Tedesco, M.; Box, J.; Cappelen, J.; Fausto, R.; Fettweis, X.; Hansen, K.; Khan, M.; Luthcke, S.; Mote, T.; Sasgen, I.; et al. Greenland Ice sheet [in” State of the Climate in 2017”]. Bull. Am. Meteorol. Soc. 2018, 99, S152–S154. [Google Scholar] [CrossRef]
Predicted Class | ||||
---|---|---|---|---|
Sgl | Not Sgl | Total | ||
Actual class | Sgl | True Positive (TP) | False Positive (FP) | Predicted Positive (TP + FP) |
Not Sgl | False Negative (FN) | True Negative (TN) | Predicted Negative (FN + TN) | |
Total | Actual Positive (TP + FN) | Actual Negative (FP + TN) | TP + TN + FN + FP |
Year | OA | PA | UA | Kappa |
---|---|---|---|---|
2016 | 0.9816 | 0.9586 | 0.9468 | 0.9428 |
2017 | 0.9880 | 0.9716 | 0.9677 | 0.9622 |
2018 | 0.9848 | 0.9556 | 0.9457 | 0.9417 |
Basin | 2016–2017 | 2017–2018 | ||
---|---|---|---|---|
A (%) | N (%) | A (%) | N (%) | |
SW | 8.00 | 51.56 | −20.45 | −14.98 |
CW | −17.57 | 12.41 | 1.86 | −17.96 |
NW | −37.88 | −1.38 | −23.91 | −16.15 |
NO | −17.43 | −0.44 | −8.89 | −12.18 |
NE | −31.82 | −29.29 | −20.10 | 44.39 |
SE | −4.89 | 30.99 | 5.83 | 8.39 |
Total | −17.38 | 2.95 | −15.01 | 1.98 |
Study Region | Year | 68°N–70°N 1 | 68°N–72°N 2 | 79°N–80°N 3 | 70°N–82°N 4 |
---|---|---|---|---|---|
Area Change (km2) | 2016–2017 | −85.81 | −106.54 | −112.13 | −299.28 |
2017–2018 | −71.85 | 9.28 | −76.6 | −128.84 | |
Number Change | 2016–2017 | 62 | 287 | −54 | −2591 |
2017–2018 | −136 | −467 | −135 | 2777 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Huang, H.; Chi, Z.; Cheng, X.; Wei, Z.; Chen, P.; Xu, X.; Qi, S.; Xu, Y.; Zheng, Y. Distribution and Evolution of Supraglacial Lakes in Greenland during the 2016–2018 Melt Seasons. Remote Sens. 2022, 14, 55. https://doi.org/10.3390/rs14010055
Hu J, Huang H, Chi Z, Cheng X, Wei Z, Chen P, Xu X, Qi S, Xu Y, Zheng Y. Distribution and Evolution of Supraglacial Lakes in Greenland during the 2016–2018 Melt Seasons. Remote Sensing. 2022; 14(1):55. https://doi.org/10.3390/rs14010055
Chicago/Turabian StyleHu, Jinjing, Huabing Huang, Zhaohui Chi, Xiao Cheng, Zixin Wei, Peimin Chen, Xiaoqing Xu, Shengliang Qi, Yifang Xu, and Yang Zheng. 2022. "Distribution and Evolution of Supraglacial Lakes in Greenland during the 2016–2018 Melt Seasons" Remote Sensing 14, no. 1: 55. https://doi.org/10.3390/rs14010055