QuikSCAT Climatological Data Record: Land Contamination Flagging and Correction
Abstract
:1. Introduction
2. Data
3. Method
3.1. Previous Work in Field
3.2. Proposed Land Correction Technique—Land Contribution Ratio Expected
4. Coastal Processing of QuikSCAT Slice to Coastal Wind Vectors
Data-Driven Quality Control and Flagging
5. Results
5.1. Buoy Comparisons
5.2. Comparisons to Oceanward WVCs
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fore, A.; Stiles, B.; Chau, A.; Williams, B.; Dunbar, R.; Rodríguez, E. Point-Wise Wind Retrieval and Ambiguity Removal Improvements for the QuikSCAT Climatological Data Set. Geosci. Remote. Sens. IEEE Trans. 2014, 52, 51–59. [Google Scholar] [CrossRef]
- Perlin, N.; Skyllingstad, E.D.; Samelson, R.M.; Barbour, P.L. Numerical Simulation of Air–Sea Coupling during Coastal Upwelling. J. Phys. Oceanogr. 2007, 37, 2081–2093. [Google Scholar] [CrossRef] [Green Version]
- Haack, T.; Chelton, D.; Pullen, J.; Doyle, J.D.; Schlax, M. Summertime Influence of SST on Surface Wind Stress off the U.S. West Coast from the U.S. Navy COAMPS Model. J. Phys. Oceanogr. 2008, 38, 2414–2437. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Dong, C.; Kurian, J.; McWilliams, J.C.; Chelton, D.B.; Li, Z. SST–Wind Interaction in Coastal Upwelling: Oceanic Simulation with Empirical Coupling. J. Phys. Oceanogr. 2009, 39, 2957–2970. [Google Scholar] [CrossRef] [Green Version]
- Gille, S.T.; Llewellyn Smith, S.G.; Statom, N.M. Global observations of the land breeze. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Edwards, K.A.; Rogerson, A.M.; Winant, C.D.; Rogers, D.P. Adjustment of the Marine Atmospheric Boundary Layer to a Coastal Cape. J. Atmos. Sci. 2001, 58, 1511–1528. [Google Scholar] [CrossRef]
- Dorman, C.E.; Mejia, J.F.; Koračin, D. Impact of U.S. west coastline inhomogeneity and synoptic forcing on winds, wind stress, and wind stress curl during upwelling season. J. Geophys. Res. Ocean. 2013, 118, 4036–4051. [Google Scholar] [CrossRef]
- Winant, C.D.; Dorman, C.E.; Friehe, C.A.; Beardsley, R.C. The Marine Layer off Northern California: An Example of Supercritical Channel Flow. J. Atmos. Sci. 1988, 45, 3588–3605. [Google Scholar] [CrossRef] [Green Version]
- Enriquez, A.G.; Friehe, C.A. Effects of Wind Stress and Wind Stress Curl Variability on Coastal Upwelling. J. Phys. Oceanogr. 1995, 25, 1651–1671. [Google Scholar] [CrossRef] [Green Version]
- Bane, J.M.; Levine, M.D.; Samelson, R.M.; Haines, S.M.; Meaux, M.F.; Perlin, N.; Kosro, P.M.; Boyd, T. Atmospheric forcing of the Oregon coastal ocean during the 2001 upwelling season. J. Geophys. Res. Ocean. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Chavanne, C.; Flament, P.; Lumpkin, R.; Dousset, B.; Bentamy, A. Scatterometer observations of wind variations induced by oceanic islands: Implications for wind-driven ocean circulation. Can. J. Remote Sens. 2002, 28, 466–474. [Google Scholar] [CrossRef]
- Dong, C.; McWilliams, J.C. A numerical study of island wakes in the Southern California Bight. Cont. Shelf Res. 2007, 27, 1233–1248. [Google Scholar] [CrossRef]
- Smith, R.B.; Grubišić, V. Aerial Observations of Hawaii’s Wake. J. Atmos. Sci. 1993, 50, 3728–3750. [Google Scholar] [CrossRef] [Green Version]
- Botsford, L.W.; Lawrence, C.A.; Dever, E.P.; Hastings, A.; Largier, J. Wind strength and biological productivity in upwelling systems: An idealized study. Fish. Oceanogr. 2003, 12, 245–259. [Google Scholar] [CrossRef]
- Wilkerson, F.P.; Lassiter, A.M.; Dugdale, R.C.; Marchi, A.; Hogue, V.E. The phytoplankton bloom response to wind events and upwelled nutrients during the CoOP WEST study. Deep Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 3023–3048. [Google Scholar] [CrossRef]
- Chavez, F.; Messié, M. A comparison of Eastern Boundary Upwelling Ecosystems. Prog. Oceanogr. 2009, 83, 80–96. [Google Scholar] [CrossRef]
- Barth, J.A.; Menge, B.A.; Lubchenco, J.; Chan, F.; Bane, J.M.; Kirincich, A.R.; McManus, M.A.; Nielsen, K.J.; Pierce, S.D.; Washburn, L. Delayed upwelling alters nearshore coastal ocean ecosystems in the northern California current. Proc. Natl. Acad. Sci. USA 2007, 104, 3719–3724. [Google Scholar] [CrossRef] [Green Version]
- LeMehaute, B.; Hanes, D.M. The Sea, Ocean Engineering Science; Wiley: Hoboken, NJ, USA, 1990; Volume 9, pp. 423–466. [Google Scholar]
- Brink, K.H.; Cowles, T.J. The Coastal Transition Zone program. J. Geophys. Res. Ocean. 1991, 96, 14637–14647. [Google Scholar] [CrossRef]
- Strub, P.T.; Combes, V.; Shillington, F.A.; Pizarro, O. Chapter 14—Currents and Processes along the Eastern Boundaries. In Ocean Circulation and Climate; Siedler, G., Griffies, S.M., Gould, J., Church, J.A., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 103, pp. 339–384. [Google Scholar] [CrossRef]
- Aguirre, C.; Pizarro, Ó.; Strub, P.T.; Garreaud, R.; Barth, J.A. Seasonal dynamics of the near-surface alongshore flow off central Chile. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Strub, P.T.; Kosro, P.M.; Huyer, A. The nature of the cold filaments in the California Current system. J. Geophys. Res. Ocean. 1991, 96, 14743–14768. [Google Scholar] [CrossRef]
- Crawford, W.; Brickley, P.; Thomas, A. Mesoscale eddies dominate surface phytoplankton in northern Gulf of Alaska. Prog. Oceanogr. 2007, 75, 287–303. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Chelton, D.B.; Gaube, P.; Schlax, M.G.; Early, J.J.; Samelson, R.M. The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll. Science 2011, 334, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Gaube, P.; Chelton, D.B.; Strutton, P.G.; Behrenfeld, M.J. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. Ocean. 2013, 118, 6349–6370. [Google Scholar] [CrossRef] [Green Version]
- Mann, K.H. Ecology of Coastal Waters: With Implications for Management; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Weiher, R.; Sen, A. Economic statistics for NOAA, 5th ed.; U.S. Department of Commerce: Washington, DC, USA, 2006. [Google Scholar]
- PICKETT, M.H.; SCHWING, F.B. Evaluating upwelling estimates off the west coasts of North and South America. Fish. Oceanogr. 2006, 15, 256–269. [Google Scholar] [CrossRef]
- Hasager, C.B.; Mouche, A.; Badger, M.; Bingöl, F.; Karagali, I.; Driesenaar, T.; Stoffelen, A.; Peña, A.; Longépé, N. Offshore wind climatology based on synergetic use of Envisat ASAR, ASCAT and QuikSCAT. Remote Sens. Environ. 2015, 156, 247–263. [Google Scholar] [CrossRef]
- Liu, T.; Tang, W. Equivalent Neutral Wind; Technical Report; JPL: Pasadena, CA, USA, 1996. [Google Scholar]
- Owen, M.; Long, D. Land-Contamination Compensation for QuikSCAT Near-Coastal Wind Retrieval. Geosci. Remote Sens. IEEE Trans. 2009, 47, 839–850. [Google Scholar] [CrossRef]
- Vanhoff, B.A.; Freilich, M.H.; Strub, T. QuikSCAT Level 3 Near-Coast Wind and Stress Fields with Enhanced Coastal Coverage (OSU): US West Coast Region; National Aeronautics and Space Administration: Washington, DC, USA, 2013. [Google Scholar]
- Strub, P.T.; James, C.; Montecino, V.; Rutllant, J.A.; Blanco, J.L. Ocean circulation along the southern Chile transition region (38°–46°S): Mean, seasonal and interannual variability, with a focus on 2014–2016. Prog. Oceanogr. 2019, 172, 159–198. [Google Scholar] [CrossRef]
Version | Coastal Processing Method | Description |
---|---|---|
3.0 | Conservative Flagging | 20 km distance threshold from low-res landmap. |
3.1 | Land Contamination Ratio | Reject slices with LCR value . |
4.0 | LCRES No QC | Same as 4.1 except no flag for poor coastal retrievals, not publicly available |
4.1 | LCRES | Reject slices with LCRES and use land correction. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fore, A.G.; Stiles, B.W.; Strub, P.T.; West, R.D. QuikSCAT Climatological Data Record: Land Contamination Flagging and Correction. Remote Sens. 2022, 14, 2487. https://doi.org/10.3390/rs14102487
Fore AG, Stiles BW, Strub PT, West RD. QuikSCAT Climatological Data Record: Land Contamination Flagging and Correction. Remote Sensing. 2022; 14(10):2487. https://doi.org/10.3390/rs14102487
Chicago/Turabian StyleFore, Alexander G., Bryan W. Stiles, Paul Ted Strub, and Richard D. West. 2022. "QuikSCAT Climatological Data Record: Land Contamination Flagging and Correction" Remote Sensing 14, no. 10: 2487. https://doi.org/10.3390/rs14102487
APA StyleFore, A. G., Stiles, B. W., Strub, P. T., & West, R. D. (2022). QuikSCAT Climatological Data Record: Land Contamination Flagging and Correction. Remote Sensing, 14(10), 2487. https://doi.org/10.3390/rs14102487