Spatio-Temporal Evolution Law of Surface Subsidence Basin with Insufficient Exploitation of Deep Coal Resources in Aeolian Sand Area of Western China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. SAR Images
3.2. SBAS-InSAR Technology
3.3. Data Processing
4. Results
4.1. Verification of Settlement Monitoring Results
4.2. Dynamic Development Process of Surface Subsidence Basin
4.3. Variations of Surface Subsidence Basin Shape
- Stage 1: Circular. During the period from 8 December 2019 to 18 February 2020, expanded simultaneously to the west, south and north with the advancement of the working face. Sporadic areas of slight subsidence were developed on the northwest side of .
- Stage 2: Parallelogram. During the period from 18 February 2020 to 11 July 2020, expanded rapidly toward the northwest side predominantly. The existing sporadic slight subsidence area was merged by the main basin, and new sporadic subsidence appeared to occur directly north of .
- Stage 3: Trapezoidal. During the period from 11 July 2020 to 31 January 2021, expanded mainly to the north, further merging the sporadically developed subsidence area directly to the north. The newly developed sporadic subsidence area expanded toward the northeast side of the boundary curve.
4.4. Relationship between Coverage Area of Subsidence Basin and Advancing Length of Working Face
- Linear increasing period:. , , and all increase linearly with L, with rates about 57.46 km2/m, 10.68 km2/m, and 4.08 km2/m, respectively. It demonstrates that the subsidence basin was rapidly expanded during this period.
- Temporary stagnation period:. , , and all change extremely slowly as L increases, and it can be assumed that the subsidence basin is not expanding outward temporarily during this period.
- Re-expansion period:. , , and increased with L again. Due to the limited amount of data, the increasing relationship between area and length cannot be clearly given during this period.
5. Discussion
5.1. Slight Uplift of the Ground Surface above the Open Cut
5.2. Influence of Groundwater and Aeolian Sand
5.3. Influence of Giant Thick Weakly Cemented Overburden
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, X.; Gao, Y.; Yuan, D. Sudden Surface Collapse Disasters Caused by Shallow Partial Mining in Datong Coalfield, China. Nat. Hazards 2014, 74, 911–929. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, K.; Bai, Z.; Hu, Z. Theoretical Analysis of the Secondary Development of Mining-Induced Surface Cracks in the Ordos Region. Environ. Earth Sci. 2017, 76, 703. [Google Scholar] [CrossRef]
- Li, L.; Wu, K.; Hu, Z.; Xu, Y.; Zhou, D. Analysis of Developmental Features and Causes of the Ground Cracks Induced by Oversized Working Face Mining in an Aeolian Sand Area. Environ. Earth Sci. 2017, 76, 135. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, K.; Li, L.; Zhou, D.; Hu, Z. Ground Cracks Development and Characteristics of Strata Movement under Fast Excavation: A Case Study at Bulianta Coal Mine, China. Bull. Eng. Geol. Environ. 2019, 78, 325–340. [Google Scholar] [CrossRef]
- Dawei, Z.; Kan, W.; Zhihui, B.; Zhenqi, H.; Liang, L.; Yuankun, X.; Xinpeng, D. Formation and Development Mechanism of Ground Crack Caused by Coal Mining: Effects of Overlying Key Strata. Bull. Eng. Geol. Environ. 2019, 78, 1025–1044. [Google Scholar] [CrossRef]
- Yang, X.; Wen, G.; Dai, L.; Sun, H.; Li, X. Ground Subsidence and Surface Cracks Evolution from Shallow-Buried Close-Distance Multi-Seam Mining: A Case Study in Bulianta Coal Mine. Rock Mech. Rock Eng. 2019, 52, 2835–2852. [Google Scholar] [CrossRef]
- Zhang, D.; Fan, G.; Ma, L.; Wang, X. Aquifer Protection during Longwall Mining of Shallow Coal Seams: A Case Study in the Shendong Coalfield of China. Int. J. Coal Geol. 2011, 86, 190–196. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Hu, Z.; Ma, K.; Wang, H.; Chai, T. The Response of Soil Bacterial Communities to Mining Subsidence in the West China Aeolian Sand Area. Appl. Soil Ecol. 2017, 121, 1–10. [Google Scholar] [CrossRef]
- Yan, W.; Dai, H.; Chen, J. Surface Crack and Sand Inrush Disaster Induced by High-Strength Mining: Example from the Shendong Coal Field, China. Geosci. J. 2018, 22, 347–357. [Google Scholar] [CrossRef]
- He, X.; Zhao, Y.; Yang, K.; Zhang, C.; Han, P. Development and Formation of Ground Fissures Induced by an Ultra Large Mining Height Longwall Panel in Shendong Mining Area. Bull. Eng. Geol. Environ. 2021, 80, 7879–7898. [Google Scholar] [CrossRef]
- Fu, Y.; Shang, J.; Hu, Z.; Li, P.; Yang, K.; Chen, C.; Guo, J.; Yuan, D. Ground Fracture Development and Surface Fracture Evolution in N00 Method Shallowly Buried Thick Coal Seam Mining in an Arid Windy and Sandy Area: A Case Study of the Ningtiaota Mine (China). Energies 2021, 14, 7712. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, G.; Lv, Y.; Gong, Y. Study on the Strata Movement Rule of the Ultrathick and Weak Cementation Overburden in Deep Mining by Similar Material Simulation: A Case Study in China. Math. Probl. Eng. 2020, 2020, 7356740. [Google Scholar] [CrossRef]
- Gong, Y.; Guo, G.; Zhang, G.; Guo, K.; Du, Q.; Wang, L. A Vertical Joint Spacing Calculation Method for UDEC Modeling of Large-Scale Strata and Its Influence on Mining-Induced Surface Subsidence. Sustainability 2021, 13, 13313. [Google Scholar] [CrossRef]
- Chen, S.; Qu, X.; Yin, D.; Liu, X.; Ma, H.; Wang, H. Investigation Lateral Deformation and Failure Characteristics of Strip Coal Pillar in Deep Mining. Geomech. Eng. 2018, 14, 421–428. [Google Scholar]
- Xie, J.; Xu, J.; Wang, F. Mining-Induced Stress Distribution of the Working Face in a Kilometer-Deep Coal Mine—A Case Study in Tangshan Coal Mine. J. Geophys. Eng. 2018, 15, 2060–2070. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Xie, J.; Guo, J.; Lu, Y.; He, Z.; Li, C. Fractal Evolution and Connectivity Characteristics of Mining-Induced Crack Networks in Coal Masses at Different Depths. Geomech. Geophys. Geo-Energy Geo-Resour. 2021, 7, 9. [Google Scholar] [CrossRef]
- Zhao, K.; Zhou, Y.; Yu, X.; Yan, Y.; Song, Y.; Wang, J.; Suo, T.; Guo, X. Dynamic Prediction Model of Overburden Settlement in Deep Mining Areas Based on Space–Time Relationship. Nat. Resour. Res. 2021, 30, 3839–3852. [Google Scholar] [CrossRef]
- Stramondo, S.; Saroli, M.; Tolomei, C.; Moro, M.; Doumaz, F.; Pesci, A.; Loddo, F.; Baldi, P.; Boschi, E. Surface Movements in Bologna (Po Plain-Italy) Detected by Multitemporal DInSAR. Remote Sens. Environ. 2007, 110, 304–316. [Google Scholar] [CrossRef]
- Castañeda, C.; Gutiérrez, F.; Manunta, M.; Galve, J.P. DInSAR Measurements of Ground Deformation by Sinkholes, Mining Subsidence, and Landslides, Ebro River, Spain. Earth Surf. Process. Landf. 2009, 34, 1562–1574. [Google Scholar] [CrossRef] [Green Version]
- Calo, F.; Ardizzone, F.; Castaldo, R.; Lollino, P.; Tizzani, P.; Guzzetti, F.; Lanari, R.; Angeli, M.-G.; Pontoni, F.; Manunta, M. Enhanced Landslide Investigations through Advanced DInSAR Techniques: The Ivancich Case Study, Assisi, Italy. Remote Sens. Environ. 2014, 142, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A Small-Baseline Approach for Investigating Deformations on Full-Resolution Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Pepe, A.; Berardino, P.; Bonano, M.; Daniel Euillades, L.; Lanari, R.; Sansosti, E. SBAS-Based Satellite Orbit Correction for the Generation of DInSAR Time-Series: Application to RADARSAT-1 Data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 5150–5165. [Google Scholar] [CrossRef]
- Puglisi, G.; Bonforte, A.; Ferretti, A.; Guglielmino, F.; Palano, M.; Prati, C. Dynamics of Mount Etna before, during, and after the July–August 2001 Eruption Inferred from GPS and Differential Synthetic Aperture Radar Interferometry Data. J. Geophys. Res. 2008, 113, B06405. [Google Scholar] [CrossRef] [Green Version]
- D’Auria, L.; Giudicepietro, F.; Aquino, I.; Borriello, G.; Del Gaudio, C.; Lo Bascio, D.; Martini, M.; Ricciardi, G.P.; Ricciolino, P.; Ricco, C. Repeated Fluid-Transfer Episodes as a Mechanism for the Recent Dynamics of Campi Flegrei Caldera (1989–2010). J. Geophys. Res. 2011, 116, B04313. [Google Scholar] [CrossRef]
- Shirzaei, M. A Wavelet-Based Multitemporal DInSAR Algorithm for Monitoring Ground Surface Motion. IEEE Geosci. Remote Sens. Lett. 2013, 10, 456–460. [Google Scholar] [CrossRef]
- Anantrasirichai, N.; Biggs, J.; Albino, F.; Bull, D. A Deep Learning Approach to Detecting Volcano Deformation from Satellite Imagery Using Synthetic Datasets. Remote Sens. Environ. 2019, 230, 111179. [Google Scholar] [CrossRef] [Green Version]
- Lavecchia, G.; Castaldo, R.; Nardis, R.; De Novellis, V.; Ferrarini, F.; Pepe, S.; Brozzetti, F.; Solaro, G.; Cirillo, D.; Bonano, M.; et al. Ground Deformation and Source Geometry of the 24 August 2016 Amatrice Earthquake (Central Italy) Investigated through Analytical and Numerical Modeling of DInSAR Measurements and Structural-geological Data. Geophys. Res. Lett. 2016, 43, 12389–12398. [Google Scholar] [CrossRef]
- Barnhart, W.D.; Yeck, W.L.; McNamara, D.E. Induced Earthquake and Liquefaction Hazards in Oklahoma, USA: Constraints from InSAR. Remote Sens. Environ. 2018, 218, 1–12. [Google Scholar] [CrossRef]
- He, P.; Wen, Y.; Xu, C.; Chen, Y. Complete Three-Dimensional near-Field Surface Displacements from Imaging Geodesy Techniques Applied to the 2016 Kumamoto Earthquake. Remote Sens. Environ. 2019, 232, 111321. [Google Scholar] [CrossRef]
- Milczarek, W. Investigation of Post Inducted Seismic Deformation of the 2016 MW 4.2 Tarnowek Poland Mining Tremor Based on DinSAR and SBAS Method. Acta Geodyn. Geomater. 2019, 16, 183–193. [Google Scholar] [CrossRef]
- Song, X.; Han, N.; Shan, X.; Wang, C.; Zhang, Y.; Yin, H.; Zhang, G.; Xiu, W. Three-Dimensional Fault Geometry and Kinematics of the 2008 M 7.1 Yutian Earthquake Revealed by Very-High Resolution Satellite Stereo Imagery. Remote Sens. Environ. 2019, 232, 111300. [Google Scholar] [CrossRef]
- Fathian, A.; Atzori, S.; Nazari, H.; Reicherter, K.; Salvi, S.; Svigkas, N.; Tatar, M.; Tolomei, C.; Yaminifard, F. Complex Co- and Postseismic Faulting of the 2017–2018 Seismic Sequence in Western Iran Revealed by InSAR and Seismic Data. Remote Sens. Environ. 2021, 253, 112224. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, L.; Tang, M.; Liao, M.; Xu, Q.; Gong, J.; Ao, M. Mapping Landslide Surface Displacements with Time Series SAR Interferometry by Combining Persistent and Distributed Scatterers: A Case Study of Jiaju Landslide in Danba, China. Remote Sens. Environ. 2018, 205, 180–198. [Google Scholar] [CrossRef]
- Hu, X.; Bürgmann, R.; Lu, Z.; Handwerger, A.L.; Wang, T.; Miao, R. Mobility, Thickness, and Hydraulic Diffusivity of the Slow-Moving Monroe Landslide in California Revealed by L-Band Satellite Radar Interferometry. J. Geophys. Res. Solid Earth 2019, 124, 7504–7518. [Google Scholar] [CrossRef] [Green Version]
- Bekaert, D.P.S.; Handwerger, A.L.; Agram, P.; Kirschbaum, D.B. InSAR-Based Detection Method for Mapping and Monitoring Slow-Moving Landslides in Remote Regions with Steep and Mountainous Terrain: An Application to Nepal. Remote Sens. Environ. 2020, 249, 111983. [Google Scholar] [CrossRef]
- Jia, H.; Wang, Y.; Ge, D.; Deng, Y.; Wang, R. Improved Offset Tracking for Predisaster Deformation Monitoring of the 2018 Jinsha River Landslide (Tibet, China). Remote Sens. Environ. 2020, 247, 111899. [Google Scholar] [CrossRef]
- Gong, W.; Darrow, M.M.; Meyer, F.J.; Daanen, R.P. Reconstructing Movement History of Frozen Debris Lobes in Northern Alaska Using Satellite Radar Interferometry. Remote Sens. Environ. 2019, 221, 722–740. [Google Scholar] [CrossRef]
- Wang, L.; Marzahn, P.; Bernier, M.; Ludwig, R. Sentinel-1 InSAR Measurements of Deformation over Discontinuous Permafrost Terrain, Northern Quebec, Canada. Remote Sens. Environ. 2020, 248, 111965. [Google Scholar] [CrossRef]
- Liao, H.; Wdowinski, S.; Li, S. Regional-Scale Hydrological Monitoring of Wetlands with Sentinel-1 InSAR Observations: Case Study of the South Florida Everglades. Remote Sens. Environ. 2020, 251, 112051. [Google Scholar] [CrossRef]
- Baek, J.; Kim, S.-W.; Park, H.-J.; Jung, H.-S.; Kim, K.-D.; Kim, J.W. Analysis of Ground Subsidence in Coal Mining Area Using SAR Interferometry. Geosci. J. 2008, 12, 277–284. [Google Scholar] [CrossRef]
- Yang, Z.F.; Li, Z.W.; Zhu, J.J.; Hu, J.; Wang, Y.J.; Chen, G.L. InSAR-Based Model Parameter Estimation of Probability Integral Method and Its Application for Predicting Mining-Induced Horizontal and Vertical Displacements. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4818–4832. [Google Scholar] [CrossRef]
- Bateson, L.; Cigna, F.; Boon, D.; Sowter, A. The Application of the Intermittent SBAS (ISBAS) InSAR Method to the South Wales Coalfield, UK. Int. J. Appl. Earth Obs. 2015, 34, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Gee, D.; Bateson, L.; Grebby, S.; Novellino, A.; Sowter, A.; Wyatt, L.; Marsh, S.; Morgenstern, R.; Athab, A. Modelling Groundwater Rebound in Recently Abandoned Coalfields Using DInSAR. Remote Sens. Environ. 2020, 249, 112021. [Google Scholar] [CrossRef]
- Kim, J.; Lin, S.-Y.; Singh, R.P.; Lan, C.-W.; Yun, H.-W. Underground Burning of Jharia Coal Mine (India) and Associated Surface Deformation Using InSAR Data. Int. J. Appl. Earth Obs. 2021, 103, 102524. [Google Scholar] [CrossRef]
- Lee, S.-K.; Kugler, F.; Papathanassiou, K.P.; Hajnsek, I. Quantification of Temporal Decorrelation Effects at L-Band for Polarimetric SAR Interferometry Applications. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2013, 6, 1351–1367. [Google Scholar] [CrossRef]
- Necsoiu, M.; Walter, G.R. Detection of Uranium Mill Tailings Settlement Using Satellite-Based Radar Interferometry. Eng. Geol. 2015, 197, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Teng, C.; Jiang, K.; Jiang, C.; Zhu, S. D-InSAR Monitoring Method of Mining Subsidence Based on Boltzmann and Its Application in Building Mining Damage Assessment. KSCE J. Civ. Eng. 2022, 26, 353–370. [Google Scholar] [CrossRef]
- Fan, H.D.; Cheng, D.; Deng, K.Z.; Chen, B.Q.; Zhu, C.G. Subsidence Monitoring Using D-InSAR and Probability Integral Prediction Modelling in Deep Mining Areas. Surv. Rev. 2015, 47, 438–445. [Google Scholar] [CrossRef]
- Casu, F.; Manzo, M.; Lanari, R. A Quantitative Assessment of the SBAS Algorithm Performance for Surface Deformation Retrieval from DInSAR Data. Remote Sens. Environ. 2006, 102, 195–210. [Google Scholar] [CrossRef]
- Wang, F.; Xu, J.; Xie, J. Effects of Arch Structure in Unconsolidated Layers on Fracture and Failure of Overlying Strata. Int. J. Rock Mech. Min. Sci. 2019, 114, 141–152. [Google Scholar] [CrossRef]
- Li, Z.; Dou, L.; Cai, W.; Wang, G.; He, J.; Gong, S.; Ding, Y. Investigation and Analysis of the Rock Burst Mechanism Induced within Fault-Pillars. Int. J. Rock Mech. Min. Sci. 2014, 70, 192–200. [Google Scholar] [CrossRef]
- Kuang, T.; Li, Z.; Zhu, W.; Xie, J.; Ju, J.; Liu, J.; Xu, J. The Impact of Key Strata Movement on Ground Pressure Behaviour in the Datong Coalfield. Int. J. Rock Mech. Min. 2019, 119, 193–204. [Google Scholar] [CrossRef]
- Wang, X.; Xie, J.; Zhu, W.; Xu, J. The Field Monitoring Experiment of the High-Level Key Stratum Movement in Coal Mining Based on Collaborative DOFS and MPBX. Sci. Rep. 2022, 12, 665. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-X.; Lyu, H.-M.; Han, J.; Shen, S.-L. Dewatering—Induced Building Settlement around a Deep Excavation in Soft Deposit in Tianjin, China. J. Geotech. Geoenviron. Eng. 2019, 145, 05019003. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Wang, S.; Xue, X.-L.; Zheng, G.; Mei, G.-X. Evolution of Deep Ground Settlement Subject to Groundwater Drawdown during Dewatering in a Multi-Layered Aquifer-Aquitard System: Insights from Numerical Modelling. J. Hydrol. 2021, 603, 127078. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Wang, S.; Xue, X.-L.; Zheng, G.; Mei, G.-X. Characteristics of Ground Settlement Due to Combined Actions of Groundwater Drawdown and Enclosure Wall Movement. Acta Geotech. 2022. [Google Scholar] [CrossRef]
- Qu, Q.; Xu, J.; Wu, R.; Qin, W.; Hu, G. Three-Zone Characterisation of Coupled Strata and Gas Behaviour in Multi-Seam Mining. Int. J. Rock Mech. Min. 2015, 78, 91–98. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Zheng, G.; Xue, X.-L. Responses of Deep Soil Layers to Combined Recharge in a Leaky Aquifer. Eng. Geol. 2019, 260, 105263. [Google Scholar] [CrossRef]
- Li, M.-G.; Chen, J.-J.; Xia, X.-H.; Zhang, Y.-Q.; Wang, D.-F. Statistical and Hydro-Mechanical Coupling Analyses on Groundwater Drawdown and Soil Deformation Caused by Dewatering in a Multi-Aquifer-Aquitard System. J. Hydrol. 2020, 589, 125365. [Google Scholar] [CrossRef]
Aquifer | Stratum | Average Thickness (m) | Buried Depth (m) | Type | Hydraulic Conductivity | Specific Capacity q (L/s·m) | Permeability Coefficient K (m/d) |
---|---|---|---|---|---|---|---|
PW | 73.83 | 0.90–1.15 | Phreatic water | Strong | 0.406 | 0.566 | |
CW1 | 241.66 | 2.33–4.82 | Confined water | Strong | 0.417 | 0.502 | |
CW2 | 35.35 | 2.10–3.72 | Confined water | Weak | 0.042 | 0.160 | |
CW3 | 24.91 | 1.80 | Confined water | Weak | 0.005 | 0.019 |
Parameters | Description |
---|---|
Time span of acquisitions | 29 July 2019–19 May 2021 |
Product type | Single Look Complex (SLC) |
Beam mode | Interferometric Wide swath (IW) |
Polarization | Vertical Transmit, Vertical Receive (VV) |
Resolution (range × azimuth) | 5 × 20 |
Wave length | 5.55 cm (C-band) |
Pass way | Ascending |
Path number | 84 |
Frame number | 120 |
Incident angle of the study area | 43.9° |
Identifier | Date_Master | Date_Slave | Identifier | Date_Master | Date_Slave | Identifier | Date_Master | Date_Slave |
---|---|---|---|---|---|---|---|---|
(a) | 20 December 2019 | 13 January 2020 | (b) | 20 December 2019 | 18 February 2020 | (c) | 13 March 2020 | 18 February 2020 |
(d) | 6 April 2020 | 1 March 2020 | (e) | 6 April 2020 | 24 May 2020 | (f) | 29 June 2020 | 4 August 2020 |
(g) | 16 August 2020 | 23 July 2020 | (h) | 27 October 2020 | 28 August 2020 | (i) | 8 March 2021 | 31 January 2021 |
Num | Date | L (m) | (km2) | (km2) | (km2) | Num | Date | L (m) | (km2) | (km2) | (km2) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 8 December 2019 | 7.3 | 4.29 | - | - | 18 | 11 July 2020 | 512.5 | 34.78 | 3.97 | 1.35 |
2 | 20 December 2019 | 18.3 | 4.82 | - | - | 19 | 23 July 2020 | 550.2 | 33.18 | 4.16 | 1.37 |
3 | 1 January 2020 | 30.4 | 6.47 | - | - | 20 | 4 August 2020 | 550.2 | 33.01 | 4.40 | 1.40 |
4 | 13 January 2020 | 54.6 | 6.35 | - | - | 21 | 16 August 2020 | 550.2 | 32.20 | 4.38 | 1.52 |
5 | 6 February 2020 | 99.9 | 7.93 | 0.11 | - | 22 | 28 August 2020 | 550.2 | 37.28 | 5.11 | 1.69 |
6 | 18 February 2020 | 117.6 | 10.49 | 0.12 | - | 23 | 21 September 2020 | 550.2 | 41.53 | 5.61 | 1.98 |
7 | 1 March 2020 | 138.0 | 11.15 | 0.33 | - | 24 | 3 October 2020 | 586.8 | 37.37 | 5.69 | 2.05 |
8 | 13 February 2020 | 187.8 | 12.87 | 1.14 | - | 25 | 15 October 2020 | 632.9 | 38.56 | 5.80 | 2.05 |
9 | 25 February 2020 | 237.6 | 15.51 | 1.50 | 0.05 | 26 | 27 October 2020 | 678.9 | 45.98 | 6.44 | 2.20 |
10 | 6 April 2020 | 281.2 | 16.78 | 1.73 | 0.46 | 27 | 8 November 2020 | 732.6 | 46.69 | 6.86 | 2.19 |
11 | 18 April 2020 | 318.6 | 18.82 | 2.03 | 0.58 | 28 | 20 November 2020 | 790.2 | 47.09 | 6.86 | 2.22 |
12 | 30 April 2020 | 356.0 | 18.96 | 2.25 | 0.73 | 29 | 2 December 2020 | 845.8 | 47.33 | 6.84 | 2.18 |
13 | 12 May 2020 | 383.2 | 20.29 | 2.38 | 0.86 | 30 | 26 December 2020 | 937.6 | 47.32 | 7.00 | 2.22 |
14 | 24 May 2020 | 410.3 | 23.64 | 2.56 | 0.95 | 31 | 7 January 2021 | 971.5 | 46.72 | 7.06 | 2.24 |
15 | 5 June 2020 | 434.8 | 25.42 | 2.88 | 1.01 | 32 | 19 January 2021 | 996.9 | 48.39 | 7.31 | 2.33 |
16 | 17 June 2020 | 455.5 | 27.22 | 2.97 | 1.15 | 33 | 31 January 2021 | 1022.3 | 48.52 | 7.47 | 2.45 |
17 | 29 June 2020 | 476.3 | 28.30 | 3.54 | 1.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Q.; Guo, G.; Li, H.; Gong, Y. Spatio-Temporal Evolution Law of Surface Subsidence Basin with Insufficient Exploitation of Deep Coal Resources in Aeolian Sand Area of Western China. Remote Sens. 2022, 14, 2536. https://doi.org/10.3390/rs14112536
Du Q, Guo G, Li H, Gong Y. Spatio-Temporal Evolution Law of Surface Subsidence Basin with Insufficient Exploitation of Deep Coal Resources in Aeolian Sand Area of Western China. Remote Sensing. 2022; 14(11):2536. https://doi.org/10.3390/rs14112536
Chicago/Turabian StyleDu, Qiu, Guangli Guo, Huaizhan Li, and Yaqiang Gong. 2022. "Spatio-Temporal Evolution Law of Surface Subsidence Basin with Insufficient Exploitation of Deep Coal Resources in Aeolian Sand Area of Western China" Remote Sensing 14, no. 11: 2536. https://doi.org/10.3390/rs14112536
APA StyleDu, Q., Guo, G., Li, H., & Gong, Y. (2022). Spatio-Temporal Evolution Law of Surface Subsidence Basin with Insufficient Exploitation of Deep Coal Resources in Aeolian Sand Area of Western China. Remote Sensing, 14(11), 2536. https://doi.org/10.3390/rs14112536