Editorial: Geospatial Understanding of Sustainable Urban Analytics Using Remote Sensing
Author Contributions
Funding
Conflicts of Interest
References
- Cheng, L.; Feng, R.; Wang, L. Fractal Characteristic Analysis of Urban Land-Cover Spatial Patterns with Spatiotemporal Remote Sensing Images in Shenzhen City (1988–2015). Remote Sens. 2021, 13, 4640. [Google Scholar] [CrossRef]
- FitzGerald, G.; Du, W.; Jamal, A.; Clark, M.; Hou, X.-Y. Flood fatalities in contemporary Australia (1997–2008). Emerg. Med. Australas. 2010, 22, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Geertman, S.; Ferreira, J.; Goodspeed, R.; Stillwell, J. Introduction to ‘Planning Support Systems and Smart Cities’. In Planning Support Systems and Smart Cities; Geertman, S., Ferreira, J., Goodspeed, R., Stillwell, J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–17. [Google Scholar]
- He, W.; Cao, S.; Du, M.; Hu, D.; Mo, Y.; Liu, M.; Zhao, J.; Cao, Y. How Do Two- and Three-Dimensional Urban Structures Impact Seasonal Land Surface Temperatures at Various Spatial Scales? A Case Study for the Northern Part of Brooklyn, New York, USA. Remote Sens. 2021, 13, 3283. [Google Scholar] [CrossRef]
- KC, U.; Garg, S.; Hilton, J.; Aryal, J. A cloud-based framework for sensitivity analysis of natural hazard models. Environ. Model. Softw. 2020, 134, 104800. [Google Scholar] [CrossRef]
- Korolov, V.; Kurowska, K.; Korolova, O.; Zaiets, Y.; Milkovich, I.; Kryszk, H. Methodology for Determining the Nearest Destinations for the Evacuation of People and Equipment from a Disaster Area to a Safe Area. Remote Sens. 2021, 13, 2170. [Google Scholar] [CrossRef]
- Ladds, M.; Keating, A.; Handmer, J.; Magee, L. How much do disasters cost? A comparison of disaster cost estimates in Australia. Int. J. Disaster Risk Reduct. 2017, 21, 419–429. [Google Scholar] [CrossRef]
- Lee, A.; Lee, K.W.; Kim, K.H.; Shin, S.W. A Geospatial Platform to Manage Large-Scale Individual Mobility for an Urban Digital Twin Platform. Remote Sens. 2022, 14, 723. [Google Scholar] [CrossRef]
- Li, Y.; Ye, H.; Gao, X.; Sun, D.; Li, Z.; Zhang, N.; Leng, X.; Meng, D.; Zheng, J. Spatiotemporal Patterns of Urbanization in the Three Most Developed Urban Agglomerations in China Based on Continuous Nighttime Light Data (2000–2018). Remote Sens. 2021, 13, 2245. [Google Scholar] [CrossRef]
- Qiao, Y.-K.; Peng, F.-L.; Sabri, S.; Rajabifard, A. Socio-environmental costs of underground space use for urban sustainability. Sustain. Cities Soc. 2019, 51, 101757. [Google Scholar] [CrossRef]
- Rajabifard, A.; Ho, S.; Sabri, S. Urban Analytics Data Infrastructure: Critical SDI for Urban Management in Australia. Smart World 2016, 1, 95. [Google Scholar]
- Rajabifard, A.; Sabri, S.; Chen, Y.; Agunbiade, M.; Kalantari, M. Urban Analytics Data Infrastructure: Critical SDI for Measuring and Monitoring The National and Local Progress of SDGs. In Sustainable Development Goals Connectivity Dilemma: Land and Geospatial Information for Urban and Rural Resilience; CRC Press: Boca Raton, FL, USA, 2019; p. 243. [Google Scholar]
- Sabri, S.; Chen, Y.; Rajabifard, A.; Lim, T.K.; Khoo, V.; Kalantari, M. A multi-dimensional analytics platform to support planning and design for liveable and sustainable urban environment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII–4/W15, 75–80. [Google Scholar] [CrossRef]
- Sabri, S.; Rajabifard, A.; Ho, S.; Namazi-Rad, M.-R.; Pettit, C. Alternative Planning and Land Administration for Future Smart Cities [Leading Edge]. IEEE Technol. Soc. Mag. 2015, 34, 33–73. [Google Scholar] [CrossRef]
- Sanlang, S.; Cao, S.; Du, M.; Mo, Y.; Chen, Q.; He, W. Integrating Aerial LiDAR and Very-High-Resolution Images for Urban Functional Zone Mapping. Remote Sens. 2021, 13, 2573. [Google Scholar] [CrossRef]
- Terfa, B.K.; Chen, N.; Zhang, X.; Niyogi, D. Spatial Configuration and Extent Explains the Urban Heat Mitigation Potential due to Green Spaces: Analysis over Addis Ababa, Ethiopia. Remote Sens. 2020, 12, 2876. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Hu, Z.; Zhang, G.; Liu, J.; Lyu, Y.; Gu, Y.; Huang, X.; Zhang, Q.; Liu, L. Flood Risk Assessment of Subway Systems in Metropolitan Areas under Land Subsidence Scenario: A Case Study of Beijing. Remote Sens. 2021, 13, 637. [Google Scholar] [CrossRef]
- Zhou, L.; Shi, Y.; Zheng, J. Business Circle Identification and Spatiotemporal Characteristics in the Main Urban Area of Yiwu City Based on POI and Night-Time Light Data. Remote Sens. 2021, 13, 5153. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabri, S.; Rajabifard, A.; Chen, Y.; Chen, N.; Sheng, H. Editorial: Geospatial Understanding of Sustainable Urban Analytics Using Remote Sensing. Remote Sens. 2022, 14, 2748. https://doi.org/10.3390/rs14122748
Sabri S, Rajabifard A, Chen Y, Chen N, Sheng H. Editorial: Geospatial Understanding of Sustainable Urban Analytics Using Remote Sensing. Remote Sensing. 2022; 14(12):2748. https://doi.org/10.3390/rs14122748
Chicago/Turabian StyleSabri, Soheil, Abbas Rajabifard, Yiqun Chen, Nengcheng Chen, and Hao Sheng. 2022. "Editorial: Geospatial Understanding of Sustainable Urban Analytics Using Remote Sensing" Remote Sensing 14, no. 12: 2748. https://doi.org/10.3390/rs14122748
APA StyleSabri, S., Rajabifard, A., Chen, Y., Chen, N., & Sheng, H. (2022). Editorial: Geospatial Understanding of Sustainable Urban Analytics Using Remote Sensing. Remote Sensing, 14(12), 2748. https://doi.org/10.3390/rs14122748