Assessment of Peat Extraction Range and Vegetation Succession on the Baligówka Degraded Peat Bog (Central Europe) Using the ALS Data and Orthophotomap
Abstract
:1. Introduction
- Determination of the extent of the bog as well as the drainage and peat exploitation areas.
- Identification of the extent of medium and high vegetation succession on the bog.
- Comparison and evaluation of source materials used in the research.
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
- ALS data—airborne laser scanner data provided by the Polish national ISOK (pol. Informatyczny System Osłony Kraju—IT System of State Protection against natural hazards) in standard I for areas outside large cities. The density of measurement points for this standard is 4–6 points/m2. The declared accuracy of measurement is 0.2 m. Currently, the ISOK database is provided by the website of the polish state geoportal [29] as raw point clouds with classification (bare ground points, points on vegetation on a three-level height scale (low, medium, high), points on artificial surfaces, points reflected from the water surface and unclassified), divided into parts with an area of about 1 sq. km, as well as raster models (DEM) with a resolution of 1 m, and divided into parts with an area of about 4 sq. km. The source material for the research area was created in 2014.
- Orthophotomap of Poland—prepared by the Polish Head Office of Geodesy and Cartography, also available via the geoportal website as downloadable spatial data. The orthophotomap used in the study was created on 1 August 2015 in two variants: RGB (natural colors) and CIR (color infrared). The spatial resolution of the material is 0.25 m.
- Digital elevation model (DEM) using data reflected from the ground surface,
- Digital surface model (DSM) using data reflected from the ground surface and low, medium and high vegetation.
- The border of the bog was marked out along the range of agricultural land visible as a complex of plots separated by agricultural balks [28];
- The border between the dome and the ecotone zone was drawn along the steep slope visible in the model as a narrow line with a much higher slope value (30–70 degrees) compared to the adjacent areas that are almost flat [25];
- The ranges of industrial and artisanal peat extraction sites have been determined based on the linear depressions of the drainage system and low escarpment on the border of the industrial exploitation area. In high-resolution models showing small landforms (shaded relief model, slope model, etc.), a grid of regular linear depressions—drainage ditches is visible. In addition, the peat extraction area on the dome is about 1–2 m lower than the rest of the dome [21]. An additional subdivision of the industrial peat extraction site was determined on the basis of the differences in the intensity of extraction visible in the model—greater density of the drainage grid, between them there are linear wide depressions caused by peat extraction. The sites of ongoing artisanal peat extraction were additionally confirmed in the literature [3] and during field observations [28].
3. Results
3.1. Range, Division and Drainage System of Baligówka Peat Bog
3.2. Assesment of Medium and High Vegetation Succession
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Savenije, H.H.G.; Hoekstra, A.Y.; van der Zaag, P. Evolving water science in the Anthropocene. Hydrol. Earth Syst. Sci. 2014, 18, 319–332. [Google Scholar] [CrossRef] [Green Version]
- Lipka, K. Peat cover and water resources of peat deposits in the upper Warta basin. Infrastruct. Ecol. Rural Areas 2008, 5, 63–70. [Google Scholar]
- Łajczak, A. Reduction of the extent of peat deposits and their water retention capacity in the Orawa-Nowy Targ Basin and Bieszczady Mts. due to human activity. Prz. Geol. 2013, 61, 532–540. [Google Scholar]
- Zając, E.; Lipka, K. Wielofunkcyjność torfowisk w środowisku przyrodniczym. Aura 2005, 4, 7–8. [Google Scholar]
- Tobolski, K. Issues of peat bogs in forest areas. Stud. I Mater. CEPL 2007, 9, 541–549. [Google Scholar]
- Minayeva, T.Y.; Bragg, O.M.; Sirin, A.A. Towards ecosystem-based restoration of peatland biodiversity. Mires Peat 2016, 16, 1–36. [Google Scholar] [CrossRef]
- Słowiński, M.; Lamentowicz, M.; Łuców, D.; Barabach, J.; Brykała, D.; Tyszkowski, S.; Pieńczewska, A.; Śnieszko, Z.; Dietze, E.; Jażdżewski, D.; et al. Palaeoceological and historical data as an important tool in ecosystem management. J. Environ. Manag. 2019, 236, 755–768. [Google Scholar] [CrossRef]
- Marcisz, K.; Czerwiński, S.; Lamentowicz, M.; Łuców, D.; Słowiński, M. How palaeoceology can suport peatland restoration. Pages Mag. 2022, 30, 12–13. [Google Scholar] [CrossRef]
- Grzybowski, M.; Glińska-Lewczuk, K. The principal threats to the peatland habitats, in the continental bioregion of Central Europe—A case study of peatland conservation in Poland. J. Nat. Conserv. 2020, 53, 12778. [Google Scholar] [CrossRef]
- Pleskot, K.; Apolinarska, K.; Cwynar, L.C.; Kotrys, B.; Lamentowicz, M. The late-Holocene relationship between peatland watertable depth and summer temperature in northern Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 586, 110758. [Google Scholar] [CrossRef]
- Łyszczarz, R.; Suś, R. The dynamics of ground waters and hydrogenic soil subsidence in the Bydgoszcz Canal Valley. Water-Environ. Rural Areas 2009, 9, 163–175. [Google Scholar]
- Fiałkiewicz-Kozieł, B.; Smieja-Król, B.; Palowski, B. Heavy metal accumulation in two peat bogs from southern Poland. Studia Quat. 2011, 28, 17–24. [Google Scholar]
- Pawełczyk, F.; Bloom, K.; Jucha, W.; Michczyński, A.; Okupny, D.; Sikorski, J.; Tomkowiak, J.; Zając, E.; Fagel, N. Reconstruction of atmospheric lead and heavy metal pollution in the Otrębowskie Brzegi peatland (S Poland). Geol. Quarterly 2019, 63, 568–585. [Google Scholar] [CrossRef] [Green Version]
- Warburton, J. Peat landslides. Landslide hazards, Risks, and Disaster. Hazards Disaster Ser. 2015, 6, 159–190. [Google Scholar] [CrossRef]
- Malec, M.; Klatka, S.; Ryczek, M. Wpływ antropopresji na dynamikę wzrostu warstwy akrotelmowej na torfowisku wysokim Baligówka w Kotlinie Orawsko-Nowotarskiej. Acta Sci. Pol. Form. Circumiectus 2015, 14, 149–160. [Google Scholar] [CrossRef]
- Zając, E.; Zarzycki, J.; Ryczek, M. Substrate quality and spontaneous revegetation of extracted peatland: Case study of an abandoned Polish mountain bog. Mires Peat 2018, 12, 14. [Google Scholar] [CrossRef]
- Tannenberger, F.; Tegetmayer, C.; Busse, S.; Barthelmes, A.; Shumka, S.; Mariné, A.M.; Jenderedjian, K.; Steiner, G.M.; Essl, F.; Etzold, J.; et al. The peatland map of Europe. Mires Peat 2017, 19, 22. [Google Scholar] [CrossRef]
- Żurek, S. The peat deposits of Poland against the peat zones of Europe. Dok. Geogr. IGiPZ PAN 1987, 4, 84. [Google Scholar]
- Lipka, K.; Kosiński, K. Torfowiska w okolicy Czarnego Dunajca na tle sieci hydrograficznej. In Sesja Naukowa “Melioracje Terenów Górskich a Ochrona Środowiska”; Akademia Rolnicza: Kraków, Poland, 1993; pp. 197–209. [Google Scholar]
- Referowska-Chodak, E. The role of nature reserves in the protection of forest wetlands. Stud. I Mater. CEPL 2017, 51, 195–205. [Google Scholar]
- Łajczak, A. Historyczne formy użytkowania torfowisk Orawsko-Nowotarskich i zmiana ich powierzchni w XIX i XX w. Probl. Zagospod. Ziem Górskich 2001, 47, 55–73. [Google Scholar]
- Łajczak, A. Natura 2000 in Poland, Area PLH120016 the Orawsko-Podhalańskie Peatlands; W. Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Poland, 2007; p. 139. [Google Scholar]
- Malec, M.; Ryczek, M.; Klatka, S.; Kruk, E. Przebieg procesu torfotwórczego na zdegradowanym torfowisku Baligówka. Acta Sci. Pol. Form. Circumiectus 2016, 15, 91–100. [Google Scholar] [CrossRef]
- Koczur, A. Influence of peat exploitation on vegetation on the Puścizna Wielka peat bog in the Orawsko-Nowotarska Basin (Western Carpathians, S Poland). Chrońmy Przyr. Ojczystą 2008, 64, 25–44. [Google Scholar]
- Jucha, W.; Mareczka, P.; Okupny, D. Using remote sensing materials to assess the effets of peat extraction on the morphology and vegetation cover of a raised bog (Ludźmierz near Nowy Targ, Southern Poland). Mires Peat 2020, 26, 28. [Google Scholar] [CrossRef]
- Mayner, K.M.; Moore, P.; Wilkinson, S.L.; Petrone, R.; Waddington, J.M. Delineating boreal plains bog margin ecotones across hydrogeological settings for wildfire risk management. Wetl. Ecol. Manag. 2018, 26, 1037–1046. [Google Scholar] [CrossRef]
- Koczur, A. Importance of vegetation in the Orawsko-Nowotarskie Peat Bogs to biological diversity in the Polish Carpathians. Acta Agrophys. 2006, 7, 383–393. [Google Scholar]
- Jucha, W.; Karaś, J.; Mareczka, P.; Okupny, D. Mokradła i torfowiska jako temat zajęć terenowych w edukacji geograficznej. Ann. Univ. Paedagog. Crac. Stud. Geogr. 2020, 14, 203–221. [Google Scholar] [CrossRef]
- Główny Urząd Geodezji i Kartografii—Geoportal Infrastruktury Informacji Przestrzennej. Available online: http://www.geoportal.gov.pl/ (accessed on 30 April 2022).
- Szostak, M.; Wężyk, P.; Tompalski, P. Aerial orthophoto and airborne laser scanning as monitoring tools for land cover dynamics: A case study from the Milicz Forest District (Poland). Pure Appl. Geophys. 2014, 171, 857–866. [Google Scholar] [CrossRef] [Green Version]
- Kolecka, N. Height of successional vegetation indices moment of agricultural land abandonment. Remote Sens. 2018, 10, 1568. [Google Scholar] [CrossRef] [Green Version]
- Czesak, B.; Różycka-Czas, R.; Salata, T.; Dixon-Gough, R.; Hernik, J. Determining the intangible: Detecting land abandonment at local scale. Remote Sens. 2021, 13, 1166. [Google Scholar] [CrossRef]
- Wężyk, P.; Szostak, M.; Tompalski, P. Use of airborne laser scanning data for a revision and update of a Digital Forest Map and its descriptive database: A case study from the Tatra National Park. In The Carpathians: Integrating Nature and Society towards Sustainability, Environmental Science and Engineering; Kozak, J., Ostapowicz, K., Bytnerowicz, A., Wyżga, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 615–627. [Google Scholar] [CrossRef]
- Ozesmi, S.L.; Bauer, M.E. Satellite remote sensing of wetlands. Wetl. Ecol. Manag. 2002, 10, 381–402. [Google Scholar] [CrossRef]
- Chasmer, L.; Kahoney, C.; Millard, K.; Nelson, K.; Peters, D.; Merchand, M.; Hopkinson, C.; Brisco, B.; Niemann, O.; Montgomery, J.; et al. Remote sensing of boreal wetlands 2: Methods for evaluating boreal wetland ecosystem state and drivers of change. Remote Sens. 2020, 12, 1231. [Google Scholar] [CrossRef] [Green Version]
- Czapiewski, S.; Szumińska, D. An overview of remote sensing data applications in peatland research based on works from the period 2010-2021. Land 2022, 11, 24. [Google Scholar] [CrossRef]
- Lamentowicz, M. Identification of natural peatlands in example of Tuchola Forest inspectorate. Stud. I Mater. CEPL 2007, 9, 571–583. [Google Scholar]
- Dronova, I. Object-based image analysis in wetland research: A review. Remote Sens. 2015, 7, 6380–6413. [Google Scholar] [CrossRef] [Green Version]
- Carless, D.; Luscombe, D.J.; Gatis, N.; Anderson, K.; Brazier, R.E. Mapping landscape-scale peatland degradation using airborne lidar and multispectral data. Landsc. Ecol. 2019, 34, 1329–1345. [Google Scholar] [CrossRef] [Green Version]
- Zlinszky, A.; Mücke, W.; Lehner, H.; Briese, C.H.; Pfeifer, N. Categorizing wetland vegetation by airborne laser scanning on Lake Balaton and Kis-Balaton, Hungary. Remote Sens. 2012, 4, 1617–1650. [Google Scholar] [CrossRef] [Green Version]
- Jucha, W.; Franczak, P.; Sadowski, P. Detection of World War II field fortifications using ALS and archival aerial images—German OKH Stellung b1 trenches in the south of the Polish Carpathians. Archaeol. Prospect. 2021, 28, 35–45. [Google Scholar] [CrossRef]
- Bryndal, T.; Kroczak, R. Reconstruction and characterization of the surface drainage system functioning during extreme rainfall: The analysis with use of the ALS LiDAR data—The case study in two small flysch catchments (Outer Carpathian, Poland). Environ. Earth Sci. 2019, 78, 215. [Google Scholar] [CrossRef] [Green Version]
- Kroczak, R.; Bryndal, T.; Żychowski, J. Surface drainage systems operating during heavy rainfall—A comparative analysis between two small flysch catchments located in different physiographic regions of the Western Carpathians (Poland). Water 2022, 14, 482. [Google Scholar] [CrossRef]
- Czerepko, J. A long-term study of successional dynamics in the forest wetlands. For. Ecol. Manag. 2008, 255, 630–642. [Google Scholar] [CrossRef]
- Nieminen, M.; Sarkkola, S.; Sallantaus, T.; Hasselquis, A.M.; Laudon, H. Peatland drainage—A missing link behind increasing TOC concentrations in waters from high latitude forest catchments? Sci. Total Environ. 2021, 774, 145150. [Google Scholar] [CrossRef] [PubMed]
- Schubert, T. Removing trees and shrubs form mires—A method of an active mire conservation. Stud. Limnol. Telmatol. 2010, 4, 75–84. [Google Scholar]
- Kochanowska, R.; Prajs, B.; Prajs, J. Floristic studies of the Reptowo peatland. Water-Environ. Rural Areas 2001, 1, 221–232. [Google Scholar]
- Kucharski, L.; Kurzac, M.; Rakowska, B.; Sitkowska, M. Changes in the flora and vegetation of the Torfowisko Rąbień near Łódź (Poland), and their proposed conservation methods. Nat. Conserv. 2004, 60, 49–62. [Google Scholar]
- Sotek, Z.; Stasińska, M.; Malinowski, R.; Gamrat, R.; Gałczyńska, M. Birch Bog on anthropogenically transformed raised bogs. A case study from Pomerania (Poland). Water 2019, 11, 1224. [Google Scholar] [CrossRef] [Green Version]
- Jasnowski, M. Aktualny stan i program ochrony torfowisk w Polsce. Chrońmy Przyr. Ojczystą 1977, 33, 18–29. [Google Scholar]
- Tobolski, K. Biogenic accumulation environments in lakes and peatlands. In Deposits of the Biogenic Accumulation Reservoirs; Miotk-Szpiganowicz, G., Tobolski, K., Zachowicz, J., Eds.; Polish Geological Institute: Gdańsk, Poland, 2005; pp. 34–42. [Google Scholar]
- Przybyła, K. Bór na Czerwonem—90 years of active protection. Successes and failures. Stud. I Mater. CEPL 2017, 51, 230–238. [Google Scholar]
- Zarządzenie Regionalnego Dyrektora Ochrony Środowiska w Krakowie z dn. 22.02.2019 w Sprawie Ustanowienia Planu Zadań Ochronnych dla Obszaru Natura 2000 Torfowiska Orawsko-Nowotarskie PLH120016. Dz. Urz. Województwa Małopolskiego, Kraków. 2019; p. 1617. Available online: http://edziennik.malopolska.uw.gov.pl/WDU_K/2019/1617/akt.pdf (accessed on 30 April 2022).
- Jędryka, E. Technical potentials of affecting River Valley with the wetland habitats in order to restitute them. Water Environ. Rural Areas 2001, 1, 197–210. [Google Scholar]
Section | Area (ha) | Drainage System Length (km) | Density (km/sq. km) |
---|---|---|---|
Total peat bog area | 265.5 | 28.12 | 10.59 |
| 159.6 | 18.91 | 36.86 |
| 51.3 | 18.91 | 11.85 |
19.7 | 11.02 | 55.81 | |
31.6 | 7.89 | 24.99 | |
7.3 | 0 | n/a | |
4.4 | 0 | n/a | |
2.9 | 0 | n/a | |
101.0 | 0 | n/a | |
| 105.9 | 9.21 | 8.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jucha, W.; Mareczka, P.; Okupny, D. Assessment of Peat Extraction Range and Vegetation Succession on the Baligówka Degraded Peat Bog (Central Europe) Using the ALS Data and Orthophotomap. Remote Sens. 2022, 14, 2817. https://doi.org/10.3390/rs14122817
Jucha W, Mareczka P, Okupny D. Assessment of Peat Extraction Range and Vegetation Succession on the Baligówka Degraded Peat Bog (Central Europe) Using the ALS Data and Orthophotomap. Remote Sensing. 2022; 14(12):2817. https://doi.org/10.3390/rs14122817
Chicago/Turabian StyleJucha, Witold, Paulina Mareczka, and Daniel Okupny. 2022. "Assessment of Peat Extraction Range and Vegetation Succession on the Baligówka Degraded Peat Bog (Central Europe) Using the ALS Data and Orthophotomap" Remote Sensing 14, no. 12: 2817. https://doi.org/10.3390/rs14122817
APA StyleJucha, W., Mareczka, P., & Okupny, D. (2022). Assessment of Peat Extraction Range and Vegetation Succession on the Baligówka Degraded Peat Bog (Central Europe) Using the ALS Data and Orthophotomap. Remote Sensing, 14(12), 2817. https://doi.org/10.3390/rs14122817