Influence of Land Use and Topographic Factors on Soil Organic Carbon Stocks and Their Spatial and Vertical Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil Sampling
2.3. Soil Analysis and SOC Stock Calculations
2.4. Spatial Modeling
2.5. Spatial Extrapolation to the Fairview Series
3. Results
3.1. Measured Values of Soil Organic Carbon and Bulk Density
3.2. SOC Stocks and Their Monetary Value
3.3. SOC Stock Spatial Distribution for Prairie Grass
4. Discussion
4.1. Land Use Effects with Soil Depth on SOC Stocks
4.2. Spatial Prediction and Extrapolation Uncertainty
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hillel, D.; Rosenweig, C. Soil Carbon and Climate Change: Carbon Exchange in the Terrestrial Domain and the Role of Agriculture. Crop. Soils 2009, 5, 5–10. [Google Scholar]
- Matson, P.A.; Parton, W.J.; Power, A.G.; Swift, M.J. Agricultural Intensification and Ecosystem Properties. Science 1997, 277, 504–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Six, J.; Paustian, K. Aggregate-Associated Soil Organic Matter as an Ecosystem Property and a Measurement Tool. Soil Biol. Biochem. 2014, 68, A4–A9. [Google Scholar] [CrossRef]
- Stott, D.; Kennedy, A.; Cambardella, C. Impact of Soil Organisms and Organic Matter on Soil Structure. In Soil Quality and Soil Erosion; Lal, R., Ed.; CRC Press: Boca Roton, FL, USA, 1999; pp. 57–74. [Google Scholar]
- Lal, R. Carbon Sequestration. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 815–830. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Climate Change and Food Security Soil Carbon Sequestration Impacts on Global. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metz, B.; Davidson, O.; Bosch, P.; Dave, R.; Meyer, L. Contribution of Working Group III to the Fourth Assessment Report of the IPCC. Climate Change 2007 Mitigation of Climate Change; IPCC: Geneva, Switzerland, 2007; ISBN 978-0521-88011-4. [Google Scholar]
- Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the IPCC; Cambridge University Press: New York, NY, USA, 2001; ISBN 0521-80767-0. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; Matthews, J.B.R.; Berger, S.; Huang, M.; Yelekçi, O.; Yu, R.; et al. Climate Change 2021: The Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report of the IPCC; Cambridge University Press: New York, NY, USA, 2021; ISBN 978-92-9169-158-6. [Google Scholar]
- Lal, R.; Kimble, J.; Follett, R.; Cole, C. The Potential of US Cropland to Sequester Carbon and Mitigate the Greenhouse Effect; CRC Press LLC: Boca Roton, FL, USA, 1999. [Google Scholar]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.S.; Cheng, K.; Das, B.S.; et al. Soil Carbon 4 per Mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Soussana, J.F.; Lutfalla, S.; Ehrhardt, F.; Rosenstock, T.; Lamanna, C.; Havlík, P.; Richards, M.; Wollenberg, E.; Chotte, J.L.; Torquebiau, E.; et al. Matching Policy and Science: Rationale for the ‘4 per 1000—Soils for Food Security and Climate’ Initiative. Soil Tillage Res. 2019, 188, 3–15. [Google Scholar] [CrossRef]
- Adhikari, K.; Owens, P.R.; Libohova, Z.; Miller, D.M.; Wills, S.A.; Nemecek, J. Assessing Soil Organic Carbon Stock of Wisconsin, USA and Its Fate under Future Land Use and Climate Change. Sci. Total Environ. 2019, 667, 833–845. [Google Scholar] [CrossRef]
- Burke, I.C.; Yonker, C.M.; Parton, W.J.; Cole, C.V.; Flach, K.; Schimel, D.S. Texture, Climate, and Cultivation Effects on Soil Organic Matter Content in U.S. Grassland Soils. Soil Sci. Soc. Am. J. 1989, 53, 800–805. [Google Scholar] [CrossRef]
- Jenny, H. Factors of Soil Formation, a System of Quantitative Pedology. Agron. J. 1941, 33, 857–858. [Google Scholar] [CrossRef]
- Kern, J.S. Spatial Patterns of Soil Organic Carbon in the Contiguous United States. Soil Sci. Soc. Am. J. 1994, 58, 439–455. [Google Scholar] [CrossRef]
- Parton, W.J.; Schimel, D.S.; Cole, C.V.; Ojima, D.S. Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands. Soil Sci. Soc. Am. J. 1987, 51, 1173–1179. [Google Scholar] [CrossRef]
- Guillaume, T.; Makowski, D.; Libohova, Z.; Bragazza, L.; Sallaku, F.; Sinaj, S. Soil Organic Carbon Saturation in Cropland-Grassland Systems: Storage Potential and Soil Quality. Geoderma 2022, 406, 115529. [Google Scholar] [CrossRef]
- Da Silva, A.P.; Nadler, A.; Kay, B.D. Factors Contributing to Temporal Stability in Spatial Patterns of Water Content in the Tillage Zone. Soil Tillage Res. 2001, 58, 207–218. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.W.; Reicosky, D.C.; Bai, L.Y.; Lindstrom, M.J.; Li, L. Using 137Cs and 210Pbex for Quantifying Soil Organic Carbon Redistribution Affected by Intensive Tillage on Steep Slopes. Soil Tillage Res. 2006, 86, 176–184. [Google Scholar] [CrossRef]
- Moorman, T.B.; Cambardella, C.A.; James, D.E.; Karlen, D.L.; Kramer, L.A. Quantification of Tillage and Landscape Effects on Soil Carbon in Small Iowa Watersheds. Soil Tillage Res. 2004, 78, 225–236. [Google Scholar] [CrossRef]
- Ritchie, J.C.; McCarty, G.W. 137Cesium and Soil Carbon in a Small Agricultural Watershed. Soil Tillage Res. 2003, 69, 45–51. [Google Scholar] [CrossRef]
- Pierson, F.B.; Mulla, D.J. Aggregate Stability in the Palouse Region of Washington: Effect of Landscape Position. Soil Sci. Soc. Am. J. 1990, 54, 1407–1412. [Google Scholar] [CrossRef]
- Thompson, J.A.; Kolka, R.K.; Thompson, J.A. Soil Carbon Storage Estimation in a Forested Watershed Using Quantitative Soil-Landscape Modeling. Soil Sci. Soc. Am. J. 1990, 69, 1086–1093. [Google Scholar] [CrossRef] [Green Version]
- Conant, R.T.; Ryan, M.G.; Ågren, G.I.; Birge, H.E.; Davidson, E.A.; Eliasson, P.E.; Evans, S.E.; Frey, S.D.; Giardina, C.P.; Hopkins, F.M.; et al. Temperature and Soil Organic Matter Decomposition Rates—Synthesis of Current Knowledge and a Way Forward. Glob. Chang. Biol. 2011, 17, 3392–3404. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The Vertical Distribution of Soil Organic Carbon and its Relation to Climate and Vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Follett, R.F.; Stewart, C.E.; Pruessner, E.G.; Kimble, J.M. Effects of Climate Change on Soil Carbon and Nitrogen Storage in the US Great Plains. J. Soil Water Conserv. 2012, 67, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Batlle-Bayer, L.; Batjes, N.H.; Bindraban, P.S. Changes in Organic Carbon Stocks upon Land Use Conversion in the Brazilian Cerrado: A Review. Agric. Ecosyst. Environ. 2010, 137, 47–58. [Google Scholar] [CrossRef]
- Muñoz-Rojas, M.; Jordán, A.; Zavala, L.M.; de la Rosa, D.; Abd-Elmabod, S.K.; Anaya-Romero, M. Impact of Land Use and Land Cover Changes on Organic Carbon Stocks in Mediterranean Soils (1956–2007). Land Degrad. Dev. 2015, 26, 168–179. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, M.; Adhikari, K.; Zhuang, Q.; Bian, Z.; Wang, Y.; Jin, X. Anthropogenic Controls over Soil Organic Carbon Distribution from the Cultivated Lands in Northeast China. Catena 2022, 210, 105897. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Limited Effect of Organic Matter on Soil Available Water Capacity. Eur. J. Soil Sci. 2018, 69, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Fraterrigo, J.M.; Turner, M.G.; Pearson, S.M.; Dixon, P. Effects of Past Land Use on Spatial Heterogeneity of Soil Nutrients in Southern Appalachian Forests. Ecol. Monogr. 2005, 75, 215–230. [Google Scholar] [CrossRef]
- Smith, P. Soil Organic Carbon Dynamics and Land-Use Change. In Land Use and Soil Resources; Springer: Dordrecht, The Netherlands, 2008; pp. 9–22. [Google Scholar] [CrossRef]
- Bae, J.; Ryu, Y. Land Use and Land Cover Changes Explain Spatial and Temporal Variations of the Soil Organic Carbon Stocks in a Constructed Urban Park. Landsc. Urban Plan. 2015, 136, 57–67. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil Carbon Stocks and Land Use Change: A Meta Analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Deng, L.; Zhu, G.; Tang, Z.; Shangguan, Z. Global Patterns of the Effects of Land-Use Changes on Soil Carbon Stocks. Glob. Ecol. Conserv. 2016, 5, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Guillaume, T.; Bragazza, L.; Levasseur, C.; Libohova, Z.; Sinaj, S. Long-Term Soil Organic Carbon Dynamics in Temperate Cropland-Grassland Systems. Agric. Ecosyst. Environ. 2021, 305, 107184. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Yesilonis, I.D.; Golubiewski, N.E. A Comparison of Soil Organic Carbon Stocks between Residential Turf Grass and Native Soil. Urban Ecosyst. 2008, 12, 45–62. [Google Scholar] [CrossRef]
- Howard, D.M.; Howard, P.J.A.; Howard, D.C. A Markov Model Projection of Soil Organic Carbon Stores Following Land Use Changes. J. Environ. Manag. 1995, 45, 287–302. [Google Scholar] [CrossRef]
- Kaye, J.P.; McCulley, R.L.; Burke, I.C. Carbon Fluxes, Nitrogen Cycling, and Soil Microbial Communities in Adjacent Urban, Native and Agricultural Ecosystems. Glob. Chang. Biol. 2005, 11, 575–587. [Google Scholar] [CrossRef]
- Kaye, J.P.; Groffman, P.M.; Grimm, N.B.; Baker, L.A.; Pouyat, R. A Distinct Urban Biogeochemistry? Trends Ecol. Evol. 2006, 21, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Batjes, N.H. Total Carbon and Nitrogen in the Soils of the World. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E.; Minasny, B.; Bou Kheir, R.; Greve, M.B.; Greve, M.H. Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark. PLoS ONE 2014, 9, e105519. [Google Scholar] [CrossRef]
- Garten, C.T.; Ashwood, T.L. Landscape Level Differences in Soil Carbon and Nitrogen: Implications for Soil Carbon Sequestration. Glob. Biogeochem. Cycles 2002, 16, 61-1–61-14. [Google Scholar] [CrossRef]
- Jackson, R.B.; Lajtha, K.; Crow, S.E.; Hugelius, G.; Kramer, M.G.; Piñeiro, G. The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 419–445. [Google Scholar] [CrossRef] [Green Version]
- Viaud, V.; Angers, D.A.; Walter, C. Toward Landscape-Scale Modeling of Soil Organic Matter Dynamics in Agroecosystems. Soil Sci. Soc. Am. J. 2010, 74, 1847–1860. [Google Scholar] [CrossRef]
- Hishi, T.; Hirobe, M.; Tateno, R.; Takeda, H. Spatial and Temporal Patterns of Water-Extractable Organic Carbon (WEOC) of Surface Mineral Soil in a Cool Temperate Forest Ecosystem. Soil Biol. Biochem. 2004, 36, 1731–1737. [Google Scholar] [CrossRef]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On Digital Soil Mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Hengl, T.; de Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global Gridded Soil Information Based on Machine Learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [Green Version]
- Minasny, B.; McBratney, A.B. Digital Soil Mapping: A Brief History and Some Lessons. Geoderma 2016, 264, 301–311. [Google Scholar] [CrossRef]
- Chen, S.; Martin, M.P.; Saby, N.P.A.; Walter, C.; Angers, D.A.; Arrouays, D. Fine Resolution Map of Top- and Subsoil Carbon Sequestration Potential in France. Sci. Total Environ. 2018, 630, 389–400. [Google Scholar] [CrossRef]
- Mulder, V.L.; Lacoste, M.; Richer-de-Forges, A.C.; Arrouays, D. GlobalSoilMap France: High-Resolution Spatial Modelling the Soils of France up to Two Meter Depth. Sci. Total Environ. 2016, 573, 1352–1369. [Google Scholar] [CrossRef]
- Arrouays, D.; Leenaars, J.G.B.; Richer-de-Forges, A.C.; Adhikari, K.; Ballabio, C.; Greve, M.; Grundy, M.; Guerrero, E.; Hempel, J.; Hengl, T.; et al. Soil Legacy Data Rescue via GlobalSoilMap and Other International and National Initiatives. GeoResJ 2017, 14, 1–19. [Google Scholar] [CrossRef]
- Rossiter, D.G.; Poggio, L.; Beaudette, D.; Libohova, Z. How Well Does Predictive Soil Mapping Represent Soil Geography? An Investigation from the USA. Soil Discuss. 2021, 1–35. [Google Scholar] [CrossRef]
- Libohova, Z.; Wills, S.; Odgers, N.P. Legacy Data Quality and Uncertainty Estimation for United States GlobalSoilMap Products. In GlobalSoilMap: Basis of the Global Spatial Soil Information System, Proceedings of the 1st GlobalSoilMap Conference, Orléans, France, 7–9 October 2013; CRC Press: Boca Raton, FL, USA, 2014; pp. 63–68. [Google Scholar] [CrossRef]
- Minasny, B.; Sulaeman, Y.; Mcbratney, A.B. Is Soil Carbon Disappearing? The Dynamics of Soil Organic Carbon in Java. Glob. Chang. Biol. 2011, 17, 1917–1924. [Google Scholar] [CrossRef]
- Soil Survey Staff. Gridded Soil Survey Geographic (gSSURGO) Database for North Carolina. United States Department of Agriculture, Natural Resources Conservation Service. Available online: https://gdg.sc.egov.usda.gov/ (accessed on 30 May 2020).
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Official Soil Series Descriptions. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/ (accessed on 30 May 2022).
- FAO. Measuring and Modelling Soil Carbon Stocks and Stock Changes in Livestock Production Systems: Guidelines for Assessment; FAO: Rome, Italy, 2019; p. 170. [Google Scholar]
- Minasny, B.; McBratney, A.B. A Conditioned Latin Hypercube Method for Sampling in the Presence of Ancillary Information. Comput. Geosci. 2006, 32, 1378–1388. [Google Scholar] [CrossRef]
- Wilson, J.; Gallant, J. Terrain Analysis: Principles and Applications; Wiley: New York, NY, USA, 2000; pp. 51–85. [Google Scholar]
- Beven, K.J.; Kirkby, M.J. A Physically Based, Variable Contributing Area Model of Basin Hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- MacMillan, R.A.; Pettapiece, W.W.; Nolan, S.C.; Goddard, T.W. A Generic Procedure for Automatically Segmenting Landforms into Landform Elements Using DEMs, Heuristic Rules and Fuzzy Logic. Fuzzy Sets Syst. 2000, 113, 81–109. [Google Scholar] [CrossRef]
- Schoeneberger, P.; Wysocki, D.; Benham, E. Soil Survey Staff Field Book for Describing and Sampling Soils, 3rd ed.; National Soil Survey Center, National Resources Conservation Service: Lincoln, NE, USA, 2012.
- Burt, R. Soil Survey Staff Kellogg Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report No. 42, Version 5.0; Natural Resources Conservation Service Soils: Washington, DC, USA, 2014.
- California Carbon Allowance (CCA) Program. Available online: https://www.californiacarbon.info (accessed on 6 January 2022).
- Odeh, I.O.A.; McBratney, A.B.; Chittleborough, D.J. Further Results on Prediction of Soil Properties from Terrain Attributes: Heterotopic Cokriging and Regression-Kriging. Geoderma 1995, 67, 215–226. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.M.; Stein, A. A Generic Framework for Spatial Prediction of Soil Variables Based on Regression-Kriging. Geoderma 2004, 120, 75–93. [Google Scholar] [CrossRef] [Green Version]
- R Studio Team. R Studio; R Studio Team: Boston, MA, USA, 2021. [Google Scholar]
- Guo, Z.; Adhikari, K.; Chellasamy, M.; Greve, M.B.; Owens, P.R.; Greve, M.H. Selection of Terrain Attributes and Its Scale Dependency on Soil Organic Carbon Prediction. Geoderma 2019, 340, 303–312. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Malone, B.P.; Wheeler, I. Digital Mapping of Soil Carbon. Adv. Agron. 2013, 118, 1–47. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Adhikari, K.; Mishra, U.; Owens, P.R.; Libohova, Z.; Wills, S.A.; Riley, W.J.; Hoffman, F.M.; Smith, D.R. Importance and Strength of Environmental Controllers of Soil Organic Carbon Changes with Scale. Geoderma 2020, 375, 114472. [Google Scholar] [CrossRef]
- Ramcharan, A.; Hengl, T.; Nauman, T.; Brungard, C.; Waltman, S.; Wills, S.; Thompson, J. Soil Property and Class Maps of the Conterminous United States at 100-Meter Spatial Resolution. Soil Sci. Soc. Am. J. 2018, 82, 186–201. [Google Scholar] [CrossRef] [Green Version]
- Seybold, C.A.; Ferguson, R.; Wysocki, D.; Bailey, S.; Anderson, J.; Nester, B.; Schoeneberger, P.; Wills, S.; Libohova, Z.; Hoover, D.; et al. Application of Mid-Infrared Spectroscopy in Soil Survey. Soil Sci. Soc. Am. J. 2019, 83, 1746–1759. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Sensitivity of Soil Organic Carbon Stocks and Fractions to Different Land-Use Changes across Europe. Geoderma 2013, 192, 189–201. [Google Scholar] [CrossRef]
- Martin, M.P.; Wattenbach, M.; Smith, P.; Meersmans, J.; Jolivet, C.; Boulonne, L.; Arrouays, D. Spatial Distribution of Soil Organic Carbon Stocks in France. Biogeosciences 2011, 8, 1053–1065. [Google Scholar] [CrossRef] [Green Version]
- Wiesmeier, M.; Barthold, F.; Blank, B.; Kögel-Knabner, I. Digital Mapping of Soil Organic Matter Stocks Using Random Forest Modeling in a Semi-Arid Steppe Ecosystem. Plant Soil 2011, 340, 7–24. [Google Scholar] [CrossRef]
- Davis, J.E.; Mcrae, C.; Estep, B.L.; Barden, L.S.; Matthews, J.F. Vascular Flora of Piedmont Prairies: Evidence from Several Prairie Remnants. Castanea 2002, 67, 1–12. [Google Scholar]
- Hurisso, T.T.; Norton, J.B.; Norton, U. Soil Profile Carbon and Nitrogen in Prairie, Perennial Grass–Legume Mixture and Wheat-Fallow Production in the Central High Plains, USA. Agric. Ecosyst. Environ. 2013, 181, 179–187. [Google Scholar] [CrossRef]
- Libbey, K.; Hernández, D.L. Depth Profile of Soil Carbon and Nitrogen Accumulation over Two Decades in a Prairie Restoration Experiment. Ecosystems 2021, 24, 1348–1360. [Google Scholar] [CrossRef]
- Vicente, L.C.; Gama-Rodrigues, E.F.; Gama-Rodrigues, A.C. Soil Carbon Stocks of Ultisols under Different Land Use in the Atlantic Rainforest Zone of Brazil. Geoderma Reg. 2016, 7, 330–337. [Google Scholar] [CrossRef]
- Nwaogu, C.; Okeke, O.J.; Fashae, O.; Nwankwoala, H. Soil Organic Carbon and Total Nitrogen Stocks as Affected by Different Land Use in an Ultisol in Imo Watershed, Southern Nigeria. Chem. Ecol. 2018, 34, 854–870. [Google Scholar] [CrossRef]
- O’Rourke, S.M.; Angers, D.A.; Holden, N.M.; McBratney, A.B. Soil Organic Carbon across Scales. Glob. Chang. Biol. 2015, 21, 3561–3574. [Google Scholar] [CrossRef]
- Don, A.; Schumacher, J.; Scherer-Lorenzen, M.; Scholten, T.; Schulze, E.-D. Spatial and Vertical Variation of Soil Carbon at Two Grassland Sites—Implications for Measuring Soil Carbon Stocks. Geoderma 2007, 141, 272–282. [Google Scholar] [CrossRef]
- Rodríguez Martín, J.A.; Álvaro-Fuentes, J.; Gonzalo, J.; Gil, C.; Ramos-Miras, J.J.; Grau Corbí, J.M.; Boluda, R. Assessment of the Soil Organic Carbon Stock in Spain. Geoderma 2016, 264, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, B.M.; Sitaula, B.K.; Singh, B.R.; Bajracharya, R.M. Soil Organic Carbon Stocks in Soil Aggregates under Different Land Use Systems in Nepal. Nutr. Cycl. Agroecosyst. 2004, 70, 201–213. [Google Scholar] [CrossRef]
- Vanhala, P.; Karhu, K.; Tuomi, M.; Sonninen, E.; Jungner, H.; Fritze, H.; Liski, J. Old Soil Carbon Is More Temperature Sensitive than the Young in an Agricultural Field. Soil Biol. Biochem. 2007, 39, 2967–2970. [Google Scholar] [CrossRef]
- Rosenbloom, N.A.; Harden, J.W.; Neff, J.C.; Schimel, D.S. Geomorphic Control of Landscape Carbon Accumulation. J. Geophys. Res. Biogeosci. 2006, 111, G01004. [Google Scholar] [CrossRef]
- Singh, P.; Benbi, D.K. Soil Organic Carbon Pool Changes in Relation to Slope Position and Land-Use in Indian Lower Himalayas. Catena 2018, 166, 171–180. [Google Scholar] [CrossRef]
- Mishra, U.; Lal, R.; Liu, D.; van Meirvenne, M. Predicting the Spatial Variation of the Soil Organic Carbon Pool at a Regional Scale. Soil Sci. Soc. Am. J. 2010, 74, 906–914. [Google Scholar] [CrossRef]
- Chaney, N.W.; Minasny, B.; Herman, J.D.; Nauman, T.W.; Brungard, C.W.; Morgan, C.L.S.; McBratney, A.B.; Wood, E.F.; Yimam, Y. POLARIS Soil Properties: 30-m Probabilistic Maps of Soil Properties Over the Contiguous United States. Water Resour. Res. 2019, 55, 2916–2938. [Google Scholar] [CrossRef]
- Grüneberg, E.; Schöning, I.; Kalko, E.K.V.; Weisser, W.W. Regional Organic Carbon Stock Variability: A Comparison between Depth Increments and Soil Horizons. Geoderma 2010, 155, 426–433. [Google Scholar] [CrossRef]
- Finke, P.; Hartwich, R.; Dudal, R.; Ibañez, J.; Jamagne, M.; King, D.; Montanarella, L.; Yassolglou, N. Georeferenced Soil Database for Europe: Manual of Procedures; Version 1.1; Office for Official Publications of the European Communities: Luxembourg, 1998. [Google Scholar]
- Grunwald, S.; Thompson, J.A.; Boettinger, J.L. Digital Soil Mapping and Modeling at Continental Scales: Finding Solutions for Global Issues. Soil Sci. Soc. Am. J. 2011, 75, 1201–1213. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B. Digital Soil Assessments and beyond. In Proceedings of the 5th Global Workshop on Digital Soil Mapping, Sydney, Australia, 10–13 April 2012; CRC Press: Boca Raton, FL, USA, 2012. ISBN 9780415621557. [Google Scholar]
- Pouyat, R.V.; Yesilonis, I.D.; Nowak, D.J. Carbon Storage by Urban Soils in the United States. J. Environ. Qual. 2006, 35, 1566–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Relative | Topographic | ||||
---|---|---|---|---|---|
Sample | Elevation | Slope | SAGA | Position | Land |
ID | (m) | Position | WI | Index | Use |
Point 0 | 254.2 | 0.17 | 3.51 | −0.77 | Prairie |
Point 1 | 254.1 | 0.03 | 4.58 | −1.04 | Prairie |
Point 2 | 260.2 | 0.44 | 4.74 | 2.17 | Prairie |
Point 3 | 255.4 | 0 | 5.54 | 0.5 | Prairie |
Point 4 | 263.8 | 0.01 | 4.97 | −1.12 | Prairie |
Point 5 | 245.8 | 0.02 | 5.99 | −3.51 | Prairie |
Point 6 | 257.2 | 0.18 | 5.05 | 0.89 | Prairie |
Point 7 | 245.0 | 0 | 5.51 | −0.36 | Prairie |
Point 8 | 249.5 | 0 | 6.67 | −1.69 | Prairie |
Point 9 | 250.5 | 0.17 | 3.39 | 0.59 | Prairie |
Point 10 | 254.4 | 0.58 | 3.97 | 1.04 | Prairie |
Point 11 | 248.1 | 0.02 | 4.69 | −2.14 | Prairie |
Point 12 | 248.2 | 0.06 | 4.08 | −1.44 | Prairie |
Point 13 | 251.0 | 0.24 | 3.99 | −0.4 | Prairie |
Point 14 | 254.6 | 0.14 | 4.5 | −0.03 | Prairie |
Point 15 | 254.3 | 0.22 | 3.54 | 0.08 | Prairie |
Point 16 | 253.9 | 0.16 | 5.37 | 0.24 | Prairie |
Point 17 | 253.5 | 1,00 | 2.45 | 2.14 | Prairie |
Point 18 | 249.1 | 0 | 7.16 | −2.08 | Prairie |
Point 19 | 249.0 | 0.01 | 6.77 | −2.09 | Prairie |
Point 20 | 253.0 | NA | NA | NA | Lawn Grass |
Point 21 | 252.5 | NA | NA | NA | Lawn Grass |
Point 22 | 251.3 | NA | NA | NA | Lawn Grass |
Point 23 | 243.1 | NA | NA | NA | Lawn Grass |
Point 24 | 249.9 | NA | NA | NA | Lawn Grass |
Point 25 | 249.5 | NA | NA | NA | Forest |
Point 26 | 257.7 | NA | NA | NA | Forest |
Point 27 | 254.7 | NA | NA | NA | Forest |
Point 28 | 254.7 | NA | NA | NA | Forest |
Point 29 | 250.4 | NA | NA | NA | Forest |
Soil Characteristics | Horizon | Prairie Grass | Lawn Grass | Forest |
---|---|---|---|---|
Average Depth (cm) | Ap | 26.33 (12.06, 3) | 16.33 (3.51, 3) | 11.83 (1.26, 3) |
Bt | 13.00 (3.46, 3) | 14.33 (2.89, 3) | 18.75 (0.35, 2) | |
BC | 16.00 (2.82, 2) | 19.33 (6.11, 3) | 25.67 (10.79, 3) | |
Soil Organic Carbon (wt%) | Ap | 1.88 (0.76, 20) | 2.29 (1.39, 5) | 2.59 (0.89, 5) |
Bt | 0.67 (0.45, 20) | 0.92 (0.32, 5) | 0.85 (0.37, 5) | |
BC | 0.67 (0.32, 20) | 0.61 (0.19, 5) | 0.87 (0.59, 5) | |
Bulk Density (g cm−3) | Ap | 1.19 (0.16, 12) | 1.34 (0.11, 9) | 0.96 (0.40, 9) |
Bt | 1.51 (0.19, 9) | 1.55 (0.13, 9) | 1.32 (0.24, 6) | |
BC | 1.15 (0.28, 6) | 1.21(0.26, 9) | 0.93 (0.24, 9) | |
SOC Stocks (Mg ha−1) | Ap | 46.97 (14.70, 20) | 47.88 (29.53, 5) | 28.92 (9.69, 5) |
Bt | 13.16 (8.55, 20) | 20.39 (7.42, 5) | 20.90 (7.65, 5) | |
BC | 18.59 (19.42, 20) | 14.13 (5.79, 5) | 23.04 (22.88, 5) |
Parameters | Ap | Bt | BC | |
---|---|---|---|---|
Variogram | Nugget | 207.5 | 0.56 | 280.7 |
Sill | 258 | 29 | 261 | |
Range | 4.8 | 48 | 306 | |
Kappa | 0.3 | 0.4 | 0 | |
Cross | R2 | 0.3 | 0.7 | 0.24 |
ME | 1.1 | 0.6 | −3.7 | |
MAE | 23.7 | 6.4 | 17.52 | |
RMSE | 27.89 | 7.4 | 27.95 | |
p-value | 0.23 | 0.004 | 0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blackburn, K.W.; Libohova, Z.; Adhikari, K.; Kome, C.; Maness, X.; Silman, M.R. Influence of Land Use and Topographic Factors on Soil Organic Carbon Stocks and Their Spatial and Vertical Distribution. Remote Sens. 2022, 14, 2846. https://doi.org/10.3390/rs14122846
Blackburn KW, Libohova Z, Adhikari K, Kome C, Maness X, Silman MR. Influence of Land Use and Topographic Factors on Soil Organic Carbon Stocks and Their Spatial and Vertical Distribution. Remote Sensing. 2022; 14(12):2846. https://doi.org/10.3390/rs14122846
Chicago/Turabian StyleBlackburn, Kyle W., Zamir Libohova, Kabindra Adhikari, Charles Kome, Xander Maness, and Miles R. Silman. 2022. "Influence of Land Use and Topographic Factors on Soil Organic Carbon Stocks and Their Spatial and Vertical Distribution" Remote Sensing 14, no. 12: 2846. https://doi.org/10.3390/rs14122846
APA StyleBlackburn, K. W., Libohova, Z., Adhikari, K., Kome, C., Maness, X., & Silman, M. R. (2022). Influence of Land Use and Topographic Factors on Soil Organic Carbon Stocks and Their Spatial and Vertical Distribution. Remote Sensing, 14(12), 2846. https://doi.org/10.3390/rs14122846