A Coupled Evaluation of Operational MODIS and Model Aerosol Products for Maritime Environments Using Sun Photometry: Evaluation of the Fine and Coarse Mode
Abstract
:1. Introduction
2. Methods, Data, and Models
2.1. MODIS
- (1)
- QA flags: QA flags in the range of 1 (marginal) and 3 (very good) did not alter our findings. Therefore, both data flags are suggested for use in order to include the largest number of data points. As a matter of procedure, data flag 0 (low confidence) data were not examined. A flag of 0 indicates an internal inconsistency in the retrieval or that the scene was in glint or had too few “clear/non-cloudy” pixels for higher confidence. Elevating data points from a flag 0 to a flag for acceptable use is left to another investigation;
- (2)
- Aggregation size and temporal window: Aggregations were reduced to +/−0.25 degrees and +/−1 h. Under most circumstances, this allowed for only one or two retrievals to be aggregated. Restricted windows resulted in a 70% loss of the data matches and did not change the study findings;
- (3)
- Negative retrievals: The MODIS DT retrieval allows for negative AOD outcomes. Individual negative level 2 retrievals were found to account for 0.1% of all retrievals, and their inclusion or omission did not alter the study findings;
- (4)
- Geometry: Biases reported here are largely not dependent on scattering or scan angle. The expectation was a ~+0.05 high bias for the 50 points where scattering angles were >170° (i.e., backscattering), but little change in RMSD. These are not enough points to change any reported number. This does not mean that such dependencies do not exist, but they are not statistically significant in comparisons to MAN.
2.2. ICAP-MME C4C Model Products
2.3. Maritime Aerosol Network (MAN) and Aerosol Robotic Network (AERONET)
3. Results 1: Global Comparisons
3.1. MODIS-Model Comparisons
3.2. Global Comparisons to MAN Data
3.3. Consensus Members
3.4. Potential Environmental Factors
3.4.1. Cloud Cover
3.4.2. Wind Speed
4. Discussion and Regional Examples
4.1. Littoral Example: African Land Plumes
4.1.1. Cabo Verde as an Indicator of a Dust Dominated Regime
4.1.2. Sahel and Gulf of Guinea as an Indicator of a Mixed Environment
4.1.3. Central Africa and Biomass Burning
4.2. Latidudinal Dependencies of Remote Maritime Environments
4.2.1. Southern Oceans
4.2.2. Tropical and Subtropical Pacific
4.2.3. Northern Mid Latitudes
5. Conclusions
- (1)
- Because the contributing C4C models assimilate MODIS AOD550, Aqua MODIS and the C4C generally compare well to each other in their AOD550 fields in the maritime environment. However, areas of correlated bias were identified, even for pairwise samples. Areas of spatial bias were found to be even more pronounced in a fine versus coarse AOD550. Since the contributing C4C models assimilate only total AOD550 and not products related to aerosol size (Ångström Exponent, FAOD550, or CAOD550), the contribution of individual aerosol species to total AOD550 and the partitioning to fine and coarse aerosol modes depends on the parameterizations within each respective model;
- (2)
- The most prominent areas of spatially correlated bias in the maritime environment between MODIS DT and the C4C are near terrestrial source regions. MODIS DT has notably higher AOD550 and FAOD550 than the C4C for the Saharan dust plume but lower FAOD550 for Central Africa biomass burning advection. For CAOD550, MODIS has much higher values than the C4C offshore of the Sahel, Gulf of Guinea, and Arabian Gulf regions;
- (3)
- For more remote marine environments, there is a small but persistent latitudinal difference between MODIS and the C4C. MODIS generates higher AODs over the tropics to subtropics (up to 0.03 relative to a 0.15 baseline), as well as in the Arctic and Antarctic. The C4C, on the other hand, provides slightly higher AOD550 and CAOD550 in the mid-latitudes. In nearly all latitudes, the MODIS retrieval provides higher FAOD550 and η550 than the models. Some sources of disagreement are obvious, like the C4C underestimating the transport of high AOD events from boreal biomass burning to the sub-arctic and arctic. Over most of the remote oceans, the cause of the observed differences is not immediately clear.
- (1)
- While correlations of MODIS to MAN are very good, Aqua MODIS retrievals have slight but persistent diagnostic high biases in AOD ranging from + 0.02 to +0.04, and RMSDs of 0.02–0.05 for AOD550 < 0.28. Terra MODIS has even higher values in bias and RMSD by an additional +0.01 above Aqua. These biases and performances have long been known in the community. However, the presented analysis indicates that the biases are likely associated with a systematically high biased η550 and FAOD550 rather than CAOD550 in the retrieval. This is consistent with brief reports in the literature of potentially high bias in retrieved Ångström Exponent in the MODIS maritime AOD product [29]. Therefore, the community should consider MODIS DT AOD550, FAOD550, and η550 as high biased;
- (2)
- The C4C also showed a good correlation with MAN and showed similar but slightly lower biases and RMSDs as its MODIS counterparts for AOD550 < 0.28. The C4C is also highly biased in η550 and FAOD550 rather than CAOD550, even though the models only assimilate total AOD550. As a consensus, the C4C provided better global performance than any individual model, and all four C4C members have similar signs of bias in each region. Therefore, the community should also consider the C4C AODs, FAOD550, and η550 as high biased for AOD550 < 0.28. The slightly better skill in the models over the fundamental MODIS retrieval for a global dataset is understandable given that all data assimilation systems quality assure and, to some degree, bias correct retrieved AOD550 values before assimilation;
- (3)
- As AOD550 increases from 0.28 to over 1, the MODIS retrievals begin to outperform the C4C in both bias and RMSD. In general, MODIS is still positively biased in AOD550 and FAOD550. Whereas Aqua MODIS remains unbiased in the coarse mode with increasing AOD550, MODIS Terra becomes further biased in CAOD550. In contrast, the C4C has a distinct low bias that is consistent with previously published analyses of the C4C against AERONET [30];
- (4)
- Both pairwise and prognostic error analyses were performed, including those data points that intersect with both Terra and Aqua MODIS, and the results indicate that the study findings do not appear to be sample biased in regard to the total number of samples. Further, by examining prognostic versus diagnostic error, it was found that when a lower AOD or η550 value is retrieved by MODIS or predicted by the C4C, it is more likely to be near that value. Nevertheless, the signs of the biases largely remain for prognostic versus diagnostic error. Finally, the estimated clear-sky bias of the overall MODIS dataset (estimated by taking the ratio of C4C data with corresponding MODIS Aqua data to all data) is similar to other studies [15] with the clear sky maritime environment having lower AODs on the order of 10–20%. The exception to this is the North Atlantic, where clear sky conditions have higher AOD550, likely due to biomass burning.
- (1)
- While the complete MODIS DT dataset has only a small overall clear sky sampling bias, verification with MAN shows a well correlated and increasing positive bias with increasing cloud fraction. The Aqua MODIS bias at 80% cloud fraction reaches levels of +0.05, +0.04, and +0.01 for AOD550, FAOD550, and CAOD550, respectively, and explains significant positive outliers for lower MAN AODs. Terra MODIS showed similar results with a +0.01 further bias added to AOD550 and FAOD550. Therefore, positive error in MODIS DT AOD550 retrievals due to the presence of clouds manifests itself with the retrieved fine mode, not the coarse mode, as one would expect for the addition of spectrally flat radiances from, say, an under-restrictive cloud mask. While it is believed that 3D radiation effects and cloud detrainment may contribute, the bias is constant as a function of background AOD550. Thus, the suspected issue remains with the MODIS cloud mask and how the retrieval parses radiances to its fine and coarse modes. A second possibility is that Rayleigh scattering contributions need to be updated to account for 3D effects. It should be noted that given the probability of a MAN observation is increased for low cloud fractions, but global maritime cloud fractions are high, MODIS errors diagnosed in this study are likely underestimated, perhaps by 50% or more;
- (2)
- The C4C also shows some very slight +/−0.01 positive and negative cloud fraction dependency with FAOD550 and CAOD550 respectively, connected to 80 and 90% cloud fractions. This may be related to meteorological conditions associated with high cloud cover;
- (3)
- For winds less than 12 m s−1, both MODIS DT and the C4C generally have constant biases in AOD550 components. For higher wind speed, MODIS instruments develop a more positive FAOD550 bias, perhaps due to the lower boundary condition or further confusion of coarse mode for the fine mode. The C4C has a very slight −0.01 bias in CAOD550 for wind speeds less than 12 m s−1, changing signs to a positive bias in CAOD550 in the consensus and in all members for wind speeds beyond this point (although one member has a notably stronger bias than the others). This suggests that the C4C models are overproducing sea salt and hence CAOD550 for the mid-latitude oceans. This is especially true for the southern oceans, where the CAOD550 bias may be as much as +0.04.
- (1)
- In order to investigate terrestrial aerosol-related sources, three areas of the Atlantic associated with African land plumes were examined in detail, including the Cape Verde region for dust, the Sahel/Gulf of Guinea for aerosol mixtures, and Central Africa for biomass burning. (i) For the Saharan plume, all products do well for dust, although the C4C does indeed under-predict significant events. In regards to the differences in FAOD550 and η550, the evaluation indicates that MODIS does assign a slightly higher FAOD550 and η550 than the C4C for dust, further compounded by the high AOD550 for significant events. Further investigation is needed to assess if MODIS DT optical models need to be adjusted to reduce the fine mode fraction for dust. (ii) In the mixed aerosol environments of the Gulf of Guinea, all products perform admirably but with biases consistent in the global analysis. (iii) For Central Africa, there is a slight positive bias in AOD and FAOD550 in all products. However, the C4C struggles with the coarse mode in the littoral regions just offshore, perhaps due to unresolved mesoscale phenomena. Based on an examination of the St. Helena site, which is located far offshore, the C4C recovers skill in CAOD550, and it is MODIS that demonstrates occasional positive outliers;
- (2)
- The second set of in-depth studies was performed to investigate the latitudinal differences between MODIS and the C4C. (i) In the southern oceans (<30°S), C4C models only slightly overproduce the coarse mode against MAN. For the fine mode, there are significant outliers for MODIS and some C4C members. However, MAN data appears to be sample-biased towards calmer conditions and the edges of the high wind region, with very pristine conditions being sampled. Compared to Macquarie Island AERONET site within the southern ocean high wind belt, MODIS AODs, errors, and biases are slightly bigger. The C4C and its members have higher biases than MODIS DT in all components. This appears to be associated with both sea salt and secondary overproduction. (ii) For the tropics to subtropics (30°S−30°N), MODIS DT and the C4C performed reasonably well against MAN but with clear high biases in AOD550 and FAOD550, including significant outliers in MODIS DT FAOD550, presumably due to cloud mask shortcomings. At the Kwajalein Atoll AERONET site, one of the most remote within the network, MODIS has good skill in AOD550 and CAOD550 yet appears to be highly biased in FAOD550 with virtually no skill. Further, at Kwajalein, the C4C clearly outperformed MODIS DT. MODIS deficiencies appear to be associated with cloud-related biases as well as, perhaps, the aerosol optical models. (iii) Finally, for the northern mid-latitudes, we examined the 30°N to 60°N dataset, along with the Graciosa Island, Azores AERONET site. Overall, both MODIS and the C4C showed the best skill in AOD550 of any remote maritime region investigated for most parameters. However, high biases in AOD550 and FAOD550 were persistent. For unknown reasons, unlike Aqua, Terra MODIS has virtually no skill in CAOD550 at the Graciosa Island AERONET site.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charlson, R.; Lovelock, J.; Andreae, M.; Warren, S. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987, 326, 655. [Google Scholar] [CrossRef]
- Clarke, A.D.; Ki, Z.; Litchy, M. Aerosol dynamics in the equatorial Pacific marine boundary layer: Microphysics, diurnal cycles and entrainment. Geophys. Res. Lett. 1996, 23, 733–736. [Google Scholar] [CrossRef]
- Clarke, A.D.; Freitag, S.; Simpson, R.M.C.; Hudson, J.G.; Howell, S.G.; Brekhovskikh, V.L.; Campos, T.; Kapustin, V.N.; Zhou, J. Free troposphere as a major source of CCN for the equatorial pacific boundary layer: Long-range transport and teleconnections. Atmos. Chem. Phys. 2013, 13, 7511–7529. [Google Scholar] [CrossRef] [Green Version]
- Mechoso, C.R.; Wood, R.; Weller, R.; Bretherton, C.S.; Clarke, A.D.; Coe, H.; Fairall, C.; Farrar, J.T.; Feingold, G.; Garreaud, R.; et al. Ocean–Cloud–Atmosphere–Land Interactions in the Southeastern Pacific: The VOCALS Program. Bull. Am. Meteorol. Soc. 2014, 95, 357–375. [Google Scholar] [CrossRef] [Green Version]
- Quinn, P.; Coffman, D.; Johnson, J.; Upchurch, L.M.; Bates, T.S. Small fraction of marine cloud condensation nuclei made up of sea spray aerosol. Nat. Geosci. 2017, 10, 674–679. [Google Scholar] [CrossRef]
- Twohy, C.H.; DeMott, P.J.; Russell, L.M.; Toohey, D.W.; Rainwater, B.; Geiss, R.; Sanchez, K.J.; Lewis, S.; Roberts, G.C.; Humphries, R.S.; et al. Cloud-nucleating particles over the Southern Ocean in a changing climate. Earth’s Future 2021, 9, e2020EF001673. [Google Scholar] [CrossRef]
- Ayers, G.P.; Cainey, J.M. The CLAW hypothesis: A review of the major developments. Environ. Chem. 2007, 4, 366–374. [Google Scholar] [CrossRef]
- Carslaw, K.S.; Boucher, O.; Spracklen, D.V.; Mann, G.W.; Rae, J.G.L.; Woodward, S.; Kulmala, M. A review of natural aerosol interactions and feedbacks within the Earth system. Atmos. Chem. Phys. 2010, 10, 1701–1737. [Google Scholar] [CrossRef] [Green Version]
- Behrenfeld, M.J.; Moore, R.H.; Hostetler, C.A.; Graff, J.; Gaube, P.; Russell, L.M.; Chen, G.; Doney, S.C.; Giovannoni, S.; Liu, H.; et al. The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES), Science Motive and Mission Overview. Front. Mar. Sci. 2019, 6, 122. [Google Scholar] [CrossRef]
- Regayre, L.A.; Schmale, J.; Johnson, J.S.; Tatzelt, C.; Baccarini, A.; Henning, S.; Yoshioka, M.; Stratmann, F.; Gysel-Beer, M.; Grosvenor, D.P.; et al. The value of remote marine aerosol measurements for constraining radiative forcing uncertainty. Atmos. Chem. Phys. 2020, 20, 10063–10072. [Google Scholar] [CrossRef]
- Spencer, R.S.; Levy, R.C.; Remer, L.A.; Mattoo, S.; Hlavka, D.; Arnold, G.; Platnick, S.; Marshak, A.; Wilcox, E. Exploring aerosols near clouds with high-spatial-resolution aircraft remote sensing during SEAC4RS. J. Geophys. Res. 2019, 124, 2148–2173. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, J.; Reid, J.S.; Holben, B.; Hyer, E.J.; Curtis, C. An analysis of the collection 5 MODIS over-ocean aerosol optical depth product for its implication in aerosol assimilation. Atmos. Chem. Phys. 2011, 11, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Sayer, A.M.; Hsu, N.C.; Lee, J.; Kim, W.V.; Dubovik, O.; Dutcher, S.T.; Dutcher, S.T.; Huang, D.; Litvinov, P.; Lyapustin, A.; et al. Validation of SOAR VIIRS over-water aerosol retrievals and context within the global satellite aerosol data record. J. Geophys. Res. Atmos. 2018, 123, 13496–13526. [Google Scholar] [CrossRef]
- Schutgens, N.; Sayer, A.M.; Heckel, A.; Hsu, C.; Jethva, H.; de Leeuw, G.; Leonard, P.J.T.; Levy, R.C.; Lipponen, A.; Lyapustin, A.; et al. An AeroCom–AeroSat study: Intercomparison of satellite AOD datasets for aerosol model evaluation. Atmos. Chem. Phys. 2020, 20, 12431–12457. [Google Scholar] [CrossRef]
- Zhang, J.; Reid, J.S. An analysis of clear sky and contextual biases using an operational over ocean MODIS aerosol product. Geophys. Res. Lett. 2009, 36, L15824. [Google Scholar] [CrossRef] [Green Version]
- Gliß, J.; Mortier, A.; Schulz, M.; Andrews, E.; Balkanski, Y.; Bauer, S.E.; Benedictow, A.M.K.; Bian, H.; Checa-Garcia, R.; Chin, M.; et al. AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations. Atmos. Chem. Phys. 2021, 21, 87–128. [Google Scholar] [CrossRef]
- Reid, J.; Eck, T.F.; Christopher, S.A.; Hobbs, P.V.; Holben, B. Use of the Ångstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil. J. Geophys. Res. Atmos. 1999, 104, 27473–27489. [Google Scholar] [CrossRef]
- O’Neill, N.T.; Eck, T.F.; Smirnov, A.; Holben, B.N.; Thulasiraman, S. Spectral discrimination of coarse and fine mode optical depth. J. Geophys. Res. Atmos. 2003, 108, 4559. [Google Scholar] [CrossRef]
- Kaku, K.C.; Reid, J.S.; O’Neill, N.T.; Quinn, P.K.; Coffman, D.J.; Eck, T.F. Verification and application of the extended spectral deconvolution algorithm (SDA+) methodology to estimate aerosol fine and coarse mode extinction coefficients in the marine boundary layer. Atmos. Meas. Tech. 2014, 7, 3399–3412. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, A.; Holben, B.N.; Dubovic, O.; Fruin, R.; Eck, T.F.; Slutsker, I. Maritime component in aerosol optical models from Aerosol Robotic Network data. J. Geophys. Res. 2003, 108, 4033. [Google Scholar] [CrossRef]
- Reid, J.S.; Brooks, B.; Crahan, K.K.; Hegg, D.A.; Eck, T.F.; O’Neill, N.; de Leeuw, G.; Reid, E.A.; Anderson, K.D. Reconciliation of coarse mode sea-salt aerosol particle size measurements and parameterizations at a subtropical ocean receptor site. J. Geophys. Res. 2006, 111, D02202. [Google Scholar] [CrossRef] [Green Version]
- Sayer, A.M.; Smirnov, A.; Hsu, N.C.; Holben, B.N. A pure marine aerosol model, for use in remote sensing applications. J. Geophys. Res. 2012, 117, D05213. [Google Scholar] [CrossRef] [Green Version]
- Marshak, A.; Ackerman, A.; Da Silva, A.; Eck, T.; Holben, B.; Kahn, R.; Kleidman, R.; Knobelspiesse, K.; Levy, R.; Lyapustin, A.; et al. Aerosol properties in cloudy environments from remote sensing observations: A review of the current state of knowledge. Bull. Amer. Meteorol. Soc. 2021, 102, E2177–E2197. [Google Scholar] [CrossRef]
- Zhang, J.; Reid, J.S.; Westphal, D.L.; Baker, N.L.; Hyer, E.J. A system for operational aerosol optical depth data assimilation over global oceans. J. Geophys. Res. Atmos. 2008, 113, D10208. [Google Scholar] [CrossRef]
- Benedetti, A.; Morcrette, J.-J.; Boucher, O.; Dethof, A.; Engelen, R.J.; Fisher, M.; Flentje, H.; Huneeus, N.; Jones, L.; Kaiser, J.W.; et al. Aerosol analysis and fore-cast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation. J. Geophys. Res. 2009, 114, D13205. [Google Scholar] [CrossRef] [Green Version]
- Rubin, J.I.; Reid, J.S.; Hansen, J.A.; Anderson, J.L.; Holben, B.N.; Xian, P.; Westphal, D.L.; Zhang, J. Assimilation of AERONET and MODIS AOT observations using variational and ensemble data assimilation methods and its impact on aerosol forecasting skill. J. Geophys. Res. Atmos. 2017, 122, 4967–4992. [Google Scholar] [CrossRef] [Green Version]
- Ross, A.D.; Holz, R.E.; Quinn, G.; Reid, J.S.; Xian, P.; Turk, F.J.; Posselt, D.J. Exploring the first aerosol indirect effect over Southeast Asia using a 10-year collocated MODIS, CALIOP, and model dataset. Atmos. Chem. Phys. 2018, 18, 12747–12764. [Google Scholar] [CrossRef] [Green Version]
- Xian, P.; Zhang, J.; Toth, T.D.; Sorenson, B.; Colarco, P.R.; Kipling, Z.; O’Neill, N.T.; Hyer, E.J.; Campbell, J.R.; Reid, J.S.; et al. Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses, with implications for the impact of regional biomass burning processes. Atmos. Chem. Phys. 2021. preprint. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Sessions, W.R.; Reid, J.S.; Benedetti, A.; Colarco, P.R.; da Silva, A.; Lu, S.; Sekiyama, T.; Tanaka, T.Y.; Baldasano, J.M.; Basart, S.; et al. Development towards a global operational aerosol consensus: Basic climatological characteristics of the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME). Atmos. Chem. Phys. 2015, 15, 335–362. [Google Scholar] [CrossRef] [Green Version]
- Xian, P.; Reid, J.S.; Hyer, E.J.; Sampson, C.R.; Rubin, J.I.; Ades, M.; Asencio, N.; Basart, S.; Benedetti, A.; Bhattacharjee, P.S.; et al. Current state of the global operational aerosol multi-model ensemble: An update from the International Cooperative for Aerosol Prediction (ICAP). Q. J. R. Meteorol. Soc. 2019, 145 (Suppl. S1), 176–209. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, A.; Holben, B.N.; Slutsker, I.; Giles, D.M.; McClain, C.R.; Eck, T.F.; Sakerin, S.M.; Macke, A.; Croot, P.; Zibordi, G.; et al. Maritime Aerosol Network as a component of Aerosol Robotic Network. J. Geophys. Res. 2009, 114, D06204. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, A.; Holben, B.N.; Giles, D.M.; Slutsker, I.; O’Neill, N.T.; Eck, T.F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S.M.; et al. Maritime aerosol network as a component of AERONET–first results and comparison with global aerosol models and satellite retrievals. Atmos. Meas. Tech. 2011, 4, 583–597. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Schwartz, M.J.; Santee, M.L.; Pumphrey, H.C.; Manney, G.L.; Lambert, A.; Livesey, N.J.; Millán, L.; Neu, J.L.; Read, W.G.; Werner, F. Australian New Year’s pyroCb impact on stratospheric composition. Geophys. Res. Lett. 2020, 47, e2020GL090831. [Google Scholar] [CrossRef]
- Sanap, S.D. Global and regional variations in aerosol loading during COVID-19 imposed lockdown. Atmos. Environ. 2021, 246, 118132. [Google Scholar] [CrossRef]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.-J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.-J.; Meister, G. Effect of MODIS Terra radiometric calibration improvements on Collection 6 Deep Blue aerosol products: Validation and Terra/Aqua consistency. J. Geophys. Res. Atmos. 2015, 120, 12,157–12,174. [Google Scholar] [CrossRef] [Green Version]
- Christensen, M.; Zhang, J.; Reid, J.S.; Zhang, X.; Hyer, E.J.; Smirnov, A. A theoretical study of the effect of subsurface oceanic bubbles on the enhanced aerosol optical depth band over the southern oceans as detected from MODIS and MISR. Atmos. Meas. Tech. 2015, 8, 2149–2160. [Google Scholar] [CrossRef] [Green Version]
- Alfaro-Contreras, R.J.; Zhang, J.S.; Reid, S.; Christopher, S. A study of 15-year aerosol optical thickness and direct shortwave aerosol radiative effect trends using MODIS, MISR, CALIOP and CERES. Atmos. Chem. Phys. 2017, 17, 13849–13868. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Sun, L.; Huang, B.; Bilai, M.; Zhang, Z.; Wang, L. Verification, improvement and application of aerosol optical depths in China Part 1: Inter-comparison of NPP-VIIRS and Aqua-MODIS. Atmos. Environ. 2018, 175, 221–223. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Sun, L.; Peng, Y.; Liu, L.; He, L.; Qin, W.; Cribb, M. MODIS Collection 6.1 3 km resolution aerosol optical depth product: Global evaluation and uncertainty analysis. Atmos. Environ. 2020, 240, 117768. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Su, T.; Cribb, M. Reconstructing 1-Km-Resolution High-Quality PM2.5 Data Records from 2000 to 2018 in China: Spatiotemporal Variations and Policy Implications. Remote Sensing Environ. 2021, 252, 112136. [Google Scholar] [CrossRef]
- Sanders, F. Skill in forecasting daily temperature and precipitation: Some experimental results. Bull. Am. Meteorol. Soc. 1973, 54, 1171–1178. [Google Scholar] [CrossRef]
- Reichler, T.; Kim, J. How well do coupled models simulate today’s climate? Bull. Am. Meteorol. Soc. 2008, 89, 303–311. [Google Scholar] [CrossRef]
- Sampson, C.R.; Franklin, J.L.; Knaff, J.A.; DeMaria, M. Experiments with a Simple Tropical Cyclone Intensity Consensus. Weather Forecast. 2008, 23, 304–312. [Google Scholar] [CrossRef] [Green Version]
- Sansom, P.G.; Stephenson, D.B.; Ferro, C.A.; Zappa, G.; Shaffrey, L. Simple uncertainty frameworks for selecting weighting schemes and interpreting multi-model ensemble climate change experiments. J. Clim. 2013, 26, 4017–4037. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.Y.; Orito, K.; Sekiyama, T.T.; Shibata, K.; Chiba, M.; Tanaka, H. MASINGAR, a global tropospheric aerosol chemical transport model coupled with MRI/JMA98 GCM: Model description. Pap. Meteorol. Geophys. 2003, 53, 119–138. [Google Scholar] [CrossRef] [Green Version]
- Randles, C.A.; da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef]
- Lynch, P.; Reid, J.S.; Westphal, D.L.; Zhang, J.; Hogan, T.F.; Hyer, E.J.; Curtis, C.A.; Hegg, D.A.; Shi, Y.; Campbell, J.R.; et al. An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences. Geosci. Model Dev. 2016, 9, 1489–1522. [Google Scholar] [CrossRef] [Green Version]
- Colarco, P.R.; Darmenov, A.; Xian, P.; Reid, J.S.; daSilva, A.; Pérez García-Pando, C.; Jorba, O.; Kipling, Z.; Rémy, S.; Benedetti, A.; et al. The International Cooperative for Aerosol Prediction (ICAP) perspective on the massive June 2020 Saharan dust event. In Proceedings of the American Geophysical Union 2020 Fall Meeting, San Francisco, CA, USA, 1–17 December 2020. Abstract A016-03. [Google Scholar]
- Xian, P.; Klotzbach, P.J.; Dunion, J.P.; Janiga, M.A.; Reid, J.S.; Colarco, P.R.; Kipling, Z. Revisiting the Relationship between Atlantic Dust and Tropical Cyclone Activity using Aerosol Optical Depth Reanalyses: 2003–2018. Atmos. Chem. Phys. 2020, 20, 15357–15378. [Google Scholar] [CrossRef]
- Clarke, A.; Kapustin, V.; Howell, S.; Moore, K.; Lienert, B.; Masonis, S.; Anderson, T.; Covert, D. Sea-salt size distributions from breaking waves: Implications for marine aerosol production and optical extinction measurements during SEAS. J. Atmos. Oceanic Technol. 2003, 20, 1362–1374. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database–automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef] [Green Version]
- Sinyuk, A.; Holben, B.N.; Eck, T.F.; Giles, D.M.; Slutsker, I.; Korkin, S.; Schafer, J.S.; Smirnov, A.; Sorokin, M.; Lyapustin, A. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2. Atmos. Meas. Tech. 2020, 13, 3375–3411. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. 2000, 105, 20673–20696. [Google Scholar] [CrossRef] [Green Version]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Xian, P.; Giles, D.M.; Sinyuk, A.; Smirnov, A.; Schafer, J.S.; Slutsker, I.; Kim, J.; et al. Observations of the interaction and transport of fine mode aerosols with cloud and/or fog in Northeast Asia from Aerosol Robotic Network and satellite remote sensing. J. Geophys. Res. Atmos. 2018, 123, 5560–5587. [Google Scholar] [CrossRef]
- Reid, J.S.; Hyer, E.J.; Prins, E.M.; Westphal, D.L.; Zhang, J.L.; Wang, J.; Christopher, S.A.; Curtis, C.A.; Schmidt, C.C.; Eleuterio, D.P.; et al. Global monitoring and forecasting of biomass-burning smoke: Description of and lessons from the fire locating and modeling of burning emissions (FLAMBE) Program. IEEE J. Sel. Top. Appl. 2009, 2, 144–162. [Google Scholar] [CrossRef]
- Zhang, J.; Reid, J.S.; Holben, B.N. An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products. Geophys. Res. Lett. 2005, 32, L15803. [Google Scholar] [CrossRef]
- Jaeglé, L.; Quinn, P.K.; Bates, T.S.; Alexander, B.; Lin, J.-T. Global distribution of sea salt aerosols: New constraints from in situ and remote sensing observations. Atmos. Chem. Phys. 2011, 11, 3137–3157. [Google Scholar] [CrossRef] [Green Version]
- Daskalakis, N.; Gallardo, L.; Kanakidou, M.; Nüß, J.R.; Menares, C.; Rondanelli, R.; Thompson, A.M.; Vrekoussis, M. Impact of biomass burning and stratospheric intrusions in the remote South Pacific Ocean troposphere. Atmos. Chem. Phys. 2022, 22, 4075–4099. [Google Scholar] [CrossRef]
- Zhou, Y.; Levy, R.C.; Remer, L.A.; Mattoo, S.; Espinosa, W.R. Dust aerosol retrieval over the oceans with the MODIS/VIIRS dark target algorithm: 2. Nonspherical Dust Model. Earth Space Sci. 2020, 7, e2020EA001222. [Google Scholar] [CrossRef]
- Toth, T.D.; Zhang, J.; Campbell, J.R.; Reid, J.S.; Shi, Y.; Johnson, R.S.; Smirnov, A.; Vaughan, M.A.; Winker, D.M. Investigating enhanced Aqua MODIS aerosol optical depth retrievals over the mid-to-high latitude Southern Oceans through intercomparison with co-located CALIOP, MAN, and AERONET data sets. J. Geophys. Res. Atmos. 2013, 118, 4700–4714. [Google Scholar] [CrossRef]
- Martins, J.V.; Tanré, D.; Remer, L.; Kaufman, Y.; Mattoo, S.; Levy, R. MODIS Cloud screening for remote sensing of aerosols over oceans using spatial variability. Geophys. Res. Lett. 2002, 29, MOD4-1–MOD4-4. [Google Scholar] [CrossRef] [Green Version]
- Stubenrauch, C.J.; Rossow, W.B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Di Girolamo, L.; Getzewich, B.; Guignard, A.; Heidinger, A.; et al. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel. Bull. Am. Meteorol. Soc. 2013, 94, 1031–1049. [Google Scholar] [CrossRef]
- Marshak, A.; Wen, G.; Coakley, J.A.; Remer, L.A.; Loeb, N.G.; Cahalan, R.F. A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds. J. Geophys. Res. 2008, 113, D14S17. [Google Scholar] [CrossRef] [Green Version]
- Schutgens, N.A.J.; Gryspeerdt, E.; Weigum, N.; Tsyro, S.; Goto, D.; Schulz, M.; Stier, P. Will a perfect model agree with perfect observations? The impact of spatial sampling. Atmos. Chem. Phys. 2016, 16, 6335–6353. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Reid, J.S. MODIS aerosol product analysis for data assimilation: Assessment of over-ocean level 2 aerosol optical thickness retrievals. J. Geophys. Res. 2006, 111, D22207. [Google Scholar] [CrossRef]
- Kleidman, R.G.; Smirnov, A.; Levy, R.C.; Mattoo, S.D.; Tanre, D. Evaluation and Wind Speed Dependence of MODIS Aerosol Retrievals Over Open Ocean. IEEE Trans. Geosci. Remote Sens. 2012, 50, 429–435. [Google Scholar] [CrossRef]
- Smirnov, A.; Sayer, A.M.; Holben, B.N.; Hsu, N.C.; Sakerin, S.M.; Macke, A.; Nelson, N.B.; Courcoux, Y.; Smyth, T.J.; Croot, P.; et al. Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network. Atmos. Meas. Tech. 2012, 5, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Merkulova, L.; Freud, E.; Martensson, E.M.; Nilsson, E.D.; Glantz, P. Effect of wind speed on Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth over the Northern Pacific. Atmosphere 2018, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Andreas, E.L. A new sea spray generation function for wind speeds up to 32 m s−1. J. Phys. Ocean. 1998, 28, 2175–2184. [Google Scholar] [CrossRef] [Green Version]
- Meskhidze, N.; Petters, M.D.; Tsigaridis, K.; Bates, T.; O’Dowd, C.; Reid, J.; Lewis, E.R.; Gantt, B.; Anguelova, M.D.; Bhave, P.V.; et al. Production mechanisms, number concentration, size distribution, chemical composition, and optical properties of sea spray aerosols. Atmos. Sci. Lett. 2013, 14, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Keene, W.C.; Long, M.S.; Reid, J.S.; Frossard, A.A.; Kieber, D.J.; Maben, J.R.; Bates, T.S. Factors that modulate properties of primary marine aerosol generated from ambient seawater on ships at sea. J. Geophys. Res. Atmos. 2017, 122, 11961–11990. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Mukelbai, M.M.; Piketh, S.J.; Torres, O.; Jethva, H.T.; Hyer, E.J.; Ward, D.E.; Dubovik, O.; et al. A seasonal trend of single scattering albedo in southern African biomass-burning particles: Implications for satellite products and estimates of emissions for the world’s largest biomass-burning source. J. Geophys. Res. Atmos. 2013, 118, 6414–6432. [Google Scholar] [CrossRef] [Green Version]
- Gassó, S.; Torres, O. Temporal characterization of dust activity in the Central Patagonia desert (years 1964–2017). J. Geophys. Res. Atmos. 2019, 124, 3417–3434. [Google Scholar] [CrossRef] [Green Version]
- Xian, P.; Reid, J.S.; Turk, J.F.; Hyer, E.J.; Westphal, D.L. Impact of modeled versus satellite measured tropical precipitation on regional smoke optical thickness in an aerosol transport model. Geophys. Res. Lett. 2009, 36, L16805. [Google Scholar] [CrossRef]
<0.04 | 0.04–0.08 | 0.08–0.12 | 0.12–0.18 | 0.18–0.28 | 0.28–0.5 | 0.5–0.8 | >0.8 | |
---|---|---|---|---|---|---|---|---|
AOD550 Diagnostic | ||||||||
Terra | 0.03 ± 0.03 | 0.03 ± 0.04 | 0.03 ± 0.04 | 0.04 ± 0.05 | 0.04 ± 0.05 | 0.04 ± 0.09 | 0.13 ± 0.18 | 0.11 ± 0.23 |
Aqua | 0.02 ± 0.02 | 0.02 ± 0.03 | 0.02 ± 0.04 | 0.03 ± 0.05 | 0.02 ± 0.05 | 0.03 ± 0.09 | 0.01 ± 0.15 | 0.02 ± 0.19 |
C4C | 0.02 ± 0.02 | 0.02 ± 0.03 | 0.02 ± 0.04 | 0.01 ± 0.05 | 0.00 ± 0.06 | −0.02 ± 0.09 | 0.08 ± 0.15 | −0.31 ± 0.29 |
AOD550 Prognostic | ||||||||
Terra | 0.00 ± 0.02 | 0.02 ± 0.02 | 0.03 ± 0.03 | 0.04 ± 0.04 | 0.04 ± 0.07 | 0.06 ± 0.07 | 0.09 ± 0.18 | 0.22 ± 0.23 |
Aqua | 0.00 ± 0.02 | 0.01 ± 0.02 | 0.02 ± 0.03 | 0.03 ± 0.04 | 0.03 ± 0.05 | 0.03 ± 0.09 | 0.07 ± 0.11 | 0.13 ± 0.20 |
C4C | 0.01 ± 0.01 | 0.01 ± 0.02 | 0.01 ± 0.03 | 0.02 ± 0.05 | 0.01 ± 0.08 | −0.02 ± 0.12 | −0.04 ± 0.23 | −0.05 ± 0.26 |
FAOD550 Diagnostic | ||||||||
Terra | 0.03 ± 0.02 | 0.03 ± 0.03 | 0.04 ± 0.04 | 0.03 ± 0.04 | 0.04 ± 0.05 | 0.04 ± 0.07 | 0.04 ± 0.09 | 0.03 ± 0.10 |
Aqua | 0.03 ± 0.02 | 0.02 ± 0.02 | 0.02 ± 0.03 | 0.03 ± 0.05 | 0.02 ± 0.06 | 0.03 ± 0.08 | 0.02 ± 0.12 | 0.06 ± 0.13 |
C4C | 0.02 ± 0.02 | 0.02 ± 0.02 | 0.02 ± 0.03 | 0.01 ± 0.04 | 0.02 ± 0.05 | 0.01 ± 0.07 | −0.03 ± 0.08 | −0.07 ± 0.10 |
FAOD550 Prognostic | ||||||||
Terra | 0.01 ± 0.01 | 0.02 ± 0.02 | 0.03 ± 0.03 | 0.04 ± 0.04 | 0.04 ± 0.05 | 0.04 ± 0.06 | 0.06 ± 0.08 | 0.06 ± 0.09 |
Aqua | 0.01 ± 0.01 | 0.02 ± 0.03 | 0.02 ± 0.03 | 0.02 ± 0.04 | 0.03 ± 0.05 | 0.03 ± 0.08 | 0.05 ± 0.11 | 0.07 ± 0.11 |
C4C | 0.01 ± 0.01 | 0.02 ± 0.03 | 0.02 ± 0.03 | 0.03 ± 0.04 | 0.02 ± 0.06 | −0.01 ± 0.10 | −0.01 ± 0.10 | −0.04 ± 0.07 |
CAOD550 Diagnostic | ||||||||
Terra | 0.00 ± 0.02 | 0.00 ± 0.03 | 0.00 ± 0.03 | 0.00 ± 0.04 | 0.00 ± 0.06 | 0.00 ± 0.07 | 0.08 ± 0.15 | 0.08 ± 0.19 |
Aqua | 0.00 ± 0.02 | 0.00 ± 0.03 | 0.00 ± 0.04 | 0.00 ± 0.04 | 0.00 ± 0.05 | 0.00 ± 0.08 | 0.01 ± 0.12 | −0.01 ± 0.12 |
C4C | 0.00 ± 0.01 | 0.00 ± 0.02 | 0.00 ± 0.02 | −0.01 ± 0.04 | −0.02 ± 0.05 | −0.03 ± 0.09 | −0.05 ± 0.15 | −0.23 ± 0.24 |
CAOD550 Prognostic | ||||||||
Terra | 0.00 ± 0.01 | −0.01 ± 0.02 | 0.00 ± 0.02 | 0.01 ± 0.04 | 0.00 ± 0.05 | 0.01 ± 0.07 | 0.03 ± 0.07 | 0.16 ± 0.20 |
Aqua | 0.00 ± 0.01 | −0.01 ± 0.02 | 0.00 ± 0.02 | 0.01 ± 0.04 | 0.01 ± 0.05 | 0.00 ± 0.08 | 0.02 ± 0.08 | −0.05 ± 0.18 |
C4C | 0.00 ± 0.01 | 0.00 ± 0.02 | −0.01 ± 0.03 | −0.01 ± 0.04 | −0.02 ± 0.07 | −0.03 ± 0.10 | −0.03 ± 0.19 | −0.10 ± 0.25 |
η550 < 0.33 | 0.33 < η550 < 0.66 | 0.66 > η550 | |
---|---|---|---|
AOD < 0.28 | |||
FMF Diagnostic | |||
Terra | 0.27 ± 0.21 | 0.19 ± 0.21 | −0.09 ± 0.25 |
Aqua | 0.28 ± 0.21 | 0.16 ± 0.23 | −0.13 ± 0.24 |
C4C | 0.25 ± 0.15 | 0.15 ± 0.16 | −0.14 ± 0.19 |
FMF Prognostic | |||
Terra | −0.11 ± 0.22 | 0.12 ± 0.21 | 0.30 ± 0.20 |
Aqua | −0.15 ± 0.24 | 0.10 ± 0.22 | 0.28 ± 0.24 |
C4C | 0.00 ± 0.16 | 0.11 ± 0.21 | 0.20 ± 0.19 |
AOD > 0.28 | |||
FMF Diagnostic | |||
Terra | 0.08 ± 0.11 | 0.02 ± 0.14 | 0.30 ± 0.20 |
Aqua | 0.13 ± 0.11 | 0.01 ± 0.15 | 0.28 ± 0.24 |
C4C | 0.07 ± 0.13 | −0.11 ± 0.13 | −0.03 ± 0.15 |
FMF Prognostic | |||
Terra | −0.02 ± 0.10 | −0.02 ± 0.14 | 0.00 ± 0.10 |
Aqua | −0.02 ± 0.14 | 0.09 ± 0.16 | 0.05 ± 0.14 |
C4C | 0.00 ± 0.12 | 0.00 ± 0.11 | 0.12 ± 0.18 |
AOD550 Regime | AOD550 | FAOD550 | CAOD550 | |
---|---|---|---|---|
<0.04 | Bias RMSD | 0.02: 0.04, 0.02, 0.02, 0.02 0.02: 0.04, 0.02, 0.03, 0.03 | 0.02: 0.05, 0.01, 0.00, 0.02 0.02: 0.04, 0.01, 0.02, 0.02 | 0.00: 0.00, 0.01, 0.01, 0.00 0.01: 0.01, 0.01, 0.02, 0.01 |
0.04–0.08 | Bias RMSD | 0.02: 0.04, 0.02, 0.02, 0.02 0.03: 0.04, 0.03, 0.04, 0.03 | 0.02: 0.04, 0.01, 0.01, 0.02 0.02: 0.04, 0.02, 0.03, 0.02 | 0.00: 0.00, 0.01, 0.01, −0.01 0.02: 0.03, 0.02, 0.03, 0.02 |
0.08–0.12 | Bias RMSD | 0.02: 0.04, 0.01, 0.01, 0.01 0.04: 0.05, 0.04, 0.05, 0.06 | 0.02: 0.05, 0.01, 0.01, 0.02 0.03: 0.05, 0.03, 0.04, 0.03 | −0.01: −0.01, 0.00, 0.00, −0.02 0.03: 0.04, 0.03, 0.04, 0.05 |
0.12–0.18 | Bias RMSD | 0.01: 0.04, 0.01, 0.01, 0.00 0.05: 0.07, 0.06, 0.08, 0.08 | 0.02: 0.05, 0.01, 0.01, 0.03 0.04: 0.06, 0.04, 0.05, 0.04 | −0.01: −0.01, 0.00, −0.01, −0.02 0.04: 0.05, 0.05, 0.06, 0.07 |
0.18–0.28 | Bias RMSD | 0.00: 0.04, −0.01, 0.00, −0.01 0.06: 0.08, 0.07, 0.10, 0.09 | 0.02: 0.05, −0.01, 0.01, 0.02 0.05: 0.07, 0.05, 0.06, 0.06 | −0.02: −0.02, 0.00, −0.01, −0.03 0.05: 0.06, 0.06, 0.08, 0.08 |
0.28–0.5 | Bias RMSD | −0.02: 0.01, −0.03, −0.02, −0.05 0.09: 0.11, 0.10, 0.19, 0.12 | 0.01: 0.04, −0.03, −0.01, 0.01 0.07: 0.09, 0.07, 0.07, 0.08 | −0.03: −0.03, 0.00, −0.01, −0.06 0.09: 0.09, 0.09, 0.19, 0.10 |
0.5–0.8 | Bias RMSD | −0.08: −0.04, −0.08, −0.07, −0.11 0.15: 0.17, 0.17, 0.30, 0.21 | −0.03: 0.02, −0.06, −0.05, −0.01 0.08: 0.11, 0.09, 0.09, 0.10 | −0.05: −0.06, −0.02, −0.02, −0.10 0.15: 0.13, 0.14, 0.31, 0.21 |
>0.8 | Bias RMSD | −0.31: −0.26, −0.34, −0.28, −0.36 0.29: 0.29, 0.30, 0.34, 0.36 | −0.07: 0.00, −0.11, −0.11, −0.06 0.10: 0.13, 0.10, 0.11, 0.13 | −0.23: −0.26, −0.23, −0.17, −0.30 0.24: 0.25, 0.26, 0.32, 0.29 |
η550 < 0.33 | 0.33 < η550 < 0.66 | 0.66 > η550 | ||
---|---|---|---|---|
AOD550 < 0.28 | Bias RMSD | 0.25: 0.37, 0.16, 0.11, 0.31 0.15: 0.22, 0.16, 0.18, 0.16 | 0.15: 0.29, 0.06, −0.01, 0.22 0.16: 0.21, 0.17, 0.21, 0.17 | −0.14: 0.00, −0.22, −0.29, −0.06 0.19: 0.20, 0.19, 0.28, 0.19 |
AOD550 > 0.28 | Bias RMSD | 0.07: 0.12, −0.03, 0.06, 0.13 0.13: 0.14, 0.10, 0.15, 0.16 | 0.03: 0.09, −0.07, 0.01, 0.10 0.14: 0.18, 0.14, 0.17, 0.18 | −0.03: 0.01, −0.08, −0.08, −0.01 0.15: 0.18, 0.18, 0.16, 0.16 |
Sahara | Sahel–Gulf of Guinea | Central Africa | ||||
---|---|---|---|---|---|---|
AOD550 < 0.28 | AOD550 > 0.28 | AOD550 < 0.28 | AOD550 > 0.28 | AOD550 < 0.28 | AOD550 > 0.28 | |
AOD550 | ||||||
MAN(Obs) | 378: 0.12 ± 0.06 | 167: 0.47 ± 0.16 | 203: 0.20 ± 0.05 | 331: 0.47 ± 0.27 | 0.13 ± 0.05 | 55: 0.42 ± 0.07 |
Terra | 75: 0.04 ± 0.05 | 42: 0.01 ± 0.14 | 45: 0.04 ± 0.04 | 47: 0.02 ± 0.16 | 11: 0.05 ± 0.04 | 8: 0.06 ± 0.08 |
Aqua | 104: 0.03 ± 0.04 | 58: 0.08 ± 0.15 | 61: −0.01 ± 0.06 | 88: −0.01 ± 0.12 | 10: 0.03 ± 0.02 | 22: −0.01 ± 0.10 |
C4C | 378: 0.02 ± 0.04 | 167: −0.03 ± 0.17 | 203: 0.02 ± 0.05 | 331: −0.06 ± 0.12 | 47: 0.03 ± 0.05 | 55: 0.04 ± 0.10 |
FAOD550 | ||||||
MAN(Obs) | 378: 0.04 ± 0.03 | 167: 0.10 ± 0.04 | 203: 0.09 ± 0.04 | 331: 0.15 ± 0.09 | 47: 0.07 ± 0.03 | 55: 0.34 ± 0.08 |
Terra | 74: 0.03 ± 0.03 | 36: 0.03 ± 0.03 | 45: 0.05 ± 0.06 | 41: 0.05 ± 0.06 | 11: 0.04 ± 0.03 | 8: 0.04 ± 0.08 |
Aqua | 97: 0.04 ± 0.05 | 58: 0.08 ± 0.04 | 58: 0.02 ± 0.07 | 82: 0.02 ± 0.08 | 10: 0.00 ± 0.04 | 15: −0.07 ± 0.10 |
C4C | 378: 0.02 ± 0.03 | 167: −0.01 ± 0.06 | 203: 0.03 ± 0.04 | 331: 0.00 ± 0.05 | 47: 0.05 ± 0.03 | 55: 0.08 ± 0.08 |
CAOD550 | ||||||
MAN(Obs) | 0.08 ± 0.05 | 0.37 ± 0.14 | 0.11 ± 0.05 | 0.33 ± 0.15 | 0.07 ± 0.03 | 0.09 ± 0.03 |
Terra | 0.0 ± 0.04 | −0.01 ± 0.12 | −0.01 ± 0.05 | 0.02 ± 0.14 | 0.01 ± 0.03 | 0.02 ± 0.06 |
Aqua | 0.00 ± 0.05 | 0.00 ± 0.15 | 0.03 ± 0.06 | −0.01 ± 0.09 | 0.03 ± 0.04 | 0.04 ± 0.05 |
C4C | 0.00 ± 0.03 | −0.02 ± 0.19 | 0.00 ± 0.03 | −0.06 ± 0.10 | −0.02 ± 0.03 | −0.04 ± 0.03 |
η550 | ||||||
MAN(Obs) | 0.32 ± 0.13 | 0.21 ± 0.08 | 0.43 ± 0.18 | 0.33 ± 0.15 | 0.43 ± 0.18 | 0.79 ± 0.10 |
Terra | 0.11 ± 0.17 | 0.09 ± 0.12 | 0.13 ± 0.19 | 0.01 ± 0.12 | 0.08 ± 0.15 | −0.04 ± 0.15 |
Aqua | 0.14 ± 0.24 | 0.14 ± 0.11 | −0.08 ± 0.27 | 0.05 ± 0.17 | −0.12 ± 0.04 | −0.14 ± 0.16 |
C4C | 0.11 ± 0.15 | 0.00 ± 0.13 | 0.10 ± 0.15 | 0.05 ± 0.08 | 0.20 ± 0.14 | 0.11 ± 0.06 |
Cabo Verde | Sao Tome | St. Helena | ||||
---|---|---|---|---|---|---|
AOD550 < 0.28 | AOD550 > 0.28 | AOD550 < 0.28 | AOD550 > 0.28 | AOD550 < 0.28 | AOD550 > 0.28 | |
AOD550 | ||||||
MAN(Obs) | 195: 0.14 ± 0.07 | 169: 0.55 ± 0.24 | 49: 0.18 ± 0.06 | 105: 0.59 ± 0.24 | 260: 0.08 ± 0.05 | 17: 0.41 ± 0.07 |
Terra | 87: 0.07 ± 0.06 | 79: 0.08 ± 0.15 | 16: 0.08 ± 0.06 | 31: 0.04 ± 0.11 | 120: 0.07 ± 0.04 | 9: 0.15 ± 0.07 |
Aqua | 120: 0.05 ± 0.05 | 108: 0.08 ± 0.07 | 23: 0.05 ± 0.05 | 47: −0.05 ± 0.11 | 172: 0.04 ± 0.03 | 10: 0.08 ± 0.05 |
C4C | 195: 0.04 ± 0.06 | 169: −0.05 ± 0.16 | 49: 0.01 ± 0.07 | 105: −0.14 ± 0.20 | 260: 0.03 ± 0.03 | 17: −0.01 ± 0.08 |
FAOD550 | ||||||
MAN(Obs) | 195: 0.04 ± 0.03 | 169: 0.12 ± 0.07 | 49: 0.12 ± 0.06 | 105: 0.43 ± 0.40 | 260: 0.05 ± 0.03 | 17: 0.38 ± 0.07 |
Terra | 87: 0.04 ± 0.05 | 79: 0.04 ± 0.07 | 16: 0.045 ± 0.05 | 31: 0.04 ± 0.11 | 120: 0.05 ± 0.03 | 9: 0.11 ± 0.11 |
Aqua | 120: 0.05 ± 0.0505 | 108: 0.08 ± 0.08 | 23: 0.03 ± 0.06 | 47: −0.17 ± 0.15 | 172: 0.02 ± 0.02 | −0.03 ± 0.08 |
C4C | 195: 0.02 ± 0.03 | −0.03 ± 0.07 | 49: 0.04 ± 0.06 | 105: −0.08 ± 0.15 | 260: 0.03 ± 0.04 | 17: −0.04 ± 0.08 |
CAOD550 | ||||||
MAN(Obs) | 0.11 ± 0.10 | 0.43 ± 0.19 | 0.06 ± 0.04 | 0.16 ± 0.13 | 0.03 ± 0.02 | 0.03 ± 0.02 |
Terra | 0.03 ± 0.06 | 0.04 ± 0.15 | 0.035 ± 0.04 | 0.07 ± 0.10 | 0.02 ± 0.03 | 0.04 ± 0.06 |
Aqua | 0.00 ± 0.04 | 0.00 ± 0.15 | 0.02 ± 0.03 | 0.12 ± 0.12 | 0.02 ± 0.02 | 0.11 ± 0.07 |
C4C | 0.02 ± 0.06 | −0.01 ± 0.15 | −0.02 ± 0.03 | −0.06 ± 0.09 | 0.01 ± 0.02 | 0.03 ± 0.03 |
η550 | ||||||
MAN(Obs) | 0.25 ± 0.10 | 0.22 ± 0.07 | 0.65 ± 0.17 | 0.75 ± 0.18 | 0.54 ± 0.19 | 0.92 ± 0.05 |
Terra | 0.14 ± 0.17 | 0.07 ± 0.12 | −0.02 ± 0.17 | −0.12 ± 0.14 | 0.12 ± 0.19 | −0.05 ± 0.11 |
Aqua | 0.21 ± 0.15 | 0.12 ± 0.13 | 0.01 ± 0.16 | −0.24 ± 0.20 | 0.04 ± 0.18 | 0.19 ± 0.13 |
C4C | 0.10 ± 0.14 | −0.03 ± 0.10 | 0.13 ± 0.13 | 0.04 ± 0.09 | 0.07 ± 0.16 | −0.08 ± 0.12 |
Southern Mid Latitudes <30°S | Pacific 30°S−30°N | 30°N−60°N | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<0.04 | 0.04–0.08 | 0.08–0.12 | 0.12–0.18 | <0.04 | 0.04–0.08 | 0.08–0.12 | 0.12–0.18 | <0.04 | 0.04–0.08 | 0.08–0.12 | 0.12–0.18 | 0.18–0.28 | |
AOD550 | |||||||||||||
MAN-Obs | 912: 0.02 ± 0.01 | 356: 0.06 ± 0.01 | 75: 0.10 ± 0.01 | 36: 0.14 ± 0.01 | 102: 0.03 ± 0.01 | 296: 0.06 ± 0.01 | 211: 0.10 ± 0.01 | 93: 0.14 ± 0.02 | 153: 0.03 ± 0.01 | 679: 0.06 + 0.01 | 366: 0.10 + 0.01 | 232: 0.15 + 0.02 | 130: 0.21 + 0.03 |
Terra | 222: 0.04 ± 0.02 | 81: 0.04 ± 0.04 | 21: 0.04 ± 0.04 | 6: 0.03 ± 0.08 | 19: 0.03 ± 0.02 | 80: 0.03 ± 0.03 | 45: 0.02 ± 0.05 | 16: 0.04 ± 0.04 | 50: 0.03 ± 0.02 | 224: 0.03 + 0.04 | 105: 0.03 + 0.05 | 61: 0.04 + 0.05 | 36: 0.03 + 0.06 |
Aqua | 382: 0.03 ± 0.02 | 123: 0.02 ± 0.05 | 23: 0.02 ± 0.07 | 17: 0.02 ± 0.05 | 26: 0.02 ± 0.04 | 71: 0.03 ± 0.02 | 60: 0.02 ± 0.03 | 25: 0.02 ± 0.04 | 66: 0.01 ± 0.01 | 248: 0.02 + 0.02 | 148: 0.02 + 0.04 | 71: 0.04 + 0.07 | 50: 0.01 + 0.05 |
C4C | 912: 0.02 ± 0.02 | 356: 0.02 ± 0.03 | 75: 0.02 ± 0.03 | 36: −0.01 ± 0.05 | 102: 0.02 ± 0.02 | 296: 0.01 ± 0.02 | 0.00 ± 0.03 | 93–0.02 ± 0.04 | 153: 0.04 ± 0.02 | 679: 0.03 + 0.03 | 366: 0.02 + 0.03 | 232: 0.03 + 0.05 | 130: 0.01 + 0.05 |
FAOD550 | |||||||||||||
MAN-Obs | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.02 | 0.04 ± 0.03 | 102: 0.01 ± 0.01 | 296: 0.02 ± 0.01 | 211: 0.04 ± 0.02 | 93: 0.06 ± 0.03 | 153: 0.01 ± 0.01 | 679: 0.03 + 0.01 | 366: 0.05 + 0.02 | 232: 0.09 + 0.04 | 130: 0.14 + 0.05 |
Terra | 0.04 ± 0.02 | 0.04 ± 0.03 | 0.06 ± 0.03 | 0.04 ± 0.06 | 17: 0.02 ± 0.02 | 78: 0.03 ± 0.02 | 41: 0.02 ± 0.04 | 16: 0.04 ± 0.03 | 45: 0.03 ± 0.02 | 201: 0.03 + 0.02 | 95: 0.04 + 0.03 | 53: 0.04 + 0.04 | 25: 0.04 + 0.05 |
Aqua | 0.03 ± 0.02 | 0.03 ± 0.03 | 0.06 ± 0.03 | 0.04 ± 0.06 | 21: 0.01 ± 0.01 | 67: 0.03 ± 0.02 | 57: 0.02 ± 0.04 | 24: 0.03 ± 0.03 | 53: 0.01 ± 0.01 | 221: 0.02 + 0.02 | 132: 0.02 + 0.02 | 62: 0.04 + 0.04 | 41: 0.03 + 0.04 |
C4C | 0.02 ± 0.02 | 0.02 ± 0.02 | 0.02 ± 0.02 | 0.01 ± 0.03 | 102: 0.02 ± 0.02 | 295: 0.02 ± 0.02 | 211: 0.01 ± 0.03 | 93: 0.01 ± 0.04 | 153: 0.03 ± 0.02 | 679: 0.03 + 0.02 | 366: 0.03 + 0.03 | 232: 0.06 + 0.03 | 130: 0.01 + 0.04 |
CAOD550 | |||||||||||||
MAN-Obs | 0.01 ± 0.01 | 0.04 ± 0.01 | 0.07 ± 0.02 | 0.10 ± 0.03 | 0.02 ± 0.01 | 0.04 ± 0.01 | 0.06 ± 0.02 | 0.09 ± 0.03 | 0.02 ± 0.01 | 0.03 + 0.01 | 0.04 + 0.02 | 0.06 + 0.03 | 0.08 + 0.05 |
Terra | 0.00 ± 0.01 | −0.01 ± 0.02 | −0.02 ± 0.03 | −0.01 ± 0.03 | 0.02 ± 0.02 | 0.00 ± 0.03 | 0.00 ± 0.03 | 0.00 ± 0.04 | 0.00 ± 0.02 | 0.00 + 0.02 | −0.01 + 0.03 | −0.01 + 0.04 | −0.01 + 0.03 |
Aqua | 0.00 ± 0.01 | 0.00 ± 0.03 | −0.01 ± 0.03 | −0.01 ± 0.03 | 0.01 ± 0.03 | 0.00 ± 0.02 | 0.00 ± 0.03 | 0.00 ± 0.04 | 0.00 ± 0.01 | 0.00 + 0.02 | 0.00 + 0.03 | −0.01 + 0.02 | −0.01 + 0.03 |
C4C | 0.00 ± 0.01 | 0.00 ± 0.03 | −0.01 ± 0.03 | −0.01 ± 0.03 | 0.00 ± 0.01 | −0.01 ± 0.02 | −0.02 ± 0.02 | −0.03 ± 0.03 | 0.00 ± 0.01 | 0.00 + 0.02 | −0.01 + 0.02 | 0.00 + 0.04 | −0.01 + 0.04 |
η550 | |||||||||||||
MAN(Obs) | 0.48 ± 0.21 | 0.34 ± 0.19 | 0.26 ± 0.16 | 0.26 ± 0.20 | 0.45 ± 0.21 | 0.35 ± 0.18 | 0.42 ± 0.22 | 0.39 ± 0.23 | 0.48 ± 0.17 | 0.49 + 0.18 | 0.54 + 0.23 | 0.60 + 0.23 | 0.65 + 0.22 |
Terra | 0.37 ± 0.024 | 0.33 ± 0.19 | 0.35 ± 0.17 | 0.14 ± 0.15 | 0.03 ± 0.34 | 0.17 ± 0.22 | 0.12 ± 0.21 | 0.13 ± 0.18 | 0.23 ± 0.21 | 0.23 + 0.18 | 0.18 + 0.18 | 0.12 + 0.20 | 0.10 + 0.12 |
Aqua | 0.38 ± 0.26 | 0.19 ± 0.20 | 0.18 ± 0.17 | 0.15 ± 0.18 | 0.07 ± 0.24 | 0.18 ± 0.21 | 0.11 ± 0.27 | 0.14 ± 0.16 | 0.17 ± 0.23 | 0.17 + 0.16 | 0.11 + 0.17 | 0.13 + 0.17 | 0.08 + 0.11 |
C4C | 0.20 ± 0.25 | 0.19 ± 0.20 | 0.18 ± 0.17 | 0.15 ± 0.18 | 0.16 ± 0.20 | 0.20 ± 0.19 | 0.15 ± 0.22 | 0.13 ± 0.16 | 0.21 ± 0.16 | 0.19 + 0.16 | 0.15 + 0.17 | 0.07 + 0.15 | 0.06 + 0.13 |
Macquarie Island | Kwajalein Atoll | Graciosa Island | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<0.04 | 0.04–0.08 | 0.08–0.12 | 0.12–0.18 | <0.04 | 0.04–0.08 | 0.08–0.12 | 0.12–0.18 | <0.04 | 0.04–0.08 | 0.08–0.12 | 0.12–0.18 | 0.18–0.28 | |
AOD550 | |||||||||||||
AERO-Obs | 11: 0.03 ± 0.01 | 47: 0.06 ± 0.01 | 32: 0.10 ± 0.01 | 7: 0.13 ± 0.01 | 3: 0.03 ± 0.01 | 35: 0.06 ± 0.01 | 32: 0.10 ± 0.01 | 15: 0.13 ± 0.01 | 67: 0.03 ± 0.01 | 215: 0.06 ± 0.01 | 97: 0.10 ± 0.01 | 49: 0.14 ± 0.02 | 18: 0.21 ± 0.02 |
Terra-Er | 3: 0.04 ± 0.05 | 29: 0.04 ± 0.04 | 20: 0.02 ± 0.03 | 3: 0.04 ± 0.05 | N/A | 12: 0.06 ± 0.06 | 13: 0.07 ± 0.03 | 9: 0.07 ± 0.04 | 34: 0.05 ± 0.02 | 96: 0.06 ± 0.05 | 40: 0.06 ± 0.05 | 25: 0.05 ± 0.06 | 10: 0.03 ± 0.10 |
Aqua-Er | 2: 0.04 ± 0.00 | 36: 0.03 ± 0.02 | 26: 0.00 ± 0.02 | 6: 0.01 ± 0.05 | 1: 0.06 | 19: 0.05 ± 0.04 | 20: 0.05 ± 0.04 | 11: 0.08 ± 0.05 | 43: 0.05 ± 0.04 | 152: 0.04 ± 0.03 | 71: 0.04 ± 0.05 | 35: 0.04 ± 0.05 | 14: 0.04 ± 0.05 |
C4C-Er | 11: 0.02 ± 0.02 | 47: 0.03 ± 0.04 | 32: 0.04 ± 0.05 | 7: 0.05 ± 0.08 | 3: 0.00 ± 0.01 | 35: 0.02 ± 0.03 | 32: 0.03 ± 0.03 | 15: 0.03 ± 0.03 | 67: 0.04 ± 0.02 | 215: 0.04 ± 0.03 | 97: 0.03 ± 0.04 | 49: 0.02 ± 0.05 | 18: 0.00 ± 0.07 |
FAOD550 | |||||||||||||
AERO-Obs | 11: 0.02 ± 0.01 | 47: 0.02 ± 0.01 | 32: 0.02 ± 0.01 | 7: 0.02 ± 0.01 | 3: 0.02 ± 0.01 | 35: 0.02 ± 0.01 | 32: 0.01 ± 0.01 | 15: 0.01 ± 0.00 | 67: 0.02 ± 0.01 | 215: 0.02 ± 0.01 | 97: 0.04 ± 0.02 | 49: 0.05 ± 0.04 | 18: 0.11 ± 0.18 |
Terra-Er | 3: 0.04 ± 0.05 | 29: 0.02 ± 0.03 | 20: 0.01 ± 0.02 | 3: 0.02 ± 0.03 | N/A | 12: 0.03 ± 0.02 | 13: 0.04 ± 0.03 | 9: 0.02 ± 0.03 | 34: 0.04 ± 0.01 | 96: 0.05 ± 0.03 | 40: 0.05 ± 0.04 | 25: 0.04 ± 0.05 | 10: 0.02 ± 0.06 |
Aqua-Er | 2: 0.02 ± 0.00 | 36: 0.02 ± 0.03 | 26: 0.01 ± 0.02 | 6: 0.03 ± 0.04 | 1: 0.04 | 19: 0.04 ± 0.03 | 20: 0.04 ± 0.03 | 11: 0.05 ± 0.02 | 43: 0.02 ± 0.01 | 152: 0.03 ± 0.02 | 71: 0.04 ± 0.03 | 35: 0.04 ± 0.05 | 14: 0.00 ± 0.07 |
C4C-Er | 11: 0.00 ± 0.01 | 47: 0.03 ± 0.04 | 32: 0.04 ± 0.05 | 8: 0.00 ± 0.02 | 3: 0.00 ± 0.01 | 35: 0.01 ± 0.01 | 32: 0.01 ± 0.01 | 15: 0.02 ± 0.01 | 67: 0.03 ± 0.01 | 215: 0.03 ± 0.02 | 97: 0.03 ± 0.03 | 49: 0.02 ± 0.04 | 18: −0.02 ± 0.07 |
CAOD550 | |||||||||||||
AERO-Obs | 0.01 ± 0.01 | 0.04 ± 0.01 | 0.07 ± 0.02 | 0.11 ± 0.01 | 0.02 ± 0.01 | 0.04 ± 0.01 | 0.08 ± 0.01 | 0.12 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.06 ± 0.02 | 0.09 ± 0.04 | 0.10 ± 0.04 |
Terra-Er | 0.01 ± 0.01 | 0.02 ± 0.02 | 0.01 ± 0.02 | 0.02 ± 0.03 | N/A | 0.03 ± 0.06 | 0.03 ± 0.04 | 0.05 ± 0.04 | 0.02 ± 0.02 | 0.01 ± 0.03 | 0.01 ± 0.04 | 0.01 ± 0.04 | 0.01 ± 0.06 |
Aqua-Er | 0.02 ± 0.00 | 0.01 ± 0.02 | −0.01 ± 0.02 | 0.00 ± 0.02 | 1: 0.02 | 0.01 ± 0.03 | 0.02 ± 0.04 | 0.02 ± 0.04 | 0.02 ± 0.03 | 0.01 ± 0.02 | 0.00 ± 0.03 | −0.01 ± 0.04 | 0.00 ± 0.05 |
C4C-Er | 0.02 ± 0.01 | 0.03 ± 0.04 | 0.04 ± 0.06 | 0.05 ± 0.07 | 0.01 ± 0.00 | 0.01 ± 0.02 | 0.01 ± 0.03 | 0.01 ± 0.02 | 0.01 ± 0.02 | 0.01 ± 0.02 | 0.00 ± 0.03 | 0.00 ± 0.05 | 0.02 ± 0.06 |
η550 | |||||||||||||
AERO-Obs | 0.55 ± 0.22 | 0.30 ± 0.11 | 0.23 ± 0.13 | 0.15 ± 0.04 | 0.53 ± 0.13 | 0.28 ± 0.12 | 0.15 ± 0.06 | 0.11 ± 0.02 | 0.53 ± 0.18 | 0.42 ± 0.18 | 0.37 ± 0.22 | 0..37 ± 0.28 | 0.53 ± 0.37 |
Terra-Er | 0.09 ± 0.05 | 0.08 ± 0.23 | 0.05 ± 0.17 | 0.08 ± 0.14 | N/A | 0.11 ± 0.15 | 0.16 ± 0.17 | 0.05 ± 0.13 | 0.12 ± 0.17 | 0.21 ± 0.16 | 0.18 ± 0.16 | 0.15 ± 0.19 | 0.00 ± 0.16 |
Aqua-Er | −0.08 ± 0.00 | 0.11 ± 0.23 | 0.08 ± 0.19 | 0.21 ± 0.11 | 0.22 | 0.23 ± 0.17 | 0.19 ± 0.16 | 0.20 ± 0.10 | 0.04 ± 0.20 | 0.16 ± 0.15 | 0.19 ± 0.18 | 0.14 ± 0.23 | −0.04 ± 0.25 |
C4C-Er | −0.27 ± 0.26 | −0.02 ± 0.20 | −0.05 ± 0.20 | −0.04 ± 0.06 | −0.09 ± 0.14 | 0.06 ± 0.11 | 0.09 ± 0.06 | 0.07 ± 0.09 | 0.09 ± 0.18 | 0.14 ± 0.15 | 0.16 ± 0.17 | 0.07 ± 0.22 | −0.09 ± 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reid, J.S.; Gumber, A.; Zhang, J.; Holz, R.E.; Rubin, J.I.; Xian, P.; Smirnov, A.; Eck, T.F.; O’Neill, N.T.; Levy, R.C.; et al. A Coupled Evaluation of Operational MODIS and Model Aerosol Products for Maritime Environments Using Sun Photometry: Evaluation of the Fine and Coarse Mode. Remote Sens. 2022, 14, 2978. https://doi.org/10.3390/rs14132978
Reid JS, Gumber A, Zhang J, Holz RE, Rubin JI, Xian P, Smirnov A, Eck TF, O’Neill NT, Levy RC, et al. A Coupled Evaluation of Operational MODIS and Model Aerosol Products for Maritime Environments Using Sun Photometry: Evaluation of the Fine and Coarse Mode. Remote Sensing. 2022; 14(13):2978. https://doi.org/10.3390/rs14132978
Chicago/Turabian StyleReid, Jeffrey S., Amanda Gumber, Jianglong Zhang, Robert E. Holz, Juli I. Rubin, Peng Xian, Alexander Smirnov, Thomas F. Eck, Norman T. O’Neill, Robert C. Levy, and et al. 2022. "A Coupled Evaluation of Operational MODIS and Model Aerosol Products for Maritime Environments Using Sun Photometry: Evaluation of the Fine and Coarse Mode" Remote Sensing 14, no. 13: 2978. https://doi.org/10.3390/rs14132978