An Improved Submerged Mangrove Recognition Index-Based Method for Mapping Mangrove Forests by Removing the Disturbance of Tidal Dynamics and S. alterniflora
Abstract
:1. Introduction
Index Name | Author | Formula | Satellite Image Used |
---|---|---|---|
Mangrove recognition index (MRI) | Zhang et al. [26] | MRI = |GVIL − GVIH| × GVIL × (WIL + WIH) where GVI is the green vegetation index; WI is the wetness index; subscript L indicates low tide; subscript H indicates high tide | Landsat |
Mangrove index (MI) | Winarso et al. [24] | MI = (NIR − SWIR/NIR × SWIR) × 1000 | Landsat |
Normalized difference mangrove index (NDMI) | Shi et al. [28] | NDMI = (RSWIR2 − RGreen)/(RSWIR2 + RGreen) where RSWIR2 and RGreen are the reflectance values of SWIR2 and green bands, respectively | Landsat |
Mangrove probability vegetation index (MPVI) | Kumar et al. [29] | where n is the total number of bands; is the reflectance value of i band; is the reflectance value of i band for a “candidate spectrum” of mangrove forest | EO-1 Hyperion |
Combine mangrove recognition index (CMRI) | Gupta et al. [24] | CMRI = NDVI—NDWI where NDWI is the Normalized Difference Water Index. | Landsat |
Submerged mangrove recognition index (SMRI) | Xia et al. [26] | SMRI = (NDVIl − NDVIh)·(NIRl − NIRh)/NIRh where NDVIl—NDVI values at low tide; NDVIh–NDVI values at high tide; NIRl represents the reflectance values of NIR band at low tide; NIRh represents the reflectance values of NIR band at high tide. | GaoFen-2 |
Mangrove forest index (MFI) | Jia et al. [10] | MFI = [(ρλ1 − ρBλ1) + (ρλ2 − ρBλ2) + (ρλ3 − ρBλ3) + (ρλ4 − ρBλ4)]/4 where ρλ is the reflectance value of the band center of λ, and i ranged from 1 to 4; λ1, λ2, λ3, and λ4 are the center wavelengths at 705, 740, 783, and 865 nm, respectively. | Sentinel-2 |
Mangrove vegetation index (MVI) | Baloloy et al. [11] | MVI = (RNIR − RGreen)/( RSWRI1 − RGreen) where RSWIR1 is the reflectance value of SWIR1 band | Sentinel-2/Landsat |
Normalized intertidal mangrove index (NIMI) | Xu et al. [30] | NIMI = (3 × R4 − (R6 + R7 + R8))/(3 × R4 + R6 + R7 + R8) where R4, R6, R7, and R8 is the reflectance values of bands 4, 6, 7, and 8 of Sentinel, respectively | Sentinel-2 |
Optical and synthetic aperture rada (SAR) images combined mangrove index (OSCMI) | Huang et al. [31] | OSCMI = WI/(NIRB + SWIRB + VV) where WI is the sum of NDWI and MNDWI; NIRB is the sum of the reflectance values of Sentinel-2 B6, B7, B8 and B8A; SWIRB is the sum of the reflectance value of Sentinel-2 B11 and B12; VV is the backscatter coefficient of Sentinel-1 VV polarization mode | Sentinel-1/2 |
2. Materials and Methods
2.1. Study Area
2.2. Pre-Processing for Sentinel-2 Data
2.3. SMRI-Based Method for Mangrove Forests Mapping
2.3.1. Coastal Boundary Zone
2.3.2. Generation of Low-Tide of and High-Tide Synthetic Images
2.3.3. Phenology-Based S. alterniflora Mapping
2.3.4. SMRI-Based Mangrove Forests Mapping Method
3. Results
4. Discussion
4.1. Generation of Low-Tide and High-Tide Synthesis Images
4.2. Separation of S. alterniflora
4.3. Comparison with Other Mangrove Forests Mapping Products
4.4. Limitations for the Proposed Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giri, C.; Tieszen, L.; Gillette, S.; Zhu, Z.; Kelmelis, J.; Singh, A. Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J. Biogeogr. 2008, 35, 519–528. [Google Scholar] [CrossRef]
- Heumann, B. Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Prog. Phys. Geogr. 2011, 35, 87–108. [Google Scholar] [CrossRef]
- Kuenzer, C.; Andrea, B.; Steffen, G.; Yuan, Q.; Stefan, D. Remote Sensing of mangrove Ecosystems: A review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef] [Green Version]
- Everitt, J.; Yang, C.; Judd, S. Using high resolution satellite imagery to map black mangrove on the Texas Gulf Coast. J. Coastal Res. 2008, 246, 1582–1586. [Google Scholar] [CrossRef]
- Long, J.; Giri, C. Mapping the Philippines’ mangrove forests using Landsat imagery. Sensors 2011, 11, 2972–2981. [Google Scholar] [CrossRef] [Green Version]
- Lymburner, L.; Bunting, P.; Lucas, R.; Scarth, P.; Held, A. Mapping the multi-decadal mangrove dynamics of the Australian coastline. Remote Sens. Environ. 2020, 238, 111185. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, C. A detailed mangrove map of China for 2019 derived from Sentinel-1 and -2 images and Google Earth images. Geosci. Data J. 2021. [Google Scholar] [CrossRef]
- Giri, S.; Mukhopadhyay, A.; Hazra, S.; Mukherjee, S.; Roy, D.; Ghosh, S.; Ghosh, T.; Mitra, D. A study on abundance and distribution of mangrove species in Indian Sundarban using remote sensing technique. Coastal Conserv. 2014, 18, 359–367. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Wang, C.; Mao, D.; Zhang, Y. A new vegetation index to detect periodically submerged mangrove forest using single-tide Sentinel-2 imagery. Remote Sens. 2019, 11, 2043. [Google Scholar] [CrossRef] [Green Version]
- Baloloy, A.; Blanco, A.; Ana, R.; Nadaoka, K. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS J. Photogramm. Remote Sens. 2020, 166, 95–117. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Zhang, Y.; Mao, D.; Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. 2018, 73, 535–545. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, C. 10-m-resolution mangrove maps of China derived from multi-source and multi-temporal satellite observations. ISPRS J. Photogramm. Remote Sens. 2020, 169, 389–405. [Google Scholar] [CrossRef]
- Conchedda, G.; Durieux, L.; Mayaux, P. An object-based method for mapping and change analysis in mangrove ecosystems. ISPRS J. Photogramm. Remote Sens. 2008, 63, 578–589. [Google Scholar]
- Wang, L.; Silvan, J.; Sousa, W. Neural Network Classification of Mangrove Species from Multi-seasonal Ikonos Imagery. Photogramm. Eng. Remote Sens. 2008, 74, 921–927. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X. Identification of Mangrove Using Decision Tree Method. In Proceedings of the 2011 Fourth International Conference on Information and Computing, Phuket, Thailand, 25–27 April 2011; pp. 130–132. [Google Scholar]
- Li, M.; Mao, L.; Shen, W.; Liu, S.; Wei, A. Change and fragmentation trends of Zhanjiang mangrove forests in southern China using multi-temporal Landsat imagery (1977–2010). Estuar. Coast. Shelf Sci. 2013, 130, 111–120. [Google Scholar] [CrossRef]
- Everitt, J.; Davis, R.; Judd, W. Integration of remote sensing and spatial information technologies for mapping black mangrove on the Texas Gulf Coast. J. Coast. Res. 2012, 12, 64–69. [Google Scholar]
- Li, W.; EI-Askary, H.; Qurban, M.; Li, J.; Manikandan, K.; Piechota, T. Using multi-indices approach to quantify mangrove changes over the Western Arabian Gulf along Saudi Arabia coast. Ecol. Indic. 2019, 102, 734–745. [Google Scholar] [CrossRef]
- Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z.; et al. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Younes Cárdenas, N.; Joyce, K.; Maier, S. Monitoring mangrove forests: Are we taking full advantage of technology? Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, D.; Xin, L.; Chang, Q.; Paul, M. Mapping mangrove forests using multi-tidal remotely-sensed data and a decision-tree-based procedure. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 201–214. [Google Scholar] [CrossRef]
- Yang, G.; Huang, K.; Sun, W.; Meng, X.; Mao, D.; Ge, Y. Enhanced mangrove vegetation index based on hyperspectral images for mapping mangrove. ISPRS J. Photogramm. Remote Sens. 2022, 189, 236–254. [Google Scholar] [CrossRef]
- Winarso, G.; Purwanto, A.; Yuwono, D. New mangrove index as degradation/health indicator using remote sensing data: Segara Anakan and Alas Purwo case study. In Proceedings of the 12th Biennial Conference of Pan Ocean Remote Sensing Conference, Bali, Indonesia, 4–7 November 2014. [Google Scholar]
- Gupta, K.; Mukhopadhyay, A.; Giri, S.; Chanda, A.; Majumdar, S.D.; Samanta, S.; Mitra, D.; Samal, R.N.; Pattnaik, A.K.; Hazra, S. An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX 2018, 5, 1129–1139. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, Q. A mangrove recognition index for remote sensing of mangrove forest from space. Curr. Sci. 2013, 105, 1149–1154. [Google Scholar]
- Xia, Q.; Qin, C.; Li, H.; Su, F. Mapping mangrove forests based on multi-tidal high-resolution satellite imagery. Remote Sens. 2018, 10, 1343. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.Z.; Liu, J.; Hu, Z.; Liu, H.; Wang, J.; Wu, G. New spectral metrics for mangrove forest identification. Remote Sens. Lett. 2016, 7, 885–894. [Google Scholar] [CrossRef]
- Kumar, T.; Mandal, A.; Dutta, D.; Nagaraja, R.; Dadhwal, V. Discrimination and classification of mangrove forests using EO-1 Hyperion data: A case study of Indian Sundarbans. Geocarto Int. 2017, 34, 415–442. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, Y.; Zhai, L.; Liu, J.; Gu, X. Extraction method of intertidal mangrove by using Sentinel-2 images. Bull. Surv. Mapp. 2020, 2, 49–54. [Google Scholar]
- Huang, K.; Yang, G.; Yuan, Y.; Sun, W.; Meng, X.; Ge, Y. Optical and SAR images Combined Mangrove Index based on multi-feature fusion. Sci. Remote Sens. 2022, 5, 100040. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L. An experimental study on physical controls of an exotic plant Spartina alterniflora in Shanghai, China. Ecol. Eng. 2008, 32, 11–21. [Google Scholar] [CrossRef]
- Wan, S.; Qin, P.; Liu, J.; Zhou, H. The positive and negative effects of exotic Spartina alterniflora in China. Ecol. Eng. 2009, 35, 444–452. [Google Scholar] [CrossRef]
- Mao, D.; Liu, M.; Wang, Z.; Li, L.; Man, W.; Jia, M.; Zhang, Y. Rapid Invasion of Spartina alterniflora in the Coastal Zone of Mainland China: New Observations from Landsat OLI Images. Remote Sens. 2018, 10, 1933. [Google Scholar]
- Tian, J.; Wang, L.; Yin, D.; Li, X.; Diao, C.; Gong, H.; Shi, C.; Menenti, M.; Ge, Y.; Nie, S.; et al. Development of spectral-phenological features for deep learning to understand Spartina alterniflora invasion. Remote Sens. Environ. 2020, 242, 111745. [Google Scholar] [CrossRef]
- Collins, D.S.; Avdis, A.; Allison, P.A.; Johnson, H.D.; Hill, J.; Piggott, M.D.; Hassan, M.H.A.; Damit, A.R. Tidal dynamics and mangrove carbon sequestration during the Oligo-Miocene in the South China Sea. Nat. Commun. 2017, 8, 15698. [Google Scholar] [CrossRef]
- Li, H.; Jia, M.; Zhang, R.; Ren, Y.; Wen, X. Incorporating the plant phenological trajectory into mangrove species mapping with dense time series Sentinel-2 imagery and the Google Earth Engine Platform. Remote Sens. 2019, 11, 2479. [Google Scholar] [CrossRef] [Green Version]
- Xia, Q.; Qin, C.; Li, H.; Huang, C.; Su, F.; Jia, M. Evaluation of submerged mangrove recognition index using multi-tidal remote sensing data. Ecol. Indic. 2020, 113, 106196. [Google Scholar] [CrossRef]
- Evangelista, P.; Stohlgren, T.; Morisette, J.; Kumar, S. Mapping invasive Tamarisk (Tamarix): A comparison of single-scene and time-series analyses of remotely sensed data. Remote Sens. 2009, 1, 519–533. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.; Wang, Z.; Zhang, Y.; Ren, C.; Song, K. Landsat-Based Estimation of Mangrove Forest Loss and Restoration in Guangxi Province, China, Influenced by Human and Natural Factors. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 311–323. [Google Scholar] [CrossRef]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 Sen2Cor: L2A Processor for Users. In Proceedings of the Living Planet Symposium (Spacebooks Online), Prague, Czech Republic, 9–13 May 2016; pp. 1–8. [Google Scholar]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Wang, C.; Wang, T. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2021, 255, 112285. [Google Scholar] [CrossRef]
- Chust, G.; Galparsoro, I.; Borja, A.; Franco, J.; Uriarte, A. Coastal and estuarine habitat mapping, using LIDAR height and intensity and multi-spectral imagery. Estuar. Coast. Shelf Sci. 2008, 78, 633–643. [Google Scholar] [CrossRef]
- Bradley, B. Remote detection of invasive plants: A review of spectral, textural and phenological approaches. Biol. Invasions 2013, 16, 1411–1425. [Google Scholar] [CrossRef]
- Hansen, M.; Egorov, A.; Potapov, P.; Stehman, S. Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD). Remote Sens. Environ. 2014, 140, 466–484. [Google Scholar] [CrossRef] [Green Version]
- Rapinel, S.; Bernard, B.; Oszwald, J.; Bonis, A. Use of bi-seasonal Landsat-8 imagery for mapping marshland plant community combinations at the regional Scale. Wetlands 2015, 35, 1043–1054. [Google Scholar] [CrossRef]
- Diao, C.; Wang, L. Landsat time series-based multiyear spectral angle clustering (MSAC) model to monitor the inter-annual leaf senescence of exotic saltcedar. Remote Sens. Environ. 2018, 209, 581–593. [Google Scholar] [CrossRef]
- Hufkens, F.; Braswell, S.; Milliman, B.; Richardson, A. Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sens. Environ. 2012, 117, 307–321. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Khushbu, I.; Vats, I. Otsu Image segmentation algorithm: A Review. Int. J. Inno. Res. Comp. Comm. Eng. 2017, 5, 11945–11948. [Google Scholar]
- Vapnik, V. The Nature of Statistical Learning Theory, 1st ed.; Springer: New York, NY, USA, 1995; Volume 37, pp. 34–35. [Google Scholar]
- Huang, C.; Davis, L.; Townshend, J. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Knorn, J.; Rabe, A.; Radeloff, V.; Kuemmerle, T.; Kozak, J.; Hostert, P. Land cover mapping of large areas using chain classification of neighboring Landsat satellite images. Remote. Sens. Environ. 2009, 113, 957–964. [Google Scholar] [CrossRef]
- Shi, D.; Yang, X. Support vector machines for land cover mapping from remote sensor imagery. In Monitoring and Modeling of Global Changes: A Geomatics Perspective; Springer: Dordrecht, The Netherlands, 2015; pp. 265–279. [Google Scholar]
- Murray, N.J.; Worthington, T.A.; Bunting, P.; Duce, S.; Hagger, V.; Lovelock, C.E.; Lucas, R.; Saunders, M.I.; Sheaves, M.; Spalding, M.; et al. High-resolution mapping of losses and gains of Earth’s tidal wetlands. Science 2022, 376, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Akay, M. Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst. Appl. 2009, 16, 3240–3247. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zou, Z.; Chen, B.; Ma, J.; Dong, J.; Doughty, R.B.; Zhong, Q.; Qin, Y.; Dai, S.; et al. Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 2020, 238, 110987. [Google Scholar] [CrossRef] [PubMed]
Types | Number | Total Number | ||
---|---|---|---|---|
Training and validating | Mangroves | Submerged | 150 | 600 |
Non-submerged | 450 | |||
Non-mangroves | S. alterniflora | 90 | 600 | |
Tidal flats | 80 | |||
Water | 200 | |||
Offshore ponds | 150 | |||
Built-up land | 80 | |||
Training | Mangroves | Submerged | 100 | 400 |
Non-submerged | 300 | |||
Non-mangroves | 400 | 400 | ||
Validating | Mangroves | Submerged | 50 | 200 |
Non-submerged | 150 | |||
Non-mangroves | 200 | 200 |
Method | Class | Reference | Producer Accuracy | User Accuracy | Overall Accuracy | Kappa | Area (ha) | |
---|---|---|---|---|---|---|---|---|
Mangroves | Non-Mangroves | |||||||
SVM | Mangroves | 183 | 17 | 91.5% | 89.7% | 90.5% | 0.81 | 7616.94 |
Non-mangroves | 21 | 179 | 89.5% | 91.3% | ||||
SMRI + QS | Mangroves | 189 | 11 | 94.5% | 93.1% | 93.8% | 0.87 | 9110.17 |
Non-mangroves | 14 | 186 | 93.0% | 94.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Q.; He, T.-T.; Qin, C.-Z.; Xing, X.-M.; Xiao, W. An Improved Submerged Mangrove Recognition Index-Based Method for Mapping Mangrove Forests by Removing the Disturbance of Tidal Dynamics and S. alterniflora. Remote Sens. 2022, 14, 3112. https://doi.org/10.3390/rs14133112
Xia Q, He T-T, Qin C-Z, Xing X-M, Xiao W. An Improved Submerged Mangrove Recognition Index-Based Method for Mapping Mangrove Forests by Removing the Disturbance of Tidal Dynamics and S. alterniflora. Remote Sensing. 2022; 14(13):3112. https://doi.org/10.3390/rs14133112
Chicago/Turabian StyleXia, Qing, Ting-Ting He, Cheng-Zhi Qin, Xue-Min Xing, and Wu Xiao. 2022. "An Improved Submerged Mangrove Recognition Index-Based Method for Mapping Mangrove Forests by Removing the Disturbance of Tidal Dynamics and S. alterniflora" Remote Sensing 14, no. 13: 3112. https://doi.org/10.3390/rs14133112
APA StyleXia, Q., He, T. -T., Qin, C. -Z., Xing, X. -M., & Xiao, W. (2022). An Improved Submerged Mangrove Recognition Index-Based Method for Mapping Mangrove Forests by Removing the Disturbance of Tidal Dynamics and S. alterniflora. Remote Sensing, 14(13), 3112. https://doi.org/10.3390/rs14133112