Developing a Fuzzy Inference System Based on Multi-Sensor Data to Predict Powerful Earthquake Parameters
Abstract
:1. Introduction
Case Studies
2. Methodology
- Fuzzification module: transforms the system inputs, which are crisp numbers, into fuzzy sets. This is done by applying a fuzzification function.
- Knowledge base: stores IF-THEN rules provided by experts.
- Inference engine: simulates the human reasoning process by making fuzzy inferences on the inputs and IF-THEN rules.
- Defuzzification module: transforms the fuzzy set obtained by the inference engine into a crisp value.
3. Observations
3.1. Earthquake Catalogues
3.2. Atmospheric Data Preparation
3.3. Results Applying FIS to the Five Investigated Earthquakes
3.3.1. Ecuador 2016
3.3.2. Iran 2017
3.3.3. Papua New Guinea 2019
3.3.4. Japan 2021
3.3.5. Haiti 2021
3.4. Validation of FIS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scholz, C.H.; Sykes, L.R.; Aggarwal, Y.P. Earthquake Prediction: A Physical Basis. Science 1973, 181, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Pulinets, S.; Ouzounov, D. The Possibility of Earthquake Forecasting: Learning from Nature; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Pulinets, S.; Boyarchuk, K.A. Ionospheric Precursors of Earthquakes; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Parrot, M. Use of satellites to detect seismo-electromagnetic effects, main phenomenological features of ionospheric precursors of strong earthquakes. Adv. Space Res. 1995, 15, 1337–1347. [Google Scholar] [CrossRef]
- Wu, H.C.; Tikhonov, I.N.; Césped, A.R. Multi-parametric analysis of earthquake precursors. Russ. J. Earth Sci. 2015, 15, ES3002. [Google Scholar] [CrossRef] [Green Version]
- Wyss, M. A search for precursors to the Sitka, 1972, earthquake: Sea level, magnetic field, and P-residuals. Pure Appl. Geophys. 1975, 113, 297–309. [Google Scholar] [CrossRef]
- Fraser-Smith, A.C.; Bernardi, A.; McGill, P.R.; Ladd, M.E.; Helliwell, R.A.; Villard, O.G., Jr. Low-frequency magnetic field measurements near the epicenter of the Ms7.1 Loma Prieta Earthquake. Geophys. Res. Lett. 1990, 17, 1465–1468. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Hayakawa, M.; Oudoh, T.; Kawai, H. Precursory effects in the subionospheric VLF signals for the Kobe earthquake. Phys. Earth Planet. Inter. 1998, 105, 239–248. [Google Scholar] [CrossRef]
- Wu, H.-C.; Tikhonov, I.N. Jet streams anomalies as possible short-term precursors of earthquakes with M > 6.0. Res. Geophys. 2014, 4, 4939. [Google Scholar] [CrossRef]
- Shou, Z.; Fang, Y. Earthquake Vapor Model and Precise Prediction, 1st ed.; Shou, W., Ed.; Earthquake Prediction Center: Menlo Park, CA, USA, 2016.
- Ouzounov, D.; Pulinets, S.; Davidenko, D.; Rozhnoi, A.; Solovieva, M.; Fedun, V.; Dwivedi, B.N.; Rybin, A.; Kafatos, M.; Taylor, P. Transient Effects in Atmosphere and Ionosphere Preceding the 2015 M7.8 and M7.3 Gorkha–Nepal Earthquakes. Front. Earth Sci. 2021, 9, 757358. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; D’Arcangelo, S.; Poggio, F.; Piscini, A.; Campuzano, S.A.; De Carvalho, W.V.J.O. Pre-earthquake chain processes detected from ground to satellite altitude in preparation of the 2016–2017 seismic sequence in Central Italy. Remote Sens. Environ. 2019, 229, 93–99. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; Shen, X.; Campuzano, S.A.; Perrone, L.; Piscini, A.; Di Giovambattista, R.; Jin, S.; Ippolito, A.; Cianchini, G.; et al. Possible Lithosphere-Atmosphere-Ionosphere Coupling effects prior to the 2018 Mw = 7.5 Indonesia earthquake from seismic, atmospheric and ionospheric data. J. Asian Earth Sci. 2020, 188, 104097. [Google Scholar] [CrossRef]
- De Santis, A.; Cianchini, G.; Marchetti, D.; Piscini, A.; Sabbagh, D.; Perrone, L.; Campuzano, S.A.; Inan, S. A Multiparametric Approach to Study the Preparation Phase of the 2019 M7.1 Ridgecrest (California, United States) Earthquake. Front. Earth Sci. 2020, 8, 540398. [Google Scholar] [CrossRef]
- Yan, R.; Parrot, M.; Pinçon, J.-L. Statistical Study on Variations of the Ionospheric Ion Density Observed by DEMETER and Related to Seismic Activities. J. Geophys. Res. Space Phys. 2017, 122, 12421–12429. [Google Scholar] [CrossRef] [Green Version]
- De Santis, A.; Marchetti, D.; Pavón-Carrasco, F.J.; Cianchini, G.; Perrone, L.; Abbattista, C.; Alfonsi, L.; Amoruso, L.; Campuzano, S.A.; Carbone, M.; et al. Precursory worldwide signatures of earthquake occurrences on Swarm satellite data. Sci. Rep. 2019, 9, 20287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouyang, X.Y.; Parrot, M.; Bortnik, J. ULF Wave Activity Observed in the Nighttime Ionosphere above and Some Hours before Strong Earthquakes. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028396. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; Campuzano, S.A.; Zhu, K.; Soldani, M.; D’Arcangelo, S.; Orlando, M.; Wang, T.; Cianchini, G.; Di Mauro, D.; et al. Worldwide Statistical Correlation of Eight Years of Swarm Satellite Data with M5.5+ Earthquakes: New Hints about the Preseismic Phenomena from Space. Remote Sens. 2022, 14, 2649. [Google Scholar] [CrossRef]
- Xiong, P.; Marchetti, D.; De Santis, A.; Zhang, X.; Shen, X. SafeNet: SwArm for Earthquake Perturbations Identification Using Deep Learning Networks. Remote Sens. 2021, 13, 5033. [Google Scholar] [CrossRef]
- Akhoondzadeh, M. Advances in Seismo-LAI anomalies detection within Google Earth Engine (GEE) cloud platform. Adv. Space Res. 2022, 69, 4351–4357. [Google Scholar] [CrossRef]
- De Santis, A.; Marchetti, D.; Spogli, L.; Cianchini, G.; Pavón-Carrasco, F.J.; Franceschi, G.D.; Di Giovambattista, R.; Perrone, L.; Qamili, E.; Cesaroni, C.; et al. Magnetic Field and Electron Density Data Analysis from Swarm Satellites Searching for Ionospheric Effects by Great Earthquakes: 12 Case Studies from 2014 to 2016. Atmosphere 2019, 10, 371. [Google Scholar] [CrossRef] [Green Version]
- Akhoondzadeh, M. A MLP neural network as an investigator of TEC time series to detect seismo-ionospheric anomalies. Adv. Space Res. 2013, 51, 2048–2057. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Wang, T. Developing a Deep Learning-Based Detector of Magnetic, Ne, Te and TEC Anomalies from Swarm Satellites: The Case of Mw 7.1 2021 Japan Earthquake. Remote Sens. 2022, 14, 1582. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Piscini, A.; Cianchini, G. Multi precursors analysis associated with the powerful Ecuador (MW = 7.8) earthquake of 16 April 2016 using Swarm satellites data in conjunction with other multi-platform satellite and ground data. Adv. Space Res. 2018, 61, 248–263. [Google Scholar] [CrossRef] [Green Version]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Piscini, A.; Jin, S. Anomalous seismo-LAI variations potentially associated with the 2017 Mw = 7.3 Sarpol-e Zahab (Iran) earthquake from Swarm satellites, GPS-TEC and climatological data. Adv. Space Res. 2019, 64, 143–158. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Shen, X. Swarm-TEC satellite measurements as a potential earthquake precursor together with other Swarm and CSES data: The case of Mw 7.6 2019 Papua New Guinea seismic event. Front. Earth Sci. 2022, 10, 820189. [Google Scholar] [CrossRef]
- Zadeh, L.A. Probability measures of fuzzy events. J. Math. Anal. Appl. 1968, 23, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Rostami, A.H.; Akhoondzadeh, M.; Amani, M. A fuzzy-based flood warning system using 19-year remote sensing time series data in the Google Earth Engine cloud platform. Adv. Space Res. 2021. corrected proof. [Google Scholar] [CrossRef]
- Mamdani, E.H. Application of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Electr. Eng. 1974, 121, 1585–1588. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Fetzer, E.; McMillin, L.M.; Tobin, D.; Aumann, H.H.; Gunson, M.R.; McMillan, W.W.; Hagan, D.E.; Hofstadter, M.D.; Yoe, J.; Whiteman, D.N.; et al. AIRS/AMSU/HSB validation. IEEE Trans. Geosci. Remote Sens. 2003, 41, 418–431. [Google Scholar] [CrossRef]
- Friis-Christensen, E.; Lühr, H.; Hulot, G. Swarm: A constellation to study the Earth’s magnetic field. Earth Planets Space 2006, 58, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Zhang, X.; Yuan, S.; Wang, L.; Cao, J.; Huang, J.; Zhu, X.; Picozza, P.; Dai, J. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci. China Technol. Sci. 2018, 61, 634–642. [Google Scholar] [CrossRef]
- Mousavi-Bafrouei, S.H.; Mahani, A.B. A comprehensive earthquake catalogue for the Iranian Plateau (400 B.C. to December 31, 2018). J. Seismol. 2020, 24, 709–724. [Google Scholar] [CrossRef]
- Wiemer, S. A software package to analyze seismicity: ZMAP. Seismol. Res. Lett. 2001, 72, 373–382. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Seismicity of the Earth and Associated Phenomena, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 1954. [Google Scholar]
- Piscini, A.; Marchetti, D.; De Santis, A. Multi-parametric climatological analysis associated with global significant volcanic eruptions during 2002–2017. Pure Appl. Geophys. 2019, 176, 3629–3647. [Google Scholar] [CrossRef]
- Dobrovolsky, I.R.; Zubkov, S.I.; Myachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Doglioni, C.; Barba, S.; Carminati, E.; Riguzzi, F. Fault on-off versus strain rate and earthquakes energy. Geosci. Front. 2015, 6, 265–276. [Google Scholar] [CrossRef] [Green Version]
Region | Date | Time (UTC) | Geographic Latitude, Longitude | Magnitude (MW) | Focal Depth (km) |
---|---|---|---|---|---|
Ecuador | 16 April 2016 | 23:58:36 | 0.382°N, 79.922°W | 7.8 | 20.6 |
Iran | 12 November 2017 | 18:18:17 | 34.911°N, 45.959°E | 7.3 | 19 |
Papua New Guinea | 14 May 2019 | 12:58:25 | 4.051°S, 152.597°E | 7.6 | 10 |
Japan | 13 February 2021 | 14:07:50 | 37.73°N, 141.77°E | 7.1 | 44 |
Haiti | 14 August 2021 | 12:29:08 | 18.434°N, 73.482°W | 7.2 | 10 |
Precursor | Ecuador [24] | Iran [25] | Papua New Guinea [26] | Japan [23] | Haiti | ||
---|---|---|---|---|---|---|---|
Layer | Satellite | Parameter | |||||
Ionosphere (plasma) | Swarm A | Ne (D&N) | √ | √ | √ | √ | √ |
Te (D&N) | √ | √ | √ | √ | √ | ||
STEC (D&N) | - | - | √ | √ | - | ||
VTEC (D&N) | - | - | √ | √ | - | ||
Swarm B | Ne (D&N) | √ | √ | √ | √ | √ | |
Te (D&N) | √ | √ | √ | √ | √ | ||
STEC (D&N) | - | - | √ | √ | - | ||
VTEC (D&N) | - | - | √ | √ | - | ||
Swarm C | Ne (D&N) | √ | √ | √ | √ | √ | |
Te (D&N) | √ | √ | √ | √ | √ | ||
STEC (D&N) | - | - | √ | √ | - | ||
VTEC (D&N) | - | - | √ | √ | - | ||
Swarm A–C | Ne (D&N) | √ | √ | √ | √ | √ | |
Swarm A–C | Te (D&N) | √ | √ | √ | √ | √ | |
CSES | Ne (D&N) | - | - | √ | - | √ | |
Te (D&N) | - | - | - | - | √ | ||
GPS | TEC | √ | √ | √ | - | √ | |
Ionosphere (magnetic) | Swarm A | MS (D&N) | √ | √ | √ | √ | √ |
MVx (D&N) | √ | √ | √ | √ | √ | ||
Mvy (D&N) | √ | √ | √ | √ | √ | ||
MVz (D&N) | √ | √ | √ | √ | √ | ||
Swarm B | MS (D&N) | √ | √ | √ | √ | √ | |
MVx (D&N) | √ | √ | √ | √ | √ | ||
Mvy (D&N) | √ | √ | √ | √ | √ | ||
MVz (D&N) | √ | √ | √ | √ | √ | ||
Swarm C | MS (D&N) | √ | √ | √ | √ | √ | |
MVx (D&N) | √ | √ | √ | √ | √ | ||
Mvy (D&N) | √ | √ | √ | √ | √ | ||
MVz (D&N) | √ | √ | √ | √ | √ | ||
Atmosphere | MODIS | AOD | √ | - | - | - | - |
Climatological data | AOT | √ | √ | √ | √ | √ | |
CO | √ | √ | √ | √ | √ | ||
SO2 | √ | √ | √ | √ | √ | ||
DMS | √ | - | √ | √ | √ | ||
CH4 | - | √ | - | - | - | ||
Atmosphere (surface) | MODIS | LST (D&N) | √ | - | - | - | |
Lithosphere | Seismic data | Eqs magnitude | √ | √ | √ | √ | √ |
Eqs number | √ | √ | √ | √ | √ | ||
Number of Precursors (D&N) | 50 | 47 | 61 | 58 | 51 |
Case Study | Estimated Magnitude by FIS | Corrected Magnitude | Real Magnitude | Error in the Estimation of the Magnitude after Correction |
---|---|---|---|---|
Ecuador 2016 | 7.02 | 6.92 | 7.8 | 0.88 |
Iran 2017 | 7.92 | 7.30 | 7.3 | 0.0046 |
Papua New Guinea 2019 | 9.00 | 7.75 | 7.6 | 0.15 |
Japan 2021 | 7.53 | 7.13 | 7.1 | 0.032 |
Haiti 2021 | 7.60 | 7.16 | 7.2 | 0.038 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhoondzadeh, M.; Marchetti, D. Developing a Fuzzy Inference System Based on Multi-Sensor Data to Predict Powerful Earthquake Parameters. Remote Sens. 2022, 14, 3203. https://doi.org/10.3390/rs14133203
Akhoondzadeh M, Marchetti D. Developing a Fuzzy Inference System Based on Multi-Sensor Data to Predict Powerful Earthquake Parameters. Remote Sensing. 2022; 14(13):3203. https://doi.org/10.3390/rs14133203
Chicago/Turabian StyleAkhoondzadeh, Mehdi, and Dedalo Marchetti. 2022. "Developing a Fuzzy Inference System Based on Multi-Sensor Data to Predict Powerful Earthquake Parameters" Remote Sensing 14, no. 13: 3203. https://doi.org/10.3390/rs14133203
APA StyleAkhoondzadeh, M., & Marchetti, D. (2022). Developing a Fuzzy Inference System Based on Multi-Sensor Data to Predict Powerful Earthquake Parameters. Remote Sensing, 14(13), 3203. https://doi.org/10.3390/rs14133203