Increasing Streamflow in Poor Vegetated Mountain Basins Induced by Greening of Underlying Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Trend Analysis
2.4. Monthly Water Storage Change Calculation Based on Abcd Model
2.5. Budyko Decomposition Method Extended by Abcd Model
3. Results
3.1. Change Trends in Basin Vegetation
3.2. Streamflow Variations of the Four Basins
3.3. Fitting Results of Abcd Model
3.4. Quantification of Climate and Underlying Impacts on Summer Streamflow
4. Discussion
4.1. Vegetation and Hydrological Changes in Arid Mountain Basins
4.2. Impact of Underlying Surface Change on Streamflow
4.3. Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Basin | Periods | a | b (mm) | c | d (t − 1) | a1 | a2 |
---|---|---|---|---|---|---|---|
HZB | Pre-change | 0.92 | 248.92 | 0.31 | 0.12 | 15.96 | 9.17 |
Post-change | 0.93 | 253.10 | 0.22 | 0.07 | 15.23 | 8.63 | |
KCB | Pre-change | 0.86 | 267.12 | 0.36 | 0.25 | 21.23 | 10.84 |
Post-change | 0.88 | 260.02 | 0.25 | 0.10 | 19.35 | 9.16 | |
KDB | Pre-change | 0.99 | 311.30 | 0.10 | 0.33 | 52.10 | 11.28 |
Post-change | 0.99 | 328.25 | 0.13 | 0.21 | 69.01 | 15.19 | |
HSB | Pre-change | 0.89 | 301.26 | 0.17 | 0.12 | 17.29 | 6.09 |
Post-change | 0.90 | 272.73 | 0.21 | 0.09 | 20.11 | 5.98 |
References
- Lian, X.; Piao, S.; Chen, A.; Huntingford, C.; Fu, B.; Li, L.Z.X.; Huang, J.; Sheffield, J.; Berg, A.M.; Keenan, T.F.; et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2021, 2, 232–250. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.; Fu, C.; Chen, F.; Fu, Q.; Dai, A.; Shinoda, M.; Ma, Z.; Guo, W.; Li, Z.; et al. Dryland climate change: Recent progress and challenges. Rev. Geophys. 2017, 55, 719–778. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Stafford Smith, D.M.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.J.; Downing, T.E.; Dowlatabadi, H.; Fernandez, R.J.; Herrick, J.E.; et al. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haq, M.A. CDLSTM: A Novel Model for Climate Change Forecasting. Comput. Mater. Contin. 2022, 71, 2363–2381. [Google Scholar]
- Ghimire, S.; Yaseen, Z.M.; Farooque, A.A.; Deo, R.C.; Zhang, J.; Tao, X. Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks. Sci. Rep. 2021, 11, 17497. [Google Scholar] [CrossRef]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Budyko, M. Climate and Life; Academic Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment—Part 1: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Zhang, R.; Ouyang, Z.; Xie, X.; Guo, H.; Tan, D.; Xiao, X.; Qi, J.; Zhao, B. Impact of Climate Change on Vegetation Growth in Arid Northwest of China from 1982 to 2011. Remote Sens. 2016, 8, 364. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Yang, H.; Yang, D.; Jayawardena, A.W. Quantifying the effect of vegetation change on the regional water balance within the Budyko framework. Geophysics 2016, 43, 1140–1148. [Google Scholar] [CrossRef]
- Xing, W.; Wang, W.; Shao, Q.; Yong, B. Identification of dominant interactions between climatic seasonality, catchment characteristics and agricultural activities on Budyko-type equation parameter estimation. J. Hydrol. 2018, 556, 585–599. [Google Scholar] [CrossRef]
- Liang, W.; Bai, D.; Wang, F.; Fu, B.; Yan, J.; Wang, S.; Yang, Y.; Long, D.; Feng, M. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau. Water Resour. Res. 2015, 51, 6500–6519. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Z.; Han, F.; Wang, Z.; Wang, C. NDVI-based vegetation dynamics and their response to recent climate change: A case study in the Tianshan Mountains, China. Environ. Earth Sci. 2016, 75, 1189. [Google Scholar] [CrossRef]
- Wang, G.; Liu, G.; Li, C. Effects of changes in alpine grassland vegetation cover on hillslope hydrological processes in a permafrost watershed. J. Hydrol. 2012, 444, 22–33. [Google Scholar]
- Gan, G.; Liu, Y.; Sun, G. Understanding interactions among climate, water, and vegetation with the Budyko framework. Earth Sci. Rev. 2021, 212, 103451. [Google Scholar] [CrossRef]
- Shen, Y.; Shen, Y.; Guo, Y.; Zhang, Y.; Pei, H.; Brenning, A. Review of historical and projected future climatic and hydrological changes in mountainous semiarid Xinjiang (northwestern China), central Asia. Catena 2020, 187, 104343. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Deng, H.; Fang, G.; Li, Z. Changes in Central Asia’s Water Tower: Past, Present and Future. Sci. Rep. 2016, 6, 35458. [Google Scholar] [CrossRef]
- Shen, Y.; Shen, Y.; Fink, M.; Kralisch, S.; Chen, Y.; Brenning, A. Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains. J. Hydrol. 2018, 557, 173–181. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S. Precipitation isotopes in the Tianshan Mountains as a key to water cycle in arid central Asia. Sci. Cold Arid. Reg. 2018, 10, 27–37. (In Chinese) [Google Scholar]
- Liu, J.; Lawson, D.E.; Hawley, R.L.; Chipman, J.; Tracy, B.; Shi, X.; Chen, Y. Estimating the longevity of glaciers in the Xinjiang region of the Tian Shan through observations of glacier area change since the Little Ice Age using high-resolution imagery. J. Glaciol. 2020, 66, 471–484. [Google Scholar] [CrossRef] [Green Version]
- Mastrotheodoros, T.; Pappas, C.; Molnar, P.; Burlando, P.; Manoli, G.; Parajka, J.; Rigon, R.; Szeles, B.; Bottazzi, M.; Hadjidoukas, P.; et al. More green and less blue water in the Alps during warmer summers. Nat. Clim. Chang. 2020, 10, 155–161. [Google Scholar] [CrossRef]
- Han, J.; Gao, J.; Luo, H. Changes and implications of the relationship between rainfall, runoff and sediment load in the Wuding River basin on the Chinese Loess Plateau. Catena 2019, 175, 228–235. [Google Scholar] [CrossRef]
- Jian, S.; Zhao, C.; Fang, S.; Yu, K. Effects of different vegetation restoration on soil water storage and water balance in the Chinese Loess Plateau. Agric. For. Meteorol. 2015, 206, 85–96. [Google Scholar] [CrossRef]
- Wang, D. Evaluating interannual water storage changes at watersheds in Illinois based on long-term soil moisture and groundwater level data. Water Resour. Res. 2012, 48, W03502. [Google Scholar] [CrossRef]
- Huntington, T.G. CO2-induced suppression of transpiration cannot explain increasing runoff. Hydrol. Process. 2008, 22, 311–314. [Google Scholar] [CrossRef]
- Li, G.; Jiang, C.; Zhang, Y.; Jiang, G. Whether land greening in different geomorphic units are beneficial to water yield in the Yellow River Basin? Ecol. Indic. 2021, 120, 106926. [Google Scholar] [CrossRef]
- Wang, Z.; Qian, Y.; Zhang, H.; Huang, S.; Ji, H. Spatial distribution of soil physical-chemical properties in the region of the northern slopes of Karlike Range in East Tianshan Mountains to Naomaohu Basin. Arid Land Geogr. 2011, 34, 107–114. (In Chinese) [Google Scholar]
- Smith, W.K.; Dannenberg, M.P.; Yan, D.; Herrmann, S.; Barnes, M.L.; Barron-Gafford, G.A.; Biederman, J.A.; Ferrenberg, S.; Fox, A.M.; Hudson, A.; et al. Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sens. Environ. 2019, 233, 111401. [Google Scholar] [CrossRef]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef] [Green Version]
- Kumari, N.; Srivastava, A.; Dumka, U.C. A Long-Term Spatiotemporal Analysis of Vegetation Greenness over the Himalayan Region Using Google Earth Engine. Climate 2021, 9, 109. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Marsett, R.C.; Qi, J.; Heilman, P.; Biedenbender, S.H.; Watson, M.C.; Amer, S.; Weltz, M.; Goodrich, D.; Marsett, R. Remote sensing for grassland management in the arid Southwest. Rangel. Ecol. Manag. 2006, 59, 530–540. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Liu, S.; Wang, T.; Guo, J.; Qu, J.; An, P. Vegetation change based on SPOT-VGT data from 1998-2007, northern China. Environ. Earth Sci. 2010, 60, 1459–1466. [Google Scholar] [CrossRef]
- Zheng, L.; Xu, J.; Li, D.; Xia, Z.; Chen, Y.; Xu, G.; Lu, D. Increasing control of climate warming on the greening of alpine pastures in central Asia. Int. J. Appl. Earth Obs. 2021, 105, 102606. [Google Scholar] [CrossRef]
- Pu, Z.; Zhang, S. The effects of climate changes on the net primary productivity of natural vegetation in Tianshan Mountains. Pratac. Sci. 2009, 26, 11–18. (In Chinese) [Google Scholar]
- Huang, X.; Luo, G.; Wang, X. Land-Atmosphere Exchange of Water and Heat in the Arid Mountainous Grasslands of Central Asia during the Growing Season. Water 2017, 9, 727. [Google Scholar] [CrossRef] [Green Version]
- Fluet-Chouinard, E.; Lehner, B.; Rebelo, L.M.; Papa, F.; Hamilton, S.K. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 2015, 158, 348–361. [Google Scholar] [CrossRef]
- Xie, X.; Li, A.; Jin, H.; Yin, G.; Bian, J. Spatial Downscaling of Gross Primary Productivity Using Topographic and Vegetation Heterogeneity Information: A Case Study in the Gongga Mountain Region of China. Remote Sens. 2018, 10, 647. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Han, Y.; Yang, Z. Dynamical downscaling of regional climate: A review of methods and limitations. Sci. China Earth Sci. 2019, 62, 365–375. [Google Scholar] [CrossRef]
- Stow, D.; Daeschner, S.; Hope, A.; Douglas, D.; Petersen, A.; Myneni, R.; Zhou, L.; Oechel, W. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s. Int. J. Remote Sens. 2003, 24, 1111–1117. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Martinez, G.F.; Gupta, H.V. Toward improved identification of hydrological models: A diagnostic evaluation of the "abcd" monthly water balance model for the conterminous United States. Water Resour. Res. 2010, 46, W08507. [Google Scholar] [CrossRef]
- Xu, C.Y.; Seibert, J.; Halldin, S. Regional water balance modelling in the NOPEX area: Development and application of monthly water balance models. J. Hydrol. 1996, 180, 211–236. [Google Scholar] [CrossRef]
- Chang, F.; Chen, L. Real-Coded Genetic Algorithm for Rule-Based Flood Control Reservoir Management. Water Resour. Manag. 1998, 12, 185–198. [Google Scholar] [CrossRef]
- Liu, P.; Li, L.; Guo, S.; Xiong, L.; Zhang, W.; Zhang, J.; Xu, C. Optimal design of seasonal flood limited water levels and its application for the Three Gorges Reservoir. J. Hydrol. 2015, 527, 1045–1053. [Google Scholar] [CrossRef]
- Porporato, A.; Daly, E.; Rodriguez-Iturbe, I. Soil water balance and ecosystem response to climate change. Am. Nat. 2004, 164, 625–632. [Google Scholar] [CrossRef]
- Chen, X.; Alimohammadi, N.; Wang, D. Modeling interannual variability of seasonal evaporation and storage change based on the extended Budyko framework. Water Resour. Res. 2013, 49, 6067–6078. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, S.; Bai, X.; Luo, G.; Wu, L.; Chen, F.; Wang, J.; Li, C.; Yang, Y.; Hu, Z.; et al. Vegetation greening intensified soil drying in some semi-arid and arid areas of the world. Agric. For. Meteorol. 2020, 292, 108103. [Google Scholar] [CrossRef]
- Zheng, L.; Xia, Z.; Xu, J.; Chen, Y.; Yang, H.; Li, D. Exploring annual lake dynamics in Xinjiang (China): Spatiotemporal features and driving climate factors from 2000 to 2019. Clim. Chang. 2021, 166, 36. [Google Scholar] [CrossRef]
- Fan, Y.; Sun, Z.; Wu, H.; Liu, X. Influences of fencing on vegetation and soil properties in mountain steppe. Pratac. Sci. 2009, 26, 79–82. (In Chinese) [Google Scholar]
- Di, S.; Li, Z.L.; Tang, R.; Pan, X.; Liu, H.; Niu, Y. Urban green space classification and water consumption analysis with remote-sensing technology: A case study in Beijing, China. Int. J. Remote Sens. 2019, 40, 1909–1929. [Google Scholar] [CrossRef]
- Zhang, H.F.; Li, X.; Wang, J.G.; Yang, Y.J. The structure characteristic of the plant community in the lower reaches of Tarim River. Ecol. Environ. 2007, 16, 1219–1224. (In Chinese) [Google Scholar]
- Wu, X.Q.; Meng, J.J. The Land Use/Cover Changes and the Eco-environmental Responses in the Lower Reaches of Tarim River, Xinjiang. Arid. Zone Res. 2004, 1, 38–43. (In Chinese) [Google Scholar]
Basin | Pre-Change | Post-Change | ||
---|---|---|---|---|
Calibration | Validation | Calibration | Validation | |
HZB | 0.78 | 0.83 | 0.71 | 0.79 |
KCB | 0.78 | 0.71 | 0.75 | 0.72 |
KDB | 0.85 | 0.76 | 0.83 | 0.80 |
HSB | 0.86 | 0.91 | 0.89 | 0.90 |
Basin Name | Area (km2) | Periods | Coefficient of Elasticity | ||||||
---|---|---|---|---|---|---|---|---|---|
HZB | 3342 | 1983−2006 | 273.03 | 561.02 | 62.17 | 1.29 | 1.96 | −0.96 | −1.57 |
KCB | 2946 | 1983−2006 | 226.05 | 397.75 | 119.75 | 0.69 | 1.36 | −0.36 | −0.87 |
KDB | 18,827 | 1983−2012 | 166.20 | 431.33 | 105.42 | 0.49 | 1.22 | −0.22 | −0.79 |
HSB | 4311 | 1983−2008 | 173.78 | 450.99 | 50.81 | 0.97 | 1.70 | −0.70 | −1.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Xu, J.; Chen, Y.; Wu, Z. Increasing Streamflow in Poor Vegetated Mountain Basins Induced by Greening of Underlying Surface. Remote Sens. 2022, 14, 3223. https://doi.org/10.3390/rs14133223
Zheng L, Xu J, Chen Y, Wu Z. Increasing Streamflow in Poor Vegetated Mountain Basins Induced by Greening of Underlying Surface. Remote Sensing. 2022; 14(13):3223. https://doi.org/10.3390/rs14133223
Chicago/Turabian StyleZheng, Lilin, Jianhua Xu, Yaning Chen, and Zhenhui Wu. 2022. "Increasing Streamflow in Poor Vegetated Mountain Basins Induced by Greening of Underlying Surface" Remote Sensing 14, no. 13: 3223. https://doi.org/10.3390/rs14133223
APA StyleZheng, L., Xu, J., Chen, Y., & Wu, Z. (2022). Increasing Streamflow in Poor Vegetated Mountain Basins Induced by Greening of Underlying Surface. Remote Sensing, 14(13), 3223. https://doi.org/10.3390/rs14133223