Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review
Abstract
:1. Introduction and Motivation
1.1. Selection Criterion for Reviewed Papers and Brief Graphic Summary
1.2. Roadmap
2. Scope and Intended Audience
3. The State of the Art: GEE with AI
3.1. Overview of the Reviewed Studies
3.2. Advances in Applications
3.2.1. Crop Mapping
3.2.2. Land Cover Classification
3.2.3. Forest and Deforestation Monitoring
3.2.4. Vegetation Mapping
3.2.5. Water Mapping and Water Quality Monitoring
3.2.6. Wetland Mapping
3.2.7. Infrastructure and Building Detection, Urbanization Monitoring
3.2.8. Wildfires and Burned Area
3.2.9. Heavy Industry and Pollution Monitoring
3.2.10. Climate and Meteorology
3.2.11. Disaster Management
3.2.12. Soil
3.2.13. Cloud Detection and Masking
3.2.14. Wildlife and Animal Studies
3.2.15. Archaeology
3.2.16. Coastline Monitoring
3.2.17. Bathymetric Mapping
3.2.18. Ice and Snow
3.3. Advances in Methods
4. Challenges and Research Opportunities
4.1. Summary and Discussion
4.1.1. Brief Summary of Reviewed Studies
4.1.2. GEE Limitations
- ●
- Compute limits [17,55,78,83,85,87,93,141,155,171,200,217,234,239,240]: Authors often ran into memory errors when analyzing too many field samples/observations. This also happened when the size of authors’ input data was too large more generally and it was difficult to know beforehand if intermediate processing steps would trigger this error. Thus, many authors had to export data as part of their analysis to access functionality not on GEE or because using GEE would make them run out of the amount of free compute provided. For example, every image uploaded to GEE (at the time of this paper’s release) is limited to 10 GB [234]. As the authors used sub-centimeter drone imagery, they had to downsize each image before uploading it, resulting in a loss of resolution. See below for a few quoted limitations:
- ○
- “…The users are limited to approximately 1 million training points…, a limitation in using a high number of trees within GEE when the amount of field samples is high” [17].
- ○
- “One of the disadvantages of using the GEE cloud computing platform is that it limits the number of field samples and input features. This is especially challenging when the analysis is applied to a large domain, which may reduce the efficiency of the implemented method” [171].
- ○
- “…The current GEE pipeline for processing the available data on GEE through the Python or JavaScript APIs requires exporting large volumes of data to cloud or local storage … These processes are time consuming and require extra funds for cloud processing and cloud storage” [87].
- ●
- A lack of processing methods/models/algorithms [17,21,35,46,81,85,93,101,107,110,120,141,152,158,159,160,201,215,217,221,225], reasons listed were:
- ○
- ○
- No neural networks (NNs) are currently supported on GEE directly, but many authors use DL models for their research [46,55,71,107,136,161,166], and they either have to train their DL models offline or on Google Cloud AI, which is not free of charge. Authors can also use TensorFlow on Google Colab and Google Cloud AI but not directly on GEE. For example, in [225], “… limited by the computation resource of GEE, some specific convolution layers of DNN cannot be implemented in GEE. For example, a dilated convolution layer could not be achieved due to the fact that dilation is not supported in the convolution API provided by GEE. Conversion of other types of convolutions to the convolution used in this study may help to solve this problem and it needs further investigation…”. The authors in [156] mention, “… integration of the Google AI platform with GEE creates a versatile technology to deploy deep learning technologies at scale. Data migration and computational demands are among the main present constraints in deploying these technologies in an operational setting;”
- ○
- SNIC is the only object-based classifier on GEE; authors also want more “advanced methods” or just more options;
- ○
- Hyperparameter tuning is not possible on the platform [21], so many authors use local software (e.g., scikit-learn) for this purpose and then upload the models to GEE afterwards;
- ○
- One of the benefits of using an RF model is that you can run a feature importance analysis afterwards to determine which set of input features contributed most to the model’s learning. However, this extremely common and important operation is not possible on GEE.
- ●
- Inflexibility of models [19,35,46,152,159]: This limitation is similar to lack of models but is different in that it describes issues using models already on GEE. For example, authors in [35] emphasized, “A third limitation to the modeling approach described here is its current incomplete use of cloud-computing services, and reliance on desktop computer power to run the BRT models. Ideally, the modeling would be run within the same environment where the satellite data are preprocessed—Google Earth Engine—or a similar cloud-computing service offering similar levels of access to Sentinel datasets. GEE does currently provide machine-learning algorithms such as random forests, but these do not provide the flexibility that is currently offered within the BRT R functions”. This is both lack of methods and model inflexibility. The authors in [46] found that in general the algorithms on GEE were not very flexible and some preprocessing steps such as dealing with missing data were difficult to implement. Thus, the authors performed all preprocessing steps outside of the GEE platform.
- ●
- Lack of data [32,46,54,67,75,94,120,126,127,160,161,162,183,184,193,215,221]: This related to both a lack of field observations and curated RS datasets.
- ○
- Not every data product is on GEE;
- ○
- Authors specifically called for a Landsat-Sentinel combined dataset. This dataset could serve as the foundation for research in many different application areas by expanding both the spatial and temporal resolution available to researchers;
- ○
- Very-high-resolution imagery is not on GEE, meaning that to validate GEE prediction results authors often need to download this data locally.
- ●
- ●
- Other limitations:
- ○
- ○
- ○
- A concern that data and code will not be kept private for sensitive use-cases [217].
4.2. Challenges and Opportunities from an Application Perspective
4.2.1. Proof-of-Concept for Less Researched Applications and Novel Methods for Saturated Application Domains
4.2.2. Using ML for Exploration/as an Aid to Human Expertise
4.2.3. More (High Quality) Data
4.2.4. Feature Engineering and Feature Importance
4.2.5. Creative Integration of Existing Algorithms Available on GEE
4.2.6. Beyond ML: Modeling in GEE
4.3. Challenges and Opportunities from a Technical Perspective
4.3.1. Model Implementation and Online Learning in GEE
4.3.2. Web Interface Tools to Support ML Exploration
4.3.3. Open-Source GEE-AI Library Development
4.3.4. Model Deployment Using GEE as Backend
4.3.5. Vectorizing Data Boundaries
4.4. Overarching Challenges and Opportunities
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACCA | Automated Cloud Cover Assessment |
ADL | Active Deep Learning |
AEZ | Agro-Ecological Zone |
AI | Artificial Intelligence |
AIM-RRB | Annual Irrigation Maps—Republican River Basin |
AL | Active Learning |
ALOS | Advanced Land Observing Satellite |
ANN | Artificial Neural Network |
APEI | Air Pollutant Emissions Inventory |
API | Application Program Interfaces |
ASTER | Advanced Spaceborne Thermal Emission and Reflection Radiometer |
AVHRR | Advanced Very High Resolution Radiometer |
AWS | Amazon Web Services |
AW3D30 | ALOS World 3D—30 m |
BCLL | Biodiversity Characterization at Landscape Level |
BELMANIP2 | Benchmark Land Multisite Analysis Intercomparison Products 2 |
BFAST | Breaks for Additive Season and Trend |
BGT | Bagging Trees |
BRT | Boosted Regression Tree |
BST | Boosted Trees |
BT | Bagged Trees |
CART | Classification And Regression Tree |
CCI-LC | Climate Change Initiative Land Cover |
CBERS | China–Brazil Earth Resources Satellite |
CBI | Composite Burn Index |
CDL | Cropland Data Layer |
CDOM | Chromorphic Dissolved Organic Matter |
CGD | Crowdsourced Geographic Data |
CGLS-LC100 | Copernicus Global Land Cover Layer |
CHELSA | Climatologies at High Resolution for the Earth’s Land Surface Areas |
Chl-a | Chlorophyll-a |
Colab | Google Colaboratory |
CONUS | Coterminous United States |
CORINE | Coordination of Information on the Environment |
CNB | Continuous NaiveBayes |
CNN | Convolutional Neural Network |
CV | Computer Vision |
CVAPS | Change-Vector Analysis in Posterior Probability Space |
CE | Commission Error |
CZMIL | Coastal Zone Mapping and Imaging LiDAR |
DEM | Digital Elevation Model |
DL | Deep Learning |
DMSP NTL | Defense Meteorological Satellite Program Nighttime Lights |
dNBR | Differenced Normalized Burn Index |
DnCNN | Denoising Convolutional Neural Network |
dNDVI | Differenced Normalized Difference Vegetation Index |
dNDWI | Differenced Normalized Difference Water Index |
DNN | Deep Neural Network |
DOC | Dissolved Organic Carbon |
DSM | Digital Surface Model |
dSWIR | Differenced Shortwave Infrared |
DT | Decision Tree |
DTM | Digital Terrain Model |
ELR | Extreme Learning Machine Regression |
EO | Earth Observation |
ESA | European Space Agency |
ETM+ | Enhanced Thematic Mapper Plus |
EVI | Enhanced Vegetation Index |
FAO | Food and Agriculture Organization |
FCN | Fully Convolutional Network |
FireCCI51 | MODIS Fire Version 5.1 |
FormaTrend | Forest Monitoring for Action—Trend |
FPAR | Fraction Photosynthetically Active Radiation |
FROM-GLC | Finer Resolution Observation and Monitoring of Global Land Cover |
GBRT | Gradient Boosted Regression Trees |
GCEV1 | Global Cropland Extent Version 1 |
GDEM | Global Digital Elevation Map |
GEE | Google Earth Engine |
GeoAI | Geospatial Artificial Intelligence |
GEOBIA | Geographic Object-Based Image Analysis |
GeoNEX | Geostationary-NASA Earth Exchange |
GFED4 | Global Fire Emissions Database 4 |
GFSAD | Global Food Security-Support Analysis Data |
GHSL | Global Human Settlement Layers |
GIS | Geographic Information System(s) |
GIScience | Geographic Information Science |
GLCM | Gray-Level Co-occurrence Matrix |
GLC 2000 | Global Land Cover 2000 |
GLDAS | Global Land Data Assimilation System |
GLOF | Glacial Lake Outburst Floods |
GMM | Gaussian Mixture Model |
GMTED2010 | Global Multi-Resolution Terrain Elevation Data 2020 |
gmoMaxEnt | Maximum Entropy Classifier |
GPR | Gaussian Process Regression |
GREON | Great Rivers Ecological Observation Network |
GSW | Global Surface Water |
HAB | Harmful Algal Blooms |
IKPamir | Intersection Kernel Passive Aggressive Method for Information Retrieval |
INPE | National Institute for Space Research (Brazil) |
IoU | Intersection over Union |
IRS | Indian Remote Sensing |
JRC | Joint Research Centre |
KNN | K-Nearest Neighbor |
LAI | Leaf Area Index |
Landsat 8 OLI | Operational Land Imager |
LandTrendr | Landsat-based Detection of Trends in Disturbance and Recovery |
LiDAR | Light Detection and Ranging |
LIP | Lake Ice Phenology |
LSLTS | Large-Scale and Long Time Series |
LSTM | Long Short-Term Memory |
LSWI | Land Surface Water Index |
LULC | Land Use and Land Cover |
MAE | Mean Absolute Error |
Markov-CA | Markov-based Cellular Automata |
MERIT | Multi-Error Removed Improved-Terrain |
MCD12C1 | MODIS Land Cover Type (5.5 km) |
MCD12Q1 | MODIS Land Cover Type (500 m) |
MCD15A3H | MODIS Terra Aqua Leaf Area Index/FPAR |
MCD43A1 | MODIS Bidirectional Reflectance Distribution Function (BRDF) Model Parameters |
MCD43A4 | MODIS Nadir BRDF-Adjusted Reflectance (NBAR) |
MCD64A1 | MODIS Burned Area Product |
MD | Minimum Distance |
MDA | Mean Decrease in Accuracy |
MIoU | Mean Intersection over Union |
MIrAD-US | MODIS Irrigated Agriculture |
ML | Machine Learning |
MLP | Multi-Layer Perceptron |
MLR | Multiple Linear Regression |
MNDWI | Modified Normalized Difference Water Index |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MOD09A1 | MODIS Terra Surface Reflectance (500 m) |
MOD09GQ | MODIS Terra Surface Reflectance (250 m) |
MOD11A2 | MODIS Terra Land Surface Temperature and Emissivity |
MOD13A2 | MODIS Terra Vegetation Indices (1 km) |
MOD13Q1 | MODIS Terra Vegetation Indices (250 m) |
MOD15A3 | MODIS Terra Leaf Area Index/FPAR |
MOD44B | MODIS Terra Vegetation Continuous Fields |
MSCNN | Multiscale Convolutional Neural Network |
MSI | Multispectral Instrument |
MTBS | Monitoring Trends in Burn Severity dataset |
MuWI-R | Multi-Spectral Water Index |
MYD11A2 | MODIS Aqua Land Surface Temperature and Emissivity |
NAIP | National Agriculture Imagery Program |
MYD13 | MODIS Aqua Vegetation Indices |
NASA | National Aeronautics and Space Administration |
NASS | National Agricultural Statistics Service |
NA | Not Applicable |
NB | NaiveBayes |
NDBI | Normalized Difference Built-up Index |
NDVI | Normalized Difference Vegetation Index |
NDWI | Normalized Difference Water Index |
NEX | NASA Earth Exchange |
NGA | National Geospatial-Intelligence Agency |
NGTI | Normalized Difference Tillage Index |
NFI | National Forest Inventory |
NICFI | Norway’s International Climate and Forest Initiative |
NIR | Near Infrared |
NLCD | National Land Cover Dataset |
NN | Neural Network |
NOAA | National Oceanic and Atmospheric Administration |
NS | Not Specified |
NWI | National Wetland Inventory |
OA | Overall Accuracy |
OE | Omission Error |
OLI | Operation Land Imager |
OSM | OpenStreetMap |
PA | Producer’s Accuracy |
PB | Petabyte |
Pegasos | Primal Estimated sub-GrAdient SOlver for SVM |
PRODES | Amazon Deforestation Monitoring Project |
PSNR | Peak Signal-to-Noise Ratio |
QA60 | Sentinel 2 Quality Assurance Bitmask Cloud Band |
QRF | Quantile Regression Forest |
RBR | Relativized Burn Ratio |
RF | Random Forest |
RFVC | Relative Fractional Vegetation Cover |
RGB | Red-Green-Blue |
RHSeg | Recursive Hierarchical Segmentation |
RMSE | Root Mean Square Error |
ROC | Receiver Operator Curve |
RRMSE | Relative Root Mean Square Error |
RS | Remote Sensing |
RTC | Radiometric Terrain Correction |
RUESVM | Random Under-sampling Ensemble of Support Vector Machines |
RVM | Relevance Vector Machine |
SAE | Stacked AutoEncoder |
SAR | Synthetic Aperture Radar |
SATVI | Soil Adjusted Total Vegetation Index |
SAVI | Soil Adjusted Vegetation Index |
SDS | Satellite Derived Shoreline |
SEN12MS-CR | Sentinel 1 and 2 Multi-Spectral Cloud Removal dataset |
SNIC | Simple Non-Iterative Clustering |
SPOT | Satellite pour l’Observation de la Terre |
SRTM | Shuttle Radar Topography Mission |
SSIM | Structural Similarity Index |
SSS | Sea Surface Salinity |
SST | Sea Surface Temperature |
Suomi-NPP NTL | Suomi National Polar-orbiting Partnership Nighttime Lights |
SVM | Support Vector Machine |
SWIR | Shortwave Infrared |
TB | Terabyte |
TIR | Thermal Infrared |
TL | Transfer Learning |
TM | Thematic Mapper |
TRMM | Tropical Rainfall Measuring Mission |
UA | User’s Accuracy |
UAS | Unoccupied Aircraft Systems |
UN-GGIM | United Nations Initiative on Global Geospatial Information Management |
USDA | United States Department of Agriculture |
USGS | United States Geological Survey |
VHR | Very High Resolution |
VIIRS NTL | Visible Infrared Imaging Radiometer Suite Nighttime Lights |
WUDAPT | World Urban Database Access and Portal Tools |
Appendix A. The Accompanying Interactive Web App Tool for the Literature of GEE and AI
- A brief web app demo video: the video link is accessible at the web app page (top-right corner);
- Acronyms that are used in the data table of the web app, as well as explanations for each data field and chart (also in the top-right corner). A plan to continuously update and maintain the web app: To better serve the RS/GEE researcher and practitioner community, as well as AI engineers who would like to contribute to RS and GEE, we will continue to update the data to include new GEE + AI literature as it is published. Even after this paper is published, we hope this web app will serve as one place to keep track of a comprehensive and up-to-date list of GEE + AI literature. In the future, the data on the web app will be maintained and continually updated by the members of the GeoAIR Lab (Geospatial Artificial Intelligence Research and Visualization Laboratory). Our web app is data-driven and scalable (i.e., once data gets updated, the web app will automatically sync and update the visualization and filtering functions on the site).
Appendix B. Evaluation Metrics
Appendix C. Textual Summaries for Advances in Applications
Appendix C.1. Textual Summaries for Crop Mapping
Appendix C.2. Textual Summaries for Land Cover Classification
Appendix C.3. Textual Summaries for Forest and Deforestation Monitoring
Appendix C.4. Textual Summaries for Vegetation Mapping
Appendix C.5. Textual Summaries for Water Mapping and Water Quality Monitoring
Appendix C.6. Textual Summaries for Wetland Mapping
Appendix C.7. Textual Summaries for Infrastructure and Building Detection, Urbanization Monitoring
Appendix C.8. Textual Summaries for Wildfires and Burned Area
Appendix C.9. Textual Summaries for Heavy Industry/Pollution Monitoring
Appendix C.10. Textual Summaries for Climate and Meteorology
Appendix C.11. Textual Summaries for Disaster Management
Appendix C.12. Textual Summaries for Soil
Appendix C.13. Textual Summaries for Cloud Detection and Masking
Appendix C.14. Textual Summaries for Wildlife and Animal Studies
Appendix C.15. Textual Summaries for Archaeology
Appendix C.16. Textual Summaries for Coastline Monitoring
Appendix C.17. Textual Summaries for Bathymetric Mapping
Appendix C.18. Textual Summaries for Ice and Snow
References
- Yang, L.; MacEachren, A.M.; Mitra, P.; Onorati, T. Visually-Enabled Active Deep Learning for (Geo) Text and Image Classification: A Review. ISPRS Int. J. Geo-Inf. 2018, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Sebestyén, V.; Czvetkó, T.; Abonyi, J. The Applicability of Big Data in Climate Change Research: The Importance of System of Systems Thinking. Front. Environ. Sci. 2021, 9, 619092. [Google Scholar] [CrossRef]
- Li, Z. Geospatial Big Data Handling with High Performance Computing: Current Approaches and Future Directions. In High Performance Computing for Geospatial Applications; Tang, W., Wang, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 53–76. ISBN 9783030479985. [Google Scholar]
- Lee, J.-G.; Kang, M. Geospatial Big Data: Challenges and Opportunities. Big Data Res. 2015, 2, 74–81. [Google Scholar] [CrossRef]
- Lippitt, C.D.; Zhang, S. The impact of small unmanned airborne platforms on passive optical remote sensing: A conceptual perspective. Int. J. Remote Sens. 2018, 39, 4852–4868. [Google Scholar] [CrossRef]
- Zhen, L.I.U.; Huadong, G.U.O.; Wang, C. Considerations on Geospatial Big Data. IOP Conf. Ser. Earth Environ. Sci. 2016, 46, 012058. [Google Scholar]
- Karimi, H.A. Big Data: Techniques and Technologies in Geoinformatics; CRC Press: Boca Raton, FL, USA, 2014; ISBN 9781466586512. [Google Scholar]
- Marr, B. Big Data: Using SMART Big Data, Analytics and Metrics to Make Better Decisions and Improve Performance; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 9781118965825. [Google Scholar]
- Deng, X.; Liu, P.; Liu, X.; Wang, R.; Zhang, Y.; He, J.; Yao, Y. Geospatial Big Data: New Paradigm of Remote Sensing Applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3841–3851. [Google Scholar] [CrossRef]
- Kashyap, R. Geospatial Big Data, Analytics and IoT: Challenges, Applications and Potential. In Cloud Computing for Geospatial Big Data Analytics: Intelligent Edge, Fog and Mist Computing; Das, H., Barik, R.K., Dubey, H., Roy, D.S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 191–213. ISBN 9783030033590. [Google Scholar]
- Yang, C.; Yu, M.; Hu, F.; Jiang, Y.; Li, Y. Utilizing Cloud Computing to address big geospatial data challenges. Comput. Environ. Urban Syst. 2017, 61, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Dang, L.; Li, S.; Cai, K.; Zuo, X. Research Progress on Models, Algorithms, and Systems for Remote Sensing Spatial-Temporal Big Data Processing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5918–5931. [Google Scholar] [CrossRef]
- Liu, P.; Di, L.; Du, Q.; Wang, L. Remote Sensing Big Data: Theory, Methods and Applications. Remote Sens. 2018, 10, 711. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Wang, Y.; Ziv, G.; Adami, M.; Mitchard, E.; Batterman, S.A.; Buermann, W.; Marimon, B.S.; Junior, B.H.M.; Reis, S.M.; Rodrigues, D.; et al. Mapping tropical disturbed forests using multi-decadal 30 m optical satellite imagery. Remote Sens. Environ. 2018, 221, 474–488. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325–340. [Google Scholar] [CrossRef]
- Amani, M.; Brisco, B.; Afshar, M.; Mirmazloumi, S.M.; Mahdavi, S.; Mirzadeh, S.M.J.; Huang, W.; Granger, J. A generalized supervised classification scheme to produce provincial wetland inventory maps: An application of Google Earth Engine for big geo data processing. Big Earth Data 2019, 3, 378–394. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Samasse, K.; Hanan, N.P.; Anchang, J.Y.; Diallo, Y. A High-Resolution Cropland Map for the West African Sahel Based on High-Density Training Data, Google Earth Engine, and Locally Optimized Machine Learning. Remote Sens. 2020, 12, 1436. [Google Scholar] [CrossRef]
- Lippitt, C.D.; Stow, D.A.; Clarke, K.C. On the nature of models for time-sensitive remote sensing. Int. J. Remote Sens. 2014, 35, 6815–6841. [Google Scholar] [CrossRef]
- Zhou, B.; Okin, G.S.; Zhang, J. Leveraging Google Earth Engine (GEE) and machine learning algorithms to incorporate in situ measurement from different times for rangelands monitoring. Remote Sens. Environ. 2020, 236, 111521. [Google Scholar] [CrossRef]
- Sayad, Y.O.; Mousannif, H.; Al Moatassime, H. Predictive modeling of wildfires: A new dataset and machine learning approach. Fire Saf. J. 2019, 104, 130–146. [Google Scholar] [CrossRef]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; Depristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Health J. 2019, 6, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Mittal, S.; Hasija, Y. Applications of Deep Learning in Healthcare and Biomedicine. In Deep Learning Techniques for Biomedical and Health Informatics; Dash, S., Acharya, B.R., Mittal, M., Abraham, A., Kelemen, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 57–77. ISBN 9783030339661. [Google Scholar]
- Boulos, M.N.K.; Peng, G.; VoPham, T. An overview of GeoAI applications in health and healthcare. Int. J. Health Geogr. 2019, 18, 7. [Google Scholar] [CrossRef] [PubMed]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Wang, L.; Diao, C.; Xian, G.; Yin, D.; Lu, Y.; Zou, S.; Erickson, T.A. A summary of the special issue on remote sensing of land change science with Google earth engine. Remote Sens. Environ. 2020, 248, 112002. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Hoeser, T.; Kuenzer, C. Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review-Part I: Evolution and Recent Trends. Remote Sens. 2020, 12, 1667. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Decuyper, M.; Chávez, R.O.; Lohbeck, M.; Lastra, J.A.; Tsendbazar, N.; Hackländer, J.; Herold, M.; Vågen, T.-G. Continuous monitoring of forest change dynamics with satellite time series. Remote Sens. Environ. 2021, 269, 112829. [Google Scholar] [CrossRef]
- Guo, H.-D.; Zhang, L.; Zhu, L.-W. Earth observation big data for climate change research. Adv. Clim. Chang. Res. 2015, 6, 108–117. [Google Scholar] [CrossRef]
- Hird, J.N.; DeLancey, E.R.; McDermid, G.J.; Kariyeva, J. Google Earth Engine, Open-Access Satellite Data, and Machine Learning in Support of Large-Area Probabilistic Wetland Mapping. Remote Sens. 2017, 9, 1315. [Google Scholar] [CrossRef] [Green Version]
- Hsu, A.; Khoo, W.; Goyal, N.; Wainstein, M. Next-Generation Digital Ecosystem for Climate Data Mining and Knowledge Discovery: A Review of Digital Data Collection Technologies. Front. Big Data 2020, 3, 29. [Google Scholar] [CrossRef] [PubMed]
- Google Earth Engine. A Planetary-Scale Platform for Earth Science & Data Analysis. Available online: https://earthengine.google.com/ (accessed on 19 November 2019).
- National Aeronautics and Space Administration (NASA). Welcome to the NASA Earth Exchange (NEX). Available online: https://www.nasa.gov/nex (accessed on 23 April 2022).
- National Aeronautics and Space Administration (NASA). Geostationary-NASA Earth Exchange (GeoNEX). Available online: https://www.nasa.gov/geonex (accessed on 23 April 2022).
- Earth on AWS. Available online: https://aws.amazon.com/earth/ (accessed on 10 July 2019).
- Chandrashekar, S. Announcing Real-Time Geospatial Analytics in Azure Stream Analytics. Available online: https://azure.microsoft.com/en-us/blog/announcing-real-time-geospatial-analytics-in-azure-stream-analytics/ (accessed on 23 April 2022).
- Microsoft. Microsoft Planetary Computer. Available online: https://planetarycomputer.microsoft.com/ (accessed on 23 April 2022).
- Parente, L.; Taquary, E.; Silva, A.P.; Souza, C.; Ferreira, L. Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Data. Remote Sens. 2019, 11, 2881. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Lobell, D.B.; Thau, D.; Seifert, C.; Engle, E.; Little, B. A scalable satellite-based crop yield mapper. Remote Sens. Environ. 2015, 164, 324–333. [Google Scholar] [CrossRef]
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Front. Earth Sci. 2017, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Oliphant, A.; Congalton, R.G.; Yadav, K.; Gorelick, N. Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine. Remote Sens. 2017, 9, 1065. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 2017, 126, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Deines, J.M.; Kendall, A.D.; Hyndman, D.W. Annual Irrigation Dynamics in the U.S. Northern High Plains Derived from Landsat Satellite Data. Geophys. Res. Lett. 2017, 44, 9350–9360. [Google Scholar] [CrossRef]
- Kelley, L.C.; Pitcher, L.; Bacon, C. Using Google Earth Engine to Map Complex Shade-Grown Coffee Landscapes in Northern Nicaragua. Remote Sens. 2018, 10, 952. [Google Scholar] [CrossRef] [Green Version]
- Ragettli, S.; Herberz, T.; Siegfried, T. An Unsupervised Classification Algorithm for Multi-Temporal Irrigated Area Mapping in Central Asia. Remote Sens. 2018, 10, 1823. [Google Scholar] [CrossRef] [Green Version]
- Ghazaryan, G.; Dubovyk, O.; Löw, F.; Lavreniuk, M.; Kolotii, A.; Schellberg, J.; Kussul, N. A rule-based approach for crop identification using multi-temporal and multi-sensor phenological metrics. Eur. J. Remote Sens. 2018, 51, 511–524. [Google Scholar] [CrossRef]
- Mandal, D.; Kumar, V.; Bhattacharya, A.; Rao, Y.S.; Siqueira, P.; Bera, S. Sen4Rice: A Processing Chain for Differentiating Early and Late Transplanted Rice Using Time-Series Sentinel-1 SAR Data with Google Earth Engine. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1947–1951. [Google Scholar] [CrossRef]
- Oliphant, A.J.; Thenkabail, P.S.; Teluguntla, P.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K. Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine cloud. Int. J. App. Earth Observ. Geoinf. 2019, 81, 110–124. [Google Scholar] [CrossRef]
- Sun, J.; Di, L.; Sun, Z.; Shen, Y.; Lai, Z. County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model. Sensors 2019, 19, 4363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Liu, Z.; Baig, M.H.A.; Wang, Y.; Li, Y.; Chen, Y. Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms. Land Use Policy 2019, 88, 104190. [Google Scholar] [CrossRef]
- Tian, F.; Wu, B.; Zeng, H.; Zhang, X.; Xu, J. Efficient Identification of Corn Cultivation Area with Multitemporal Synthetic Aperture Radar and Optical Images in the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 629. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Lark, T.J.; Brown, J.F.; Gibbs, H.K. Mapping irrigated cropland extent across the conterminous United States at 30 m resolution using a semi-automatic training approach on Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2019, 155, 136–149. [Google Scholar] [CrossRef]
- Jin, Z.; Azzari, G.; You, C.; Di Tommaso, S.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sens. Environ. 2019, 228, 115–128. [Google Scholar] [CrossRef]
- Rudiyanto; Minasny, B.; Shah, R.M.; Che Soh, N.; Arif, C.; Indra Setiawan, B.; Rudiyanto Minasny, B. Automated Near-Real-Time Mapping and Monitoring of Rice Extent, Cropping Patterns, and Growth Stages in Southeast Asia Using Sentinel-1 Time Series on a Google Earth Engine Platform. Remote Sens. 2019, 11, 1666. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Azzari, G.; Lobell, D.B. Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques. Remote Sens. Environ. 2019, 222, 303–317. [Google Scholar] [CrossRef]
- Liang, L.; Runkle, B.R.K.; Sapkota, B.B.; Reba, M.L. Automated mapping of rice fields using multi-year training sample normalization. Int. J. Remote Sens. 2019, 40, 7252–7271. [Google Scholar] [CrossRef]
- Tian, H.F.; Huang, N.; Niu, Z.; Qin, Y.C.; Pei, J.; Wang, J. Mapping Winter Crops in China with Multi-Source Satellite Imagery and Phenology-Based Algorithm. Remote Sens. 2019, 11, 820. [Google Scholar] [CrossRef] [Green Version]
- Neetu; Ray, S.S. Exploring machine learning classification algorithms for crop classification using sentinel 2 data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, XLII-3/W6, 573–578. [Google Scholar] [CrossRef] [Green Version]
- Gumma, M.K.; Thenkabail, P.S.; Teluguntla, P.G.; Oliphant, A.; Xiong, J.; Giri, C.; Pyla, V.; Dixit, S.; Whitbread, A.M. Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud. GISci. Remote Sens. 2019, 57, 302–322. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Zhang, Z.; Cao, J.; Luo, Y.; Zhang, L.; Li, Z.; Zhang, J. Prediction of Winter Wheat Yield Based on Multi-Source Data and Machine Learning in China. Remote Sens. 2020, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Phalke, A.R.; Özdoğan, M.; Thenkabail, P.S.; Erickson, T.; Gorelick, N.; Yadav, K.; Congalton, R.G. Mapping Croplands of Europe, Middle East, Russia, and Central Asia Using Landsat, Random Forest, and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 167, 104–122. [Google Scholar] [CrossRef]
- Chen, N.; Yu, L.; Zhang, X.; Shen, Y.; Zeng, L.; Hu, Q.; Niyogi, D. Mapping Paddy Rice Fields by Combining Multi-Temporal Vegetation Index and Synthetic Aperture Radar Remote Sensing Data Using Google Earth Engine Machine Learning Platform. Remote Sens. 2020, 12, 2992. [Google Scholar] [CrossRef]
- Amani, M.; Kakooei, M.; Moghimi, A.; Ghorbanian, A.; Ranjgar, B.; Mahdavi, S.; Davidson, A.; Fisette, T.; Rollin, P.; Brisco, B.; et al. Application of Google Earth Engine Cloud Computing Platform, Sentinel Imagery, and Neural Networks for Crop Mapping in Canada. Remote Sens. 2020, 12, 3561. [Google Scholar] [CrossRef]
- You, N.; Dong, J. Examining Earliest Identifiable Timing of Crops Using All Available Sentinel 1/2 Imagery and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 161, 109–123. [Google Scholar]
- Poortinga, A.; Thwal, N.S.; Khanal, N.; Mayer, T.; Bhandari, B.; Markert, K.; Nicolau, A.P.; Dilger, J.; Tenneson, K.; Clinton, N.; et al. Mapping sugarcane in Thailand using transfer learning, a lightweight convolutional neural network, NICFI high resolution satellite imagery and Google Earth Engine. ISPRS Open J. Photogramm. Remote Sens. 2021, 1, 100003. [Google Scholar] [CrossRef]
- Adrian, J.; Sagan, V.; Maimaitijiang, M. Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2021, 175, 215–235. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Luo, Y.; Zhang, L.; Zhang, J.; Li, Z.; Tao, F. Wheat yield predictions at a county and field scale with deep learning, machine learning, and google earth engine. Eur. J. Agron. 2020, 123, 126204. [Google Scholar] [CrossRef]
- Luo, C.; Qi, B.; Liu, H.; Guo, D.; Lu, L.; Fu, Q.; Shao, Y. Using Time Series Sentinel-1 Images for Object-Oriented Crop Classification in Google Earth Engine. Remote Sens. 2021, 13, 561. [Google Scholar] [CrossRef]
- Ni, R.; Tian, J.; Li, X.; Yin, D.; Li, J.; Gong, H.; Zhang, J.; Zhu, L.; Wu, D. An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2021, 178, 282–296. [Google Scholar] [CrossRef]
- Sun, Y.; Qin, Q.; Ren, H.; Zhang, Y. Decameter Cropland LAI/FPAR Estimation from Sentinel-2 Imagery Using Google Earth Engine. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Li, M.; Zhang, R.; Luo, H.; Gu, S.; Qin, Z. Crop Mapping in the Sanjiang Plain Using an Improved Object-Oriented Method Based on Google Earth Engine and Combined Growth Period Attributes. Remote Sens. 2022, 14, 273. [Google Scholar] [CrossRef]
- Han, L.; Ding, J.; Wang, J.; Zhang, J.; Xie, B.; Hao, J. Monitoring Oasis Cotton Fields Expansion in Arid Zones Using the Google Earth Engine: A Case Study in the Ogan-Kucha River Oasis, Xinjiang, China. Remote Sens. 2022, 14, 225. [Google Scholar] [CrossRef]
- Hedayati, A.; Vahidnia, M.H.; Behzadi, S. Paddy lands detection using Landsat-8 satellite images and object-based classification in Rasht city, Iran. Egypt. J. Remote Sens. Space Sci. 2022, 25, 73–84. [Google Scholar] [CrossRef]
- Azzari, G.; Lobell, D. Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring. Remote Sens. Environ. 2017, 202, 64–74. [Google Scholar] [CrossRef]
- Midekisa, A.; Holl, F.; Savory, D.J.; Andrade-Pacheco, R.; Gething, P.; Bennett, A.; Sturrock, H. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing. PLoS ONE 2017, 12, e0184926. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, Y. Batunacun An Automatic Approach for Land-Change Detection and Land Updates Based on Integrated NDVI Timing Analysis and the CVAPS Method with GEE Support. ISPRS J. Photogramm. Remote Sens. 2018, 146, 347–359. [Google Scholar] [CrossRef]
- Ge, Y.; Hu, S.; Ren, Z.; Jia, Y.; Wang, J.; Liu, M.; Zhang, D.; Zhao, W.; Luo, Y.; Fu, Y.; et al. Mapping annual land use changes in China’s poverty-stricken areas from 2013 to 2018. Remote Sens. Environ. 2019, 232, 111285. [Google Scholar] [CrossRef]
- Lee, J.; Cardille, J.A.; Coe, M.T. BULC-U: Sharpening Resolution and Improving Accuracy of Land-Use/Land-Cover Classifications in Google Earth Engine. Remote Sens. 2018, 10, 1455. [Google Scholar] [CrossRef] [Green Version]
- Zurqani, H.A.; Post, C.J.; Mikhailova, E.A.; Schlautman, M.A.; Sharp, J.L. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2018, 69, 175–185. [Google Scholar] [CrossRef]
- Murray, N.J.; Keith, D.A.; Simpson, D.; Wilshire, J.H.; Lucas, R.M. Remap: An online remote sensing application for land cover classification and monitoring. Methods Ecol. Evol. 2018, 9, 2019–2027. [Google Scholar] [CrossRef] [Green Version]
- Mardani, M.; Mardani, H.; De Simone, L.; Varas, S.; Kita, N.; Saito, T. Integration of Machine Learning and Open Access Geospatial Data for Land Cover Mapping. Remote Sens. 2019, 11, 1907. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Hao, B.; Ma, M.; Li, S.; Li, Q.; Hao, D.; Huang, J.; Ge, Z.; Yang, H.; Han, X. Land Use Change and Climate Variation in the Three Gorges Reservoir Catchment from 2000 to 2015 Based on the Google Earth Engine. Sensors 2019, 19, 2118. [Google Scholar] [CrossRef] [Green Version]
- Miettinen, J.; Shi, C.; Liew, S.C. Towards automated 10–30 m resolution land cover mapping in insular South-East Asia. Geocarto Int. 2017, 34, 443–457. [Google Scholar] [CrossRef]
- Xie, S.; Liu, L.; Zhang, X.; Yang, J.; Chen, X.; Gao, Y. Automatic Land-Cover Mapping using Landsat Time-Series Data based on Google Earth Engine. Remote Sens. 2019, 11, 3023. [Google Scholar] [CrossRef] [Green Version]
- Adepoju, K.A.; Adelabu, S.A. Improving accuracy of Landsat-8 OLI classification using image composite and multisource data with Google Earth Engine. Remote Sens. Lett. 2019, 11, 107–116. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Kakooei, M.; Amani, M.; Mahdavi, S.; Mohammadzadeh, A.; Hasanlou, M. Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS J. Photogramm. Remote. Sens. 2020, 167, 276–288. [Google Scholar] [CrossRef]
- Liang, J.; Xie, Y.; Sha, Z.; Zhou, A. Modeling urban growth sustainability in the cloud by augmenting Google Earth Engine (GEE). Comput. Environ. Urban Syst. 2020, 84, 101542. [Google Scholar] [CrossRef]
- Zeng, H.; Wu, B.; Wang, S.; Musakwa, W.; Tian, F.; Mashimbye, Z.E.; Poona, N.; Syndey, M. A Synthesizing Land-cover Classification Method Based on Google Earth Engine: A Case Study in Nzhelele and Levhuvu Catchments, South Africa. Chin. Geogr. Sci. 2020, 30, 397–409. [Google Scholar] [CrossRef]
- Naboureh, A.; Li, A.; Bian, J.; Lei, G.; Amani, M. A Hybrid Data Balancing Method for Classification of Imbalanced Training Data within Google Earth Engine: Case Studies from Mountainous Regions. Remote Sens. 2020, 12, 3301. [Google Scholar] [CrossRef]
- Naboureh, A.; Ebrahimy, H.; Azadbakht, M.; Bian, J.; Amani, M. RUESVMs: An Ensemble Method to Handle the Class Imbalance Problem in Land Cover Mapping Using Google Earth Engine. Remote Sens. 2020, 12, 3484. [Google Scholar] [CrossRef]
- Li, Q.; Qiu, C.; Ma, L.; Schmitt, M.; Zhu, X.X. Mapping the Land Cover of Africa at 10 m Resolution from Multi-Source Remote Sensing Data with Google Earth Engine. Remote Sens. 2020, 12, 602. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Wang, J.; Liu, C.; Liang, L.; Li, C.; Gong, P. The migration of training samples towards dynamic global land cover mapping. ISPRS J. Photogramm. Remote Sens. 2020, 161, 27–36. [Google Scholar] [CrossRef]
- Tassi, A.; Vizzari, M. Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms. Remote Sens. 2020, 12, 3776. [Google Scholar] [CrossRef]
- Shetty, S.; Gupta, P.; Belgiu, M.; Srivastav, S. Assessing the Effect of Training Sampling Design on the Performance of Machine Learning Classifiers for Land Cover Mapping Using Multi-Temporal Remote Sensing Data and Google Earth Engine. Remote Sens. 2021, 13, 1433. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Omarzadeh, D.; Garajeh, M.K.; Lakes, T.; Blaschke, T. Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine. J. Environ. Plan. Manag. 2021, 1–33. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Khazaei, M.; Alavipanah, S.K.; Weng, Q. Google Earth Engine for large-scale land use and land cover mapping: An object-based classification approach using spectral, textural and topographical factors. GISci. Remote Sens. 2021, 58, 914–928. [Google Scholar] [CrossRef]
- Pan, X.; Wang, Z.; Gao, Y.; Dang, X.; Han, Y. Detailed and automated classification of land use/land cover using machine learning algorithms in Google Earth Engine. Geocarto Int. 2021, 1–18. [Google Scholar] [CrossRef]
- Becker, W.R.; Ló, T.B.; Johann, J.A.; Mercante, E. Statistical features for land use and land cover classification in Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2020, 21, 100459. [Google Scholar] [CrossRef]
- Jin, Q.; Xu, E.; Zhang, X. A Fusion Method for Multisource Land Cover Products Based on Superpixels and Statistical Extraction for Enhancing Resolution and Improving Accuracy. Remote Sens. 2022, 14, 1676. [Google Scholar] [CrossRef]
- Lee, J.S.H.; Wich, S.; Widayati, A.; Koh, L.P. Detecting industrial oil palm plantations on Landsat images with Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2016, 4, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Voight, C.; Hernandez-Aguilar, K.; Garcia, C.; Gutierrez, S. Predictive Modeling of Future Forest Cover Change Patterns in Southern Belize. Remote Sens. 2019, 11, 823. [Google Scholar] [CrossRef] [Green Version]
- Koskinen, J.; Leinonen, U.; Vollrath, A.; Ortmann, A.; Lindquist, E.; D’Annunzio, R.; Pekkarinen, A.; Käyhkö, N. Participatory mapping of forest plantations with Open Foris and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2018, 148, 63–74. [Google Scholar] [CrossRef]
- Duan, Q.; Tan, M.; Guo, Y.; Wang, X.; Xin, L. Understanding the Spatial Distribution of Urban Forests in China Using Sentinel-2 Images with Google Earth Engine. Forests 2019, 10, 729. [Google Scholar] [CrossRef] [Green Version]
- Poortinga, A.; Tenneson, K.; Shapiro, A.; Nquyen, Q.; Aung, K.S.; Chishtie, F.; Saah, D. Mapping Plantations in Myanmar by Fusing Landsat-8, Sentinel-2 and Sentinel-1 Data along with Systematic Error Quantification. Remote Sens. 2019, 11, 831. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, K.; Ota, T.; Mizoue, N. Detecting Forest Changes Using Dense Landsat 8 and Sentinel-1 Time Series Data in Tropical Seasonal Forests. Remote Sens. 2019, 11, 1899. [Google Scholar] [CrossRef] [Green Version]
- Ramdani, F. Recent expansion of oil palm plantation in the most eastern part of Indonesia: Feature extraction with polarimetric SAR. Int. J. Remote Sens. 2018, 40, 7371–7388. [Google Scholar] [CrossRef]
- Çolak, E.; Chandra, M.; Sunar, F. The use of multi-temporal sentinel satellites in the analysis of land cover/land use changes caused by the nuclear power plant construction. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-3/W8, 491–495. [Google Scholar] [CrossRef] [Green Version]
- Shaharum, N.S.N.; Shafri, H.Z.M.; Ghani, W.A.W.A.K.; Samsatli, S.; Al-Habshi, M.M.A.; Yusuf, B. Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms. Remote Sens. Appl. Soc. Environ. 2020, 17, 100287. [Google Scholar] [CrossRef]
- De Sousa, C.; Fatoyinbo, L.; Neigh, C.; Boucka, F.; Angoue, V.; Larsen, T. Cloud-computing and machine learning in support of country-level land cover and ecosystem extent mapping in Liberia and Gabon. PLoS ONE 2020, 15, e0227438. [Google Scholar] [CrossRef] [PubMed]
- Brovelli, M.A.; Sun, Y.; Yordanov, V. Monitoring Forest Change in the Amazon Using Multi-Temporal Remote Sensing Data and Machine Learning Classification on Google Earth Engine. ISPRS Int. J. Geo-Inf. 2020, 9, 580. [Google Scholar] [CrossRef]
- Kamal, M.; Farda, N.M.; Jamaluddin, I.; Parela, A.; Wikantika, K.; Prasetyo, L.B.; Irawan, B. A preliminary study on machine learning and google earth engine for mangrove mapping. IOP Conf. Series Earth Environ. Sci. 2020, 500, 012038. [Google Scholar] [CrossRef]
- Wei, C.; Karger, D.N.; Wilson, A.M. Spatial detection of alpine treeline ecotones in the Western United States. Remote Sens. Environ. 2020, 240, 111672. [Google Scholar] [CrossRef]
- Praticò, S.; Solano, F.; Di Fazio, S.; Modica, G. Machine Learning Classification of Mediterranean Forest Habitats in Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation. Remote Sens. 2021, 13, 586. [Google Scholar] [CrossRef]
- Xie, B.; Cao, C.; Xu, M.; Duerler, R.; Yang, X.; Bashir, B.; Chen, Y.; Wang, K. Analysis of Regional Distribution of Tree Species Using Multi-Seasonal Sentinel-1&2 Imagery within Google Earth Engine. Forests 2021, 12, 565. [Google Scholar] [CrossRef]
- Floreano, I.X.; de Moraes, L.A.F. Land Use/land Cover (LULC) Analysis (2009–2019) with Google Earth Engine and 2030 Prediction Using Markov-CA in the Rondônia State, Brazil. Environ. Monit. Assess. 2021, 193, 239. [Google Scholar] [CrossRef]
- Kumar, M.; Phukon, S.N.; Paygude, A.C.; Tyagi, K.; Singh, H. Mapping Phenological Functional Types (PhFT) in the Indian Eastern Himalayas using machine learning algorithm in Google Earth Engine. Comput. Geosci. 2021, 158, 104982. [Google Scholar] [CrossRef]
- Zhao, F.; Sun, R.; Zhong, L.; Meng, R.; Huang, C.; Zeng, X.; Wang, M.; Li, Y.; Wang, Z. Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning. Remote Sens. Environ. 2021, 269, 112822. [Google Scholar] [CrossRef]
- Wimberly, M.C.; Dwomoh, F.K.; Numata, I.; Mensah, F.; Amoako, J.; Nekorchuk, D.M.; McMahon, A. Historical trends of degradation, loss, and recovery in the tropical forest reserves of Ghana. Int. J. Digit. Earth 2022, 15, 30–51. [Google Scholar] [CrossRef]
- Johansen, K.; Phinn, S.; Taylor, M. Mapping woody vegetation clearing in Queensland, Australia from Landsat imagery using the Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2015, 1, 36–49. [Google Scholar] [CrossRef]
- Traganos, D.; Aggarwal, B.; Poursanidis, D.; Topouzelis, K.; Chrysoulakis, N.; Reinartz, P. Towards Global-Scale Seagrass Mapping and Monitoring Using Sentinel-2 on Google Earth Engine: The Case Study of the Aegean and Ionian Seas. Remote Sens. 2018, 10, 1227. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.H.; Stow, D.; Chen, H.L.; Lewison, R.; An, L.; Shi, L. Mapping Vegetation and Land Use Types in Fanjingshan National Nature Reserve Using Google Earth Engine. Remote Sens. 2018, 10, 927. [Google Scholar] [CrossRef] [Green Version]
- Jansen, V.S.; Kolden, C.A.; Schmalz, H.J. The Development of Near Real-Time Biomass and Cover Estimates for Adaptive Rangeland Management Using Landsat 7 and Landsat 8 Surface Reflectance Products. Remote Sens. 2018, 10, 1057. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.O.; Allred, B.W.; Naugle, D.E.; Maestas, J.; Donnelly, P.; Metz, L.J.; Karl, J.; Smith, R.; Bestelmeyer, B.; Boyd, C.; et al. Innovation in rangeland monitoring: Annual, 30 m, plant functional type percent cover maps for U.S. rangelands, 1984–2017. Ecosphere 2018, 9, e02430. [Google Scholar] [CrossRef]
- Campos-Taberner, M.; Moreno-Martínez, Á.; García-Haro, F.J.; Camps-Valls, G.; Robinson, N.P.; Kattge, J.; Running, S.W. Global Estimation of Biophysical Variables from Google Earth Engine Platform. Remote Sens. 2018, 10, 1167. [Google Scholar] [CrossRef] [Green Version]
- Xin, Y.; Adler, P.R. Mapping Miscanthus Using Multi-Temporal Convolutional Neural Network and Google Earth Engine. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery, Chicago, IL, USA, 5 November 2019; pp. 81–84. [Google Scholar] [CrossRef] [Green Version]
- Parente, L.; Mesquita, V.; Miziara, F.; Baumann, L.; Ferreira, L. Assessing the pasturelands and livestock dynamics in Brazil, from 1985 to 2017: A novel approach based on high spatial resolution imagery and Google Earth Engine cloud computing. Remote Sens. Environ. 2019, 232, 111301. [Google Scholar] [CrossRef]
- Zhang, M.; Gong, P.; Qi, S.; Liu, C.; Xiong, T. Mapping bamboo with regional phenological characteristics derived from dense Landsat time series using Google Earth Engine. Int. J. Remote Sens. 2019, 40, 9541–9555. [Google Scholar] [CrossRef]
- Alencar, A.; Shimbo, J.Z.; Lenti, F.; Balzani Marques, C.; Zimbres, B.; Rosa, M.; Arruda, V.; Castro, I.; Fernandes Márcico Ribeiro, J.P.; Varela, V.; et al. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote Sens. 2020, 12, 924. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Wang, L.; Yin, D.; Li, X.; Diao, C.; Gong, H.; Shi, C.; Menenti, M.; Ge, Y.; Nie, S.; et al. Development of spectral-phenological features for deep learning to understand Spartina alterniflora invasion. Remote Sens. Environ. 2020, 242, 111745. [Google Scholar] [CrossRef]
- Srinet, R.; Nandy, S.; Padalia, H.; Ghosh, S.; Watham, T.; Patel, N.R.; Chauhan, P. Mapping plant functional types in Northwest Himalayan foothills of India using random forest algorithm in Google Earth Engine. Int. J. Remote Sens. 2020, 41, 7296–7309. [Google Scholar] [CrossRef]
- Long, X.; Li, X.; Lin, H.; Zhang, M. Mapping the vegetation distribution and dynamics of a wetland using adaptive-stacking and Google Earth Engine based on multi-source remote sensing data. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2021, 102, 102453. [Google Scholar] [CrossRef]
- Yan, D.; Li, J.; Yao, X.; Luan, Z. Quantifying the Long-Term Expansion and Dieback of Spartina Alterniflora Using Google Earth Engine and Object-Based Hierarchical Random Forest Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9781–9793. [Google Scholar] [CrossRef]
- Wu, N.; Shi, R.; Zhuo, W.; Zhang, C.; Zhou, B.; Xia, Z.; Tao, Z.; Gao, W.; Tian, B. A Classification of Tidal Flat Wetland Vegetation Combining Phenological Features with Google Earth Engine. Remote Sens. 2021, 13, 443. [Google Scholar] [CrossRef]
- Pipia, L.; Amin, E.; Belda, S.; Salinero-Delgado, M.; Verrelst, J. Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth Engine. Remote Sens. 2021, 13, 403. [Google Scholar] [CrossRef]
- Zou, Z.; Dong, J.; Menarguez, M.A.; Xiao, X.; Qin, Y.; Doughty, R.B.; Hooker, K.V.; Hambright, K.D. Continued decrease of open surface water body area in Oklahoma during 1984–2015. Sci. Total Environ. 2017, 595, 451–460. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Tian, B.; Li, Z. Extraction of Glacial Lake Outlines in Tibet Plateau Using Landsat 8 Imagery and Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4002–4009. [Google Scholar] [CrossRef]
- Wang, C.; Jia, M.; Chen, N.; Wang, W. Long-Term Surface Water Dynamics Analysis Based on Landsat Imagery and the Google Earth Engine Platform: A Case Study in the Middle Yangtze River Basin. Remote Sens. 2018, 10, 1635. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Novitski, L.N.; Qi, J.; Stevenson, R.J. Landsat TM/ETM+ and machine-learning algorithms for limnological studies and algal bloom management of inland lakes. J. Appl. Remote Sens. 2018, 12, 026003. [Google Scholar] [CrossRef]
- Griffin, C.G.; McClelland, J.W.; Frey, K.E.; Fiske, G.; Holmes, R.M. Quantifying CDOM and DOC in major Arctic rivers during ice-free conditions using Landsat TM and ETM+ data. Remote Sens. Environ. 2018, 209, 395–409. [Google Scholar] [CrossRef]
- Isikdogan, L.F.; Bovik, A.; Passalacqua, P. Seeing Through the Clouds with DeepWaterMap. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1662–1666. [Google Scholar] [CrossRef]
- Fang, Y.; Li, H.; Wan, W.; Zhu, S.; Wang, Z.; Hong, Y.; Wang, H. Assessment of Water Storage Change in China’s Lakes and Reservoirs over the Last Three Decades. Remote Sens. 2019, 11, 1467. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, I.; Padarian, J.; van Ogtrop, F.; Vervoort, R.W. Vervoort Comparison of Surface Water Volume Estimation Methodologies That Couple Surface Reflectance Data and Digital Terrain Models. Water 2019, 11, 780. [Google Scholar] [CrossRef] [Green Version]
- Markert, K.N.; Markert, A.M.; Mayer, T.; Nauman, C.; Haag, A.; Poortinga, A.; Bhandari, B.; Thwal, N.S.; Kunlamai, T.; Chishtie, F.; et al. Comparing Sentinel-1 Surface Water Mapping Algorithms and Radiometric Terrain Correction Processing in Southeast Asia Utilizing Google Earth Engine. Remote Sens. 2020, 12, 2469. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Zeng, C.; Xia, G.; Shen, H. An Urban Water Extraction Method Combining Deep Learning and Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 768–781. [Google Scholar] [CrossRef]
- Peterson, K.T.; Sagan, V.; Sloan, J.J. Deep Learning-Based Water Quality Estimation and Anomaly Detection Using Landsat-8/Sentinel-2 Virtual Constellation and Cloud Computing. GISci. Remote Sens. 2020, 57, 510–525. [Google Scholar] [CrossRef]
- Wang, L.; Xu, M.; Liu, Y.; Liu, H.; Beck, R.; Reif, M.; Emery, E.; Young, J.; Wu, Q. Mapping Freshwater Chlorophyll-a Concentrations at a Regional Scale Integrating Multi-Sensor Satellite Observations with Google Earth Engine. Remote Sens. 2020, 12, 3278. [Google Scholar] [CrossRef]
- Boothroyd, R.J.; Williams, R.D.; Hoey, T.B.; Barrett, B.; Prasojo, O.A. Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change. WIREs Water 2020, 8, e21496. [Google Scholar] [CrossRef]
- Weber, S.J.; Mishra, D.R.; Wilde, S.B.; Kramer, E. Risks for cyanobacterial harmful algal blooms due to land management and climate interactions. Sci. Total Environ. 2019, 703, 134608. [Google Scholar] [CrossRef] [PubMed]
- Mayer, T.; Poortinga, A.; Bhandari, B.; Nicolau, A.P.; Markert, K.; Thwal, N.S.; Markert, A.; Haag, A.; Kilbride, J.; Chishtie, F.; et al. Deep learning approach for Sentinel-1 surface water mapping leveraging Google Earth Engine. ISPRS Open J. Photogramm. Remote Sens. 2021, 2, 100005. [Google Scholar] [CrossRef]
- Li, J.; Peng, B.; Wei, Y.; Ye, H. Accurate extraction of surface water in complex environment based on Google Earth Engine and Sentinel-2. PLoS ONE 2021, 16, e0253209. [Google Scholar] [CrossRef]
- Li, Y.; Niu, Z. Systematic method for mapping fine-resolution water cover types in China based on time series Sentinel-1 and 2 images. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2021, 106, 102656. [Google Scholar] [CrossRef]
- Farda, N.M. Multi-temporal Land Use Mapping of Coastal Wetlands Area using Machine Learning in Google Earth Engine. IOP Conf. Series Earth Environ. Sci. 2017, 98, 012042. [Google Scholar] [CrossRef]
- Amani, M.; Mahdavi, S.; Afshar, M.; Brisco, B.; Huang, W.; Mohammad Javad Mirzadeh, S.; White, L.; Banks, S.; Montgomery, J.; Hopkinson, C. Canadian Wetland Inventory using Google Earth Engine: The First Map and Preliminary Results. Remote Sens. 2019, 11, 842. [Google Scholar] [CrossRef] [Green Version]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Homayouni, S.; Gill, E. The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Remote Sens. 2019, 11, 43. [Google Scholar] [CrossRef] [Green Version]
- DeLancey, E.R.; Kariyeva, J.; Bried, J.T.; Hird, J. Large-scale probabilistic identification of boreal peatlands using Google Earth Engine, open-access satellite data, and machine learning. PLoS ONE 2019, 14, e0218165. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Lane, C.R.; Li, X.; Zhao, K.; Zhou, Y.; Clinton, N.; DeVries, B.; Golden, H.E.; Lang, M.W. Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine. Remote Sens. Environ. 2019, 228, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang; Zhang; Dong; Liu; Gao; Hu; Wu Mapping Tidal Flats with Landsat 8 Images and Google Earth Engine: A Case Study of the China’s Eastern Coastal Zone circa 2015. Remote Sens. 2019, 11, 924. [CrossRef] [Green Version]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Brisco, B.; Homayouni, S.; Gill, E.; DeLancey, E.R.; Bourgeau-Chavez, L. Big Data for a Big Country: The First Generation of Canadian Wetland Inventory Map at a Spatial Resolution of 10-m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Can. J. Remote Sens. 2020, 46, 15–33. [Google Scholar] [CrossRef]
- Hakdaoui, S.; Emran, A.; Pradhan, B.; Qninba, A.; El Balla, T.; Mfondoum, A.H.N.; Lee, C.-W.; Alamri, A.M. Assessing the Changes in the Moisture/Dryness of Water Cavity Surfaces in Imlili Sebkha in Southwestern Morocco by Using Machine Learning Classification in Google Earth Engine. Remote Sens. 2020, 12, 131. [Google Scholar] [CrossRef] [Green Version]
- DeLancey, E.R.; Simms, J.F.; Mahdianpari, M.; Brisco, B.; Mahoney, C.; Kariyeva, J. Comparing Deep Learning and Shallow Learning for Large-Scale Wetland Classification in Alberta, Canada. Remote Sens. 2019, 12, 2. [Google Scholar] [CrossRef] [Green Version]
- Mahdianpari, M.; Brisco, B.; Granger, J.E.; Mohammadimanesh, F.; Salehi, B.; Banks, S.; Homayouni, S.; Bourgeau-Chavez, L.; Weng, Q. The Second Generation Canadian Wetland Inventory Map at 10 Meters Resolution Using Google Earth Engine. Can. J. Remote Sens. 2020, 46, 360–375. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zou, Z.; Chen, B.; Ma, J.; Dong, J.; Doughty, R.B.; Zhong, Q.; Qin, Y.; Dai, S.; et al. Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 2018, 238, 110987. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Jafarzadeh, H.; Granger, J.E.; Mohammadimanesh, F.; Brisco, B.; Salehi, B.; Homayouni, S.; Weng, Q. A large-scale change monitoring of wetlands using time series Landsat imagery on Google Earth Engine: A case study in Newfoundland. GISci. Remote Sens. 2020, 57, 1102–1124. [Google Scholar] [CrossRef]
- Sahour, H.; Kemink, K.M.; O’Connell, J. Integrating SAR and Optical Remote Sensing for Conservation-Targeted Wetlands Mapping. Remote Sens. 2021, 14, 159. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Wang, C.; Wang, Y. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2021, 255, 112285. [Google Scholar] [CrossRef]
- van Deventer, H.; Cho, M.A.; Mutanga, O. Multi-season RapidEye imagery improves the classification of wetland and dryland communities in a subtropical coastal region. ISPRS J. Photogramm. Remote Sens. 2019, 157, 171–187. [Google Scholar] [CrossRef]
- Ye, X.-C.; Meng, Y.-K.; Xu, L.-G.; Xu, C.-Y. Net primary productivity dynamics and associated hydrological driving factors in the floodplain wetland of China’s largest freshwater lake. Sci. Total Environ. 2019, 659, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Dalezios, N.R.; Dercas, N.; Eslamian, S.S. Water scarcity management: Part 2: Satellite-based composite drought analysis. Int. J. Glob. Environ. Issues 2018, 17, 262. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, H. Wetland classification using parcel-level ensemble algorithm based on Gaofen-6 multispectral imagery and Sentinel-1 dataset. J. Hydrol. 2022, 606, 127462. [Google Scholar] [CrossRef]
- Guo, Y.; Jia, X.; Paull, D.; Benediktsson, J.A. Nomination-favoured opinion pool for optical-SAR-synergistic rice mapping in face of weakened flooding signals. ISPRS J. Photogramm. Remote Sens. 2019, 155, 187–205. [Google Scholar] [CrossRef]
- Goldblatt, R.; You, W.; Hanson, G.; Khandelwal, A.K. Detecting the Boundaries of Urban Areas in India: A Dataset for Pixel-Based Image Classification in Google Earth Engine. Remote Sens. 2016, 8, 634. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Yang, J.; Jiang, P. Assessing Impacts of Urban Form on Landscape Structure of Urban Green Spaces in China Using Landsat Images Based on Google Earth Engine. Remote Sens. 2018, 10, 1569. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Wei, Y.; Liu, C.; Li, X.; Fang, H. A Scheme for the Long-Term Monitoring of Impervious−Relevant Land Disturbances Using High Frequency Landsat Archives and the Google Earth Engine. Remote Sens. 2019, 11, 1891. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Q.; Ma, J.; Zhao, B.; Wang, X.; Zong, J.; Xiao, X. Assessing spatial-temporal dynamics of urban expansion, vegetation greenness and photosynthesis in megacity Shanghai, China during 2000–2016. Remote Sens. Environ. 2019, 233, 111374. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, H.; Lin, H.; Gamba, P.E.; Liu, X. Incorporating synthetic aperture radar and optical images to investigate the annual dynamics of anthropogenic impervious surface at large scale. Remote Sens. Environ. 2020, 242, 111757. [Google Scholar] [CrossRef]
- Liu, D.; Chen, N.; Zhang, X.; Wang, C.; Du, W. Annual large-scale urban land mapping based on Landsat time series in Google Earth Engine and OpenStreetMap data: A case study in the middle Yangtze River basin. ISPRS J. Photogramm. Remote Sens. 2019, 159, 337–351. [Google Scholar] [CrossRef]
- Mugiraneza, T.; Nascetti, A.; Ban, Y. Continuous Monitoring of Urban Land Cover Change Trajectories with Landsat Time Series and LandTrendr-Google Earth Engine Cloud Computing. Remote Sens. 2020, 12, 2883. [Google Scholar]
- Lin, J.; Jin, X.; Ren, J.; Liu, J.; Liang, X.; Zhou, Y. Rapid Mapping of Large-Scale Greenhouse Based on Integrated Learning Algorithm and Google Earth Engine. Remote Sens. 2021, 13, 1245. [Google Scholar] [CrossRef]
- Carneiro, E.; Lopes, W.; Espindola, G. Urban Land Mapping Based on Remote Sensing Time Series in the Google Earth Engine Platform: A Case Study of the Teresina-Timon Conurbation Area in Brazil. Remote Sens. 2021, 13, 1338. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, M.; Pu, D.; He, G.; Wang, G.; Long, T. Assessment of Annual Composite Images Obtained by Google Earth Engine for Urban Areas Mapping Using Random Forest. Remote Sens. 2021, 13, 748. [Google Scholar] [CrossRef]
- Samat, A.; Gamba, P.; Wang, W.; Luo, J.; Li, E.; Liu, S.; Du, P.; Abuduwaili, J. Mapping Blue and Red Color-Coated Steel Sheet Roof Buildings over China Using Sentinel-2A/B MSIL2A Images. Remote Sens. 2022, 14, 230. [Google Scholar] [CrossRef]
- Parks, S.A.; Holsinger, L.M.; Koontz, M.J.; Collins, L.; Whitman, E.; Parisien, M.-A.; Loehman, R.A.; Barnes, J.L.; Bourdon, J.-F.; Boucher, J.; et al. Giving Ecological Meaning to Satellite-Derived Fire Severity Metrics across North American Forests. Remote Sens. 2019, 11, 1735. [Google Scholar] [CrossRef] [Green Version]
- Quintero, N.; Viedma, O.; Urbieta, I.R.; Moreno, J.M. Assessing Landscape Fire Hazard by Multitemporal Automatic Classification of Landsat Time Series Using the Google Earth Engine in West-Central Spain. Forests 2019, 10, 518. [Google Scholar] [CrossRef] [Green Version]
- Long, T.; Zhang, Z.; He, G.; Jiao, W.; Tang, C.; Wu, B.; Zhang, X.; Wang, G.; Yin, R. 30 m Resolution Global Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine. Remote Sens. 2019, 11, 489. [Google Scholar] [CrossRef] [Green Version]
- Bar, S.; Parida, B.R.; Pandey, A.C. Landsat-8 and Sentinel-2 based Forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya. Remote Sens. Appl. Soc. Environ. 2020, 18, 100324. [Google Scholar] [CrossRef]
- Sulova, A.; Arsanjani, J.J. Exploratory Analysis of Driving Force of Wildfires in Australia: An Application of Machine Learning within Google Earth Engine. Remote Sens. 2021, 13, 10. [Google Scholar] [CrossRef]
- Zhang, Z.; He, G.; Long, T.; Tang, C.; Wei, M.; Wang, W.; Wang, G. Spatial Pattern Analysis of Global Burned Area in 2005 Based on Landsat Satellite Images. IOP Conf. Ser. Earth Environ. Sci. 2020, 428, 012078. [Google Scholar] [CrossRef]
- Seydi, S.; Akhoondzadeh, M.; Amani, M.; Mahdavi, S. Wildfire Damage Assessment over Australia Using Sentinel-2 Imagery and MODIS Land Cover Product within the Google Earth Engine Cloud Platform. Remote Sens. 2021, 13, 220. [Google Scholar] [CrossRef]
- Arruda, V.L.; Piontekowski, V.J.; Alencar, A.; Pereira, R.S.; Matricardi, E.A. An alternative approach for mapping burn scars using Landsat imagery, Google Earth Engine, and Deep Learning in the Brazilian Savanna. Remote Sens. Appl. Soc. Environ. 2021, 22, 100472. [Google Scholar] [CrossRef]
- Waller, E.K.; Villarreal, M.L.; Poitras, T.B.; Nauman, T.W.; Duniway, M.C. Landsat time series analysis of fractional plant cover changes on abandoned energy development sites. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2018, 73, 407–419. [Google Scholar] [CrossRef]
- Lobo, F.D.L.; Souza-Filho, P.W.M.; Novo, E.M.L.D.M.; Carlos, F.M.; Barbosa, C.C.F. Mapping Mining Areas in the Brazilian Amazon Using MSI/Sentinel-2 Imagery (2017). Remote Sens. 2018, 10, 1178. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Deng, X.; He, T.; Chen, W. Mapping Annual Land Disturbance and Reclamation in a Surface Coal Mining Region Using Google Earth Engine and the LandTrendr Algorithm: A Case Study of the Shengli Coalfield in Inner Mongolia, China. Remote Sens. 2020, 12, 1612. [Google Scholar] [CrossRef]
- Balaniuk, R.; Isupova, O.; Reece, S. Mining and Tailings Dam Detection in Satellite Imagery Using Deep Learning. Sensors 2020, 20, 6936. [Google Scholar] [CrossRef]
- Fuentes, M.; Millard, K.; Laurin, E. Big geospatial data analysis for Canada’s Air Pollutant Emissions Inventory (APEI): Using google earth engine to estimate particulate matter from exposed mine disturbance areas. GISci. Remote Sens. 2019, 57, 245–257. [Google Scholar] [CrossRef]
- He, T.; Xiao, W.; Zhao, Y.; Deng, X.; Hu, Z. Identification of waterlogging in Eastern China induced by mining subsidence: A case study of Google Earth Engine time-series analysis applied to the Huainan coal field. Remote Sens. Environ. 2020, 242, 111742. [Google Scholar] [CrossRef]
- Zhou, L.; Luo, T.; Du, M.; Chen, Q.; Liu, Y.; Zhu, Y.; He, C.; Wang, S.; Yang, K. Machine Learning Comparison and Parameter Setting Methods for the Detection of Dump Sites for Construction and Demolition Waste Using the Google Earth Engine. Remote Sens. 2021, 13, 787. [Google Scholar] [CrossRef]
- Chrysoulakis, N.; Mitraka, Z.; Gorelick, N. Exploiting satellite observations for global surface albedo trends monitoring. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2018, 137, 1171–1179. [Google Scholar] [CrossRef]
- Chastain, R.; Housman, I.; Goldstein, J.; Finco, M.; Tenneson, K. Empirical Cross Sensor Comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM Top of Atmosphere Spectral Characteristics over the Conterminous United States. Remote Sens. Environ. 2019, 221, 274–285. [Google Scholar] [CrossRef]
- Demuzere, M.; Bechtel, B.; Mills, G. Global transferability of local climate zone models. Urban Clim. 2018, 27, 46–63. [Google Scholar] [CrossRef]
- Ranagalage, M.; Murayama, Y.; Dissanayake, D.; Simwanda, M. The Impacts of Landscape Changes on Annual Mean Land Surface Temperature in the Tropical Mountain City of Sri Lanka: A Case Study of Nuwara Eliya (1996–2017). Sustainability 2019, 11, 5517. [Google Scholar] [CrossRef] [Green Version]
- Medina-Lopez, E.; Ureña-Fuentes, L. High-Resolution Sea Surface Temperature and Salinity in the Global Ocean from Raw Satellite Data. Remote Sens. 2019, 11, 2191. [Google Scholar] [CrossRef] [Green Version]
- Besnard, S.; Carvalhais, N.; Arain, M.A.; Black, A.; Brede, B.; Buchmann, N.; Chen, J.; Clevers, J.; Dutrieux, L.P.; Gans, F.; et al. Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests. PLoS ONE 2019, 14, e0211510. [Google Scholar] [CrossRef] [Green Version]
- Elnashar, A.; Zeng, H.; Wu, B.; Zhang, N.; Tian, F.; Zhang, M.; Zhu, W.; Yan, N.; Chen, Z.; Sun, Z.; et al. Downscaling TRMM Monthly Precipitation Using Google Earth Engine and Google Cloud Computing. Remote Sens. 2020, 12, 3860. [Google Scholar] [CrossRef]
- Yu, B.; Chen, F.; Muhammad, S. Analysis of satellite-derived landslide at Central Nepal from 2011 to 2016. Environ. Earth Sci. 2018, 77, 331. [Google Scholar] [CrossRef]
- Cho, E.; Jacobs, J.M.; Jia, X.; Kraatz, S. Identifying Subsurface Drainage using Satellite Big Data and Machine Learning via Google Earth Engine. Water Resour. Res. 2019, 55, 8028–8045. [Google Scholar] [CrossRef]
- Uddin; Uddin; Matin; Meyer Operational Flood Mapping Using Multi-Temporal Sentinel-1 SAR Images: A Case Study from Bangladesh. Remote Sens. 2019, 11, 1581. [CrossRef] [Green Version]
- Vanama, V.S.K.; Mandal, D.; Rao, Y.S. GEE4FLOOD: Rapid mapping of flood areas using temporal Sentinel-1 SAR images with Google Earth Engine cloud platform. J. Appl. Remote Sens. 2020, 14, 034505. [Google Scholar] [CrossRef]
- Ghaffarian, S.; Rezaie Farhadabad, A.; Kerle, N. Post-Disaster Recovery Monitoring with Google Earth Engine. Appl. Sci. 2020, 10, 4574. [Google Scholar] [CrossRef]
- Kakooei, M.; Baleghi, Y. A two-level fusion for building irregularity detection in post-disaster VHR oblique images. Earth Sci. Inform. 2020, 13, 459–477. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A. Using Google’s cloud-based platform for digital soil mapping. Comput. Geosci. 2015, 83, 80–88. [Google Scholar] [CrossRef]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Kempen, B.; de Sousa, L. Global mapping of soil salinity change. Remote Sens. Environ. 2019, 231, 111260. [Google Scholar] [CrossRef]
- Poppiel, R.R.; Lacerda, M.P.C.; Safanelli, J.L.; Rizzo, R.; Oliveira, M.P., Jr.; Novais, J.J.; Demattê, J.A.M. Mapping at 30 m Resolution of Soil Attributes at Multiple Depths in Midwest Brazil. Remote Sens. 2019, 11, 2905. [Google Scholar] [CrossRef] [Green Version]
- Cao, B.; Domke, G.M.; Russell, M.B.; Walters, B.F. Spatial modeling of litter and soil carbon stocks on forest land in the conterminous United States. Sci. Total Environ. 2018, 654, 94–106. [Google Scholar] [CrossRef]
- Greifeneder, F.; Notarnicola, C.; Wagner, W. A Machine Learning-Based Approach for Surface Soil Moisture Estimations with Google Earth Engine. Remote Sens. 2021, 13, 2099. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, M.; Yang, H.; Jin, Y.; Zhang, X.; Liu, H. Mapping Regional Soil Organic Matter Based on Sentinel-2A and MODIS Imagery Using Machine Learning Algorithms and Google Earth Engine. Remote Sens. 2021, 13, 2934. [Google Scholar] [CrossRef]
- Gómez-Chova, L.; Amorós-López, J.; Mateo-García, G.; Muñoz-Marí, J.; Camps-Valls, G. Cloud masking and removal in remote sensing image time series. J. Appl. Remote Sens. 2017, 11, 015005. [Google Scholar] [CrossRef]
- Mateo-García, G.; Gómez-Chova, L.; Amorós-López, J.; Muñoz-Marí, J.; Camps-Valls, G. Multitemporal Cloud Masking in the Google Earth Engine. Remote Sens. 2018, 10, 1079. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Ling, F.; Foody, G.M.; Li, X.; Du, Y. Cloud detection in Landsat-8 imagery in Google Earth Engine based on a deep convolutional neural network. Remote Sens. Lett. 2020, 11, 1181–1190. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Liu, S.; Peng, B.; Ye, H. An automatic cloud detection model for Sentinel-2 imagery based on Google Earth Engine. Remote Sens. Lett. 2021, 13, 196–206. [Google Scholar] [CrossRef]
- Zhang, X.; Qiu, Z.; Peng, C.; Ye, P. Removing cloud cover interference from Sentinel-2 imagery in Google Earth Engine by fusing Sentinel-1 SAR data with a CNN model. Int. J. Remote Sens. 2021, 43, 132–147. [Google Scholar] [CrossRef]
- Meraner, A.; Ebel, P.; Zhu, X.X.; Schmitt, M. Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion. ISPRS J. Photogramm. Remote Sens. 2020, 166, 333–346. [Google Scholar] [CrossRef]
- Carrasco-Escobar, G.; Manrique, E.; Ruiz-Cabrejos, J.; Saavedra, M.; Alava, F.; Bickersmith, S.; Prussing, C.; Vinetz, J.M.; Conn, J.; Moreno, M.; et al. High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery. PLoS Negl. Trop. Dis. 2019, 13, e0007105. [Google Scholar] [CrossRef] [Green Version]
- Ascensão, F.; Yogui, D.R.; Alves, M.; Medici, E.P.; Desbiez, A. Predicting spatiotemporal patterns of road mortality for medium-large mammals. J. Environ. Manag. 2019, 248, 109320. [Google Scholar] [CrossRef]
- Lyons, M.B.; Brandis, K.J.; Murray, N.J.; Wilshire, J.H.; McCann, J.A.; Kingsford, R.T.; Callaghan, C.T. Monitoring large and complex wildlife aggregations with drones. Methods Ecol. Evol. 2019, 10, 1024–1035. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Romero, J.; Navarro-Cerrillo, R.M.; Palacios-Rodriguez, G.; Acosta, C.; Mesas-Carrascosa, F.J. Improvement of Remote Sensing-Based Assessment of Defoliation of Pinus spp. Caused by Thaumetopoea pityocampa Denis and Schiffermüller and Related Environmental Drivers in Southeastern Spain. Remote Sens. 2019, 11, 1736. [Google Scholar]
- Liss, B.; Howland, M.D.; Levy, T.E. Testing Google Earth Engine for the automatic identification and vectorization of archaeological features: A case study from Faynan, Jordan. J. Archaeol. Sci. Rep. 2017, 15, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Orengo, H.; Garcia-Molsosa, A. A brave new world for archaeological survey: Automated machine learning-based potsherd detection using high-resolution drone imagery. J. Archaeol. Sci. 2019, 112, 105013. [Google Scholar] [CrossRef]
- Orengo, H.A.; Conesa, F.C.; Garcia-Molsosa, A.; Lobo, A.; Green, A.S.; Madella, M.; Petrie, C.A. Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data. Proc. Natl. Acad. Sci. USA 2020, 117, 18240–18250. [Google Scholar] [CrossRef] [PubMed]
- Hagenaars, G.; de Vries, S.; Luijendijk, A.P.; de Boer, W.P.; Reniers, A.J. On the accuracy of automated shoreline detection derived from satellite imagery: A case study of the sand motor mega-scale nourishment. Coast. Eng. 2018, 133, 113–125. [Google Scholar] [CrossRef]
- Vos, K.; Harley, M.D.; Splinter, K.D.; Simmons, J.A.; Turner, I.L. Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coast. Eng. 2019, 150, 160–174. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, Y.; Li, R.; Li, X. Mapping changes in coastlines and tidal flats in developing islands using the full time series of Landsat images. Remote Sens. Environ. 2020, 239, 111665. [Google Scholar] [CrossRef]
- Traganos, D.; Poursanidis, D.; Aggarwal, B.; Chrysoulakis, N.; Reinartz, P. Estimating Satellite-Derived Bathymetry (SDB) with the Google Earth Engine and Sentinel-2. Remote Sens. 2018, 10, 859. [Google Scholar] [CrossRef] [Green Version]
- Sagawa, T.; Yamashita, Y.; Okumura, T.; Yamanokuchi, T. Satellite Derived Bathymetry Using Machine Learning and Multi-Temporal Satellite Images. Remote Sens. 2019, 11, 1155. [Google Scholar] [CrossRef] [Green Version]
- Tedesche, M.E.; Trochim, E.D.; Fassnacht, S.R.; Wolken, G.J. Extent Changes in the Perennial Snowfields of Gates of the Arctic National Park and Preserve, Alaska. Hydrology 2019, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Qi, M.; Liu, S.; Yao, X.; Xie, F.; Gao, Y. Monitoring the Ice Phenology of Qinghai Lake from 1980 to 2018 Using Multisource Remote Sensing Data and Google Earth Engine. Remote Sens. 2020, 12, 2217. [Google Scholar] [CrossRef]
- Yang, L.; Cervone, G. Analysis of remote sensing imagery for disaster assessment using deep learning: A case study of flooding event. Soft Comput. 2019, 23, 13393–13408. [Google Scholar] [CrossRef]
- Davies, D.K.; Murphy, K.J.; Michael, K.; Becker-Reshef, I.; Justice, C.O.; Boller, R.; Braun, S.A.; Schmaltz, J.E.; Wong, M.M.; Pasch, A.N.; et al. The Use of NASA LANCE Imagery and Data for Near Real-Time Applications. In Time-Sensitive Remote Sensing; Lippitt, C.D., Stow, D.A., Coulter, L.L., Eds.; Springer: New York, NY, USA, 2015; pp. 165–182. ISBN 9781493926022. [Google Scholar]
- Lippitt, C.D.; Stow, D.A.; Riggan, P.J. Application of the remote-sensing communication model to a time-sensitive wildfire remote-sensing system. Int. J. Remote Sens. 2016, 37, 3272–3292. [Google Scholar] [CrossRef]
- Hoffmann, J.; Borgeaud, S.; Mensch, A.; Buchatskaya, E.; Cai, T.; Rutherford, E.; de Las Casas, D.; Hendricks, L.A.; Welbl, J.; Clark, A.; et al. Training Compute-Optimal Large Language Models. arXiv 2022, arXiv:2203.15556. [Google Scholar]
- Banko, M.; Brill, E. Scaling to Very Very Large Corpora for Natural Language Disambiguation. In Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics. Toulouse, France, 6–11 July 2001; pp. 26–33. [Google Scholar]
- Gil Press Andrew Ng Launches A Campaign for Data-Centric AI. Available online: https://www.forbes.com/sites/gilpress/2021/06/16/andrew-ng-launches-a-campaign-for-data-centric-ai/ (accessed on 25 April 2022).
- Pratt, L.Y. Discriminability-Based Transfer between Neural Networks. In Advances in Neural Information Processing Systems 5; Hanson, S.J., Cowan, J.D., Giles, C.L., Eds.; Morgan-Kaufmann: Burlington, MA, USA, 1993; pp. 204–211. [Google Scholar]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D.D. A survey of transfer learning. J. Big Data 2016, 3, 1345–1459. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A Survey on Deep Transfer Learning. In Proceedings of the International Conference on Artificial Neural Networks; Springer: Cham, Switzerland, 2018; pp. 270–279. [Google Scholar]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Li, C.; Zhang, S.; Qin, Y.; Estupinan, E. A systematic review of deep transfer learning for machinery fault diagnosis. Neurocomputing 2020, 407, 121–135. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Bar, Y.; Diamant, I.; Wolf, L.; Lieberman, S.; Konen, E.; Greenspan, H. Chest Pathology Detection Using Deep Learning with Non-Medical Training. In Proceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), New York, NY, USA, 16–19 April 2015; pp. 294–297. [Google Scholar]
- Maaten, L.; Chen, M.; Tyree, S.; Weinberger, K. Learning with Marginalized Corrupted Features. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 410–418. [Google Scholar]
- Gillies, M.; Fiebrink, R.; Tanaka, A.; Garcia, J.; Bevilacqua, F.; Heloir, A.; Nunnari, F.; Mackay, W.; Amershi, S.; Lee, B.; et al. Human-Centred Machine Learning. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems 2016, San Jose, CA, USA, 7–12 May 2016. [Google Scholar]
- Wu, Q. geemap: A Python package for interactive mapping with Google Earth Engine. J. Open Source Softw. 2020, 5, 2305. [Google Scholar] [CrossRef]
- Aybar, C.; Wu, Q.; Bautista, L.; Yali, R.; Barja, A. rgee: An R package for interacting with Google Earth Engine. J. Open Source Softw. 2020, 5, 2272. [Google Scholar] [CrossRef]
- Huntington, J.L.; Hegewisch, K.C.; Daudert, B.; Morton, C.G.; Abatzoglou, J.T.; McEvoy, D.J.; Erickson, T. Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. Bull. Am. Meteorol. Soc. 2017, 98, 2397–2410. [Google Scholar] [CrossRef]
- Li, H.; Wan, W.; Fang, Y.; Zhu, S.; Chen, X.; Liu, B.; Hong, Y. A Google Earth Engine-enabled software for efficiently generating high-quality user-ready Landsat mosaic images. Environ. Model. Softw. 2018, 112, 16–22. [Google Scholar] [CrossRef]
- Yang, L.; Driscol, J.; Sarigai, S.; Wu, Q.; Lippitt, C.D.; Morgan, M. Towards Synoptic Water Monitoring Systems: A Review of AI Methods for Automating Water Body Detection and Water Quality Monitoring Using Remote Sensing. Sensors 2022, 22, 2416. [Google Scholar] [CrossRef] [PubMed]
References | Method | Model Comparison | RS Data Type | Study Area |
---|---|---|---|---|
Lobell et al. (2015) [45] | regression | multiple linear regression | Cropland Data Layer, Landsat 5, Landsat 7 | United States |
Shelestov et al. (2017) [46] | classification | CART, ensemble NN, IKPamir, MLP, NB, RF, SVM | Landsat 8 OLI, Landsat 8 TOA | Ukraine |
Xiong et al. (2017) [47] | classification, segmentation | RF, RHSeg, SVM | Landsat 8 OLI TOA, Sentinel-2 MSI TOA, SRTM DEM | Africa (continent) |
Xiong et al. (2017) [48] | classification | DT, k-means | Africover, CUI, FROMGC, GCEV1, GLC 2000, Global30, Globcover, GRIPC, IKONOS, LULC 2000, MCD12Q1, MYD13, QuickBird, WorldView 2 | Africa (continent) |
Deines et al. (2017) [49] | classification, regression | CART, RF | AIM-RRB, Cropland Data Layer, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, NLCD, USGS MIrAD-US | United States |
Teluguntla et al. (2018) [16] | classification | RF | Google Earth Pro, Landsat 7 TM, Landsat 8 OLI, National Geospatial Agency | Australia, China |
Kelley et al. (2018) [50] | classification | RF | Landsat 8 TOA, SRTM DEM | Nicaragua |
Ragettli et al. (2018) [51] | classification | k-means, region growing clustering algorithm, RF | Landsat 7, Landsat 8, MOD09A1, MOD09Q1, MYD09A1, MYD09Q1, Sentinel 2, SRTM DEM | Kazakhstan, Kyrgyzstan |
Ghazaryan et al. (2018) [52] | classification | decision fusion, RF, SVM | Landsat 8 OLI, Sentinel-1 | Ukraine |
Mandal et al. (2018) [53] | classification | k-means | Sentinel-1 | India |
Oliphant et al. (2019) [54] | classification | RF | GeoEye, Landsat 7 ETM+, Landsat 8 OLI, National Geospatial Agency, Quickbird, SRTM DEM, WorldView | Brunei, Cambodia, Indonesia, Japan, Laos, Malaysia, Myanmar, North Korean, Philippines, South Korean, Thailand, Vietnam |
Sun et al. (2019) [55] | regression | CNN, CNN-LSTM hybrid, LSTM | Cropland Data Layer, MOD11A2, MOD09A1 | United States |
Wang et al. (2019) [56] | classification | ANN, CART, RF, SVM | Sentinel 2 | China |
Tian et al. (2019) [57] | classification | RF | Sentinel-1, Sentinel-2 MSI, SRTM DEM | China |
Xie et al. (2019) [58] | classification | RF | Cropland Data Layer, GIAM, GMIA, LANID, Landsat 5, Landsat 7, Landsat 8, MIrAD-US, MOD11A2, MOD13Q1, NAIP, NLCD | United States |
Jin et al. (2019) [59] | classification, regression | linear regression, RF | Sentinel-1, Sentinel-2 MSI, MYD11A2 | Kenya, Tanzania |
Rudiyanto et al. (2019) [60] | classification | ANN, k-means, RF, SVM | Google Earth, Sentinel-1 | Indonesia, Malaysia |
Wang et al. (2019) [61] | classification | GMM, k-means, RF | Cropland Data Layer, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI | United States |
Liang et al. (2019) [62] | classification | CART | Cropland Data Layer, Landsat 5 TM, Landsat 8 OLI | United States |
Tian et al. (2019) [63] | classification | DT | Landsat 7, Landsat 8, MOD13Q1, Sentinel-2, SRTM DEM | China |
Neetu et al. (2019) [64] | classification | CART, RF, SVM | Sentinel-2 MSI | India |
Gumma et al. (2020) [65] | classification | RF | GeoEye, GDEM, IKONOS, Landsat 7, Landsat 8, Quickbird, WorldView | Bangladesh, Bhutan, India, Nepal, Pakistan, Sri Lanka |
Han et al. (2020) [66] | regression | BGT, BST, DT, GPR, KNN, NN, RF, SVM | MODIS Terra | China |
Phalke et al. (2020) [67] | classification | CART, RF, SVM | Google Earth, Landsat 7 ETM+, Landsat 8 OLI, National Geospatial Agency, SRTM DEM | Asia, Europe, Middle East (multiple countries) |
Samasse et al. (2020) [19] | classification | RF | Landsat 8 OLI, Rapid Land Cover Mapper | Burkina Faso, Mali, Mauritania, Niger, Senegal |
Chen et al. (2020) [68] | classification | RF | JRC Global Surface Water, Sentinel-1, Sentinel-2 MSI | China |
Amani et al. (2020) [69] * | classification, segmentation | ANN, SNIC | Canada’s Annual Crop Inventory, MCD12Q1, Sentinel-1, Sentinel-2 | Canada |
You and Dong (2020) [70] | classification | RF | Google Earth, Sentinel-1, Sentinel-2 MSI | China |
Poortinga et al. (2021) [71] | segmentation | U-Net | NICFI Planet | Thailand |
Adrian et al. (2021) [72] * | classification, segmentation | DnCNN, RF, SegNet, U-Net, 3D U-Net | Sentinel-1, Sentinel-2, WorldView 3 | United States |
Cao et al. (2021) [73] | regression | CNN, DNN, LSTM, RF | MOD13A2, SRTM DEM | China |
Luo et al. (2021) [74] | classification | RF, SNIC | Sentinel-1 | China |
Ni et al. (2021) [75] | classification | SVM | Sentinel-2 | China |
Sun et al. (2022) [76] | regression | RF | FROM-GLC10, MOD15A3, Sentinel-2 | China |
Li et al. (2022) [77] | classification, segmentation | RF, SNIC | Google Earth, Sentinel-2 | China |
Han et al. (2022) [78] | classification | RF | Landsat 5 TM, Landsat 8 OLI, Sentinel-2 | China |
Hedayati et al. (2022) [79] | classification | fuzzy rules, Maximum Likelihood | ALOS PALSAR, Google Earth, Landsat 8, MYD11A2 | Iran |
References | Method | Model Comparison | RS Data Type | Study Area |
---|---|---|---|---|
Azzari and Lobell (2017) [80] | classification | RF | Landsat 8 OLI TOA, Sentinel-2 MSI TOA, SRTM DEM | Zambia |
Midekisa et al. (2017) [81] | classification | RF | DMSP NTL, Globeland30, Hansen Global Forest Change, Landsat 7 ETM+ | Africa (continent) |
Hu et al. (2018) [82] | classification | CART | GlobCover, Landsat 5 TM, Landsat 8 OLI | China |
Ge et al. (2019) [83] | classification | Bayesian hierarchical model, RF | ALOS DSM, Landsat 8 OLI, VIIRS NTL | China |
Lee et al. (2018) [84] * | classification | BULC-U | GlobCover, Landsat 5 | Brazil |
Zurqani et al. (2018) [85] | classification | RF | Landsat 5 SR, Landsat 5 TOA, Landsat 8 SR, Landsat 8 TOA, NAIP, NLCD, SRTM DEM, USGS Watershed Boundary Dataset | United States |
Murray et al. (2018) [86] * | classification | RF | Landsat 7 ETM+, Landsat 8 OLI, Landsat 8 SR, SRTM DEM | Global |
Mardani et al. (2019) [87] | classification | BT, SVM | FAO land cover, Sentinel-2 | Lesotho |
Gong et al. (2019) [88] | classification | RF | FROM-GLC, Landsat 8, Sentinel-2, SRTM DEM | Global |
Hao et al. (2019) [89] | classification | CART | GLDAS, GlobeLand30, Landsat 8 OLI, MOD11A2, MOD13A2 | China |
Miettinen et al. (2019) [90] | classification | DT, maximum likelihood, RF | ALOS PALSAR-2, Landsat 7 ETM+, Landsat 8 OLI, Sentinel-1, SRTM DEM | Brunei, Indonesia, Malaysia, Singapore, Timor-Leste |
Xie et al. (2019) [91] | classification | RF | Global Field Photo Library, Google Earth, Landsat 5 TM, Landsat 7 ETM+, MCD12Q1, MCD43A4 | China |
Adepoju and Adelabu (2020) [92] | classification | CART, gmoMaxEnt, RF, SVM | Google Earth, Landsat 8 OLI, SRTM DEM | South Africa |
Ghorbanian et al. (2020) [93] | classification | RF | Google Earth, Sentinel-1, Sentinel-2 | Iran |
Liang et al. (2020) [94] * | classification | CART, MD, RF | Google Earth, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, SRTM DEM | China |
Zeng et al. (2020) [95] | classification | RF | GFSAD, GHSL, Hansen Global Forest Change, Landsat 8 OLI, Sentinel-1 GRD, SRTM DEM | South Africa |
Naboureh et al. (2020) [96] | classification | RF | Landsat 8 OLI, SRTM DEM | Iran |
Naboureh et al. (2020) [97] | classification | SVM, RUESVM | Google Earth, Sentinel-2 | China, Iran |
Li et al. (2020) [98] | classification | RF | FROM-GLC10, GHSL, Landsat 8 OLI, MYD11A2, Sentinel-2 MSI, SRTM DEM, Suomi-NPP NTL | Africa (continent) |
Huang et al. (2020) [99] | classification | RF | CCI-LC, FROM-GLC, Google Earth, Landsat 5 TM | Global |
Tassi and Vizzari (2020) [100] | classification, segmentation | RF, SNIC, SVM | Landsat 8, PlanetScope, Sentinel-2 | Italy |
Shetty et al. (2021) [101] | classification | CART, RF, RVM, SVM | BCLL, GlobCover, Google Earth, Landsat 8 OLI | India |
Feizizadeh et al. (2021) [102] | classification | CART, RF, SVM | aerial photography, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI | Iran |
Shafizadeh-Moghadam et al. (2021) [103] | classification, segmentation | RF, SNIC | Google Earth, Landsat 8 | Iran, Iraq, Kuwait, Saudi Arabia, Syria, Turkey |
Pan et al. (2021) [104] | classification | CART, RF | Landsat 5 TM, MCD12Q1, SRTM DEM | Australia, United States |
Becker et al. (2021) [105] | classification | RF | Landsat 8 | Brazil |
Jin et al. (2022) [106] | classification, segmentation | RF, SNIC | ALOS PALSAR, CCI-LC, CGLS-LC, FROM-GLC, GFSAD30, GHSL, JRC Global Surface Water, Landsat 7 ETM+, Landsat 8 OLI, MCD12Q1 | Asia (multiple countries) |
References | Method | Model Comparison | RS Data Type | Study Area |
---|---|---|---|---|
Lee et al. (2016) [107] | classification | CART, MD, RF | Landsat 8 | Indonesia |
Wang et al. (2019) [15] | classification | RF | ALOS PALSAR, GlobeLand30-2010, Hansen Global Forest Change dataset, JRC Yearly Water Classification History, Landsat 5 TM, Landsat 7 ETM+, RapidEye, TerraClass-2010, USGS Global Tree Cover 2010 | Brazil |
Voight et al. (2019) [108] | classification | CART, Markov Chain model, MLP | Google Earth, Landsat MSS, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI | Belize |
Koskinen et al. (2019) [109] | classification | CART, RF, SVM | ALOS PALSAR, Google Earth, Landsat 8 OLI, NAFORMA, Sentinel-1, Sentinel-2 MSI, SRTM DEM | Tanzania |
Duan et al. (2019) [110] | classification | RF | Google Earth, Sentinel-2 | China |
Poortinga et al. (2019) [111] | classification | DT, Monte Carlo, RF | ALOS GDSM, Landsat 8, PlanetScope, RapidEye, Sentinel-1, Sentinel-2 | Myanmar |
Shimizu et al. (2019) [112] | classification | RF | Google Earth, Landsat 8, MCD12Q1, PlanetScope, RapidEye, Sentinel-1 | Myanmar |
Ramdani (2019) [113] | classification | GMM, KNN, RF, SVM | Sentinel-1, SRTM DEM | Indonesia |
Çolak et al. (2019) [114] | classification | SVM | CORINE LULC, Sentinel-1, Sentinel-2 | Turkey |
Shaharum et al. (2020) [115] | classification | CART, RF, SVM | Google Earth, Landsat 8, SRTM DEM | Malaysia |
de Sousa et al. (2020) [116] | classification | RF | ALOS PALSAR, Landsat 8 OLI, SRTM DEM | Gabon, Liberia |
Brovelli et al. (2020) [117] | classification | ANN, RF | CBERS 2B, CBERS 4, Landsat 5, Landsat 7, Landsat 8, Sentinel-2 | Brazil |
Kamal et al. (2020) [118] | classification | SVM | Landsat 8 OLI | Indonesia |
Wei et al. (2020) [119] | classification | binomial logistic regression | AW3D30, CHELSA V1.2, GeoEye-1, GMTED2010, Google Earth, Hansen Global Forest Change, Landsat 5, NAIP | United States |
Praticò et al. (2021) [120] | classification | CART, k-means, RF, SVM | Sentinel-2 | Italy |
Xie et al. (2021) [121] | classification | RF | Sentinel-1, Sentinel-2, SRTM DEM | China |
Floreano and de Moraes (2021) [122] | classification | Markov-CA, MLP, RF | Google Earth Pro, Landsat 5 TM, Landsat 7 ETM, Landsat 8 OLI | Brazil |
Kumar et al. (2022) [123] | classification | RF | Forest Survey of India, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, MCD12Q1 | India |
Zhao et al. (2022) [124] | classification, segmentation | LandTrendr, RF, U-Net | Google Earth Pro, Hansen Global Forest Change, MTBS, MCD64A1, Planet, Sentinel-1, SRTM DEM | Brazil, United States |
Wimberly et al. (2022) [125] | classification, segmentation | LandTrendr, RF | Google Earth, Landsat 7 ETM+, Landsat 8 OLI, WorldView | Ghana |
References | Method | Model Comparison | RS Data Type | Study Area |
---|---|---|---|---|
Johansen et al. (2015) [126] | classification | CART, RF, NDVI, Foliage Projective Cover | Landsat 5 TM, Landsat 7 ETM+ | Australia |
Traganos et al. (2018) [127] | classification | CART, RF, SVM | Sentinel-2 LIC TOA | Greece |
Tsai et al. (2018) [128] | classification | DT, RF | Landsat 7 TM, Landsat 8 OLI | China |
Jansen et al. (2018) [129] | regression | multiple linear regression, polynomial linear regression | Landsat 7 ETM+, Landsat 8 OLI, USGS National Elevation Dataset | United States |
Jones et al. (2018) [130] | classification | RF | Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, USGS National Elevation Dataset | United States |
Campos-Taberner et al. (2018) [131] | regression | RF | BELMANIP2, MCD15A3H, MCD43A4 | Global |
Xin and Adler (2019) [132] | classification | FCNN, CNN-LSTM hybrid | Sentinel-2 MSI | United States |
Parente et al. (2019) [43] | classification, segmentation | LSTM, RF, U-Net | PlanetScope | Brazil |
Parente et al. (2019) [133] | classification | RF | Google Earth, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, MOD13Q1 | Brazil |
Zhang et al. (2019) [134] | classification | RF | Google Earth, Landsat 8 OLI | China |
Alencar et al. (2020) [135] * | classification | DT, RF | Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI | Brazil |
Zhou et al. (2020) [21] | regression | CART, CNB, MLP, RF, SVM | Landsat 8 OLI, MCD43A1, MCD43A4 | United States |
Tian et al. (2020) [136] | classification | SAE, SVM | Google Earth, Landsat 5 TM, Landsat 8 OLI, Pleiades 2, QuickBird, SPOT 4, SPOT 6, UAS, WorldView 1, WorldView 3 | China |
Srinet et al. (2020) [137] | classification | RF | MOD09A1, SRTM DEM, WorldClim V2 Bioclim | India |
Long et al. (2021) [138] * | classification, segmentation | CART, LandTrendr, MD, NB, RF, SVM | CGLS-LC100, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, Sentinel-1, Sentinel-2, SRTM DEM | China |
Yan et al. (2021) [139] | classification | RF | Gaofen-2, Landsat 4 TM, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, Pléiades A, QuickBird, UAS, WorldView 2 | China |
Wu et al. (2021) [140] | classification | RF | Gaofen-2, Landsat 8 OLI | China |
Pipia et al. (2021) [141] * | regression | GPR | HyMap, Sentinel-2 | Europe (multiple countries) |
References | Method | Model Comparison | RS Data Type | Study Area |
---|---|---|---|---|
Pekel et al. (2016) [32] * | classification | expert system | Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI | global |
Zou et al. (2017) [142] | regression | multiple linear regression | Global Inland Water, Landsat 5, Landsat 7, NLCD | United States |
Chen et al. (2017) [143] | segmentation | non-local active contour algorithm | Gaofen-1, Google Earth, Landsat 8 OLI, SRTM DEM | Tibet |
Wang et al. (2018) [144] | classification | RF | JRC Global Surface Water, Landsat 4 TM, Landsat 5 TM, Landsat 8 OLI | China |
Lin et al. (2018) [145] | regression | BRT, multiple linear regression, nonlinear general additive models, RF | Landsat 5 TM, Landsat 7 ETM+ | United States |
Griffin et al. (2018) [146] | regression | multiple linear regression | Landsat 5 TM, Landsat 7 ETM+, NASA GSFC Ozone Monitoring Instrument | Canada, Russia, United States |
Isikdogan et al. (2019) [147] * | segmentation | DeepWaterMapv, DeepWaterMap, MNDWI, MLP | Landsat 8 | Global |
Fang et al. (2019) [148] | regression | linear regression, polynomial regression | China Lake Dataset, China’s Ecosystem Assessment and Ecological Security Pattern Database, Global Lakes and Wetlands, Global Reservoir and Dam Database, HydroLakes, Hydroweb, JRC Global Surface Water, SRTM DEM | China |
Fuentes et al. (2019) [149] | regression | CART | JRC Global Surface Water, Landsat 5, LiDAR DTM, USGS National Elevation Dataset | Australia, United States |
Markert et al. (2020) [150] | segmentation | Bmax Otsu thresholding, Edge Otsu thresholding | MERIT DEM, PlanetScope, Sentinel-1 GRD | Myanmar, Cambodia |
Wang et al. (2020) [151] * | classification | MNDWI, MSCNN, RF | Google Earth, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI | China |
Peterson et al. (2020) [152] | regression | DNN, ELR, MLR, SVR | GREON, Landsat 8, Sentinel-2 | United States |
Wang et al. (2020) [153] | regression | CART | JRC Global Surface Water, Landsat 5, LiDAR DTM, USGS National Elevation Dataset | Australia, United States |
Boothroyd et al. (2021) [154] | classification | RivaMap | Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI | Philippines |
Weber et al. (2020) [155] | regression | maximum likelihood, multiple linear regression, RF, SVM | NAIP, National Hydrography Dataset, NLCD, National Wetland Inventory, Sentinel-2 | United States |
Mayer et al. (2021) [156] * | segmentation | U-Net | JRC Global Surface Water datasets, PlanetScope, Sentinel-1 | Cambodia |
Li et al. (2021) [157] | classification | NDWI, MNDWI, MuWI-R, Otsu thresholding, SVM | Sentinel-2 | Sri Lanka |
Li and Niu (2022) [158] | classification | RF | ALOS DSM, China Lake Dataset, China Wetlands Map, Google Earth, Global Reservoir and Dam Database, Global Surface Water, Sentinel-1, Sentinel-2, SRTM DEM | China |
References | Method | Model Comparison | RS Data Type | Study Area |
---|---|---|---|---|
Hird et al. (2017) [35] | classification | BRT | LiDAR DTM, Sentinel-1, Sentinel-2 | Canada |
Farda (2017) [159] | classification | CART, Fast NB, GMO Max Entropy, IKPamir, MLP, Margin SVM, Pegasos, RF, Voting SVM, Winnow | Landsat 3 MMS, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, ASTER GDEM | Indonesia |
Amani et al. (2019) [160] | classification, segmentation | RF, SNIC | Landsat 8 | Canada |
Mahdianpari et al. (2018) [161] | classification | RF | Sentinel-1, Sentinel-2 | Canada |
DeLancey et al. (2019) [162] | classification | BRT | LiDAR DEM, Sentinel-1, Sentinel-2, SRTM DEM | Canada |
Wu et al. (2019) [163] | classification | k-means | NAIP, JRC Global Surface Water datasets, LiDAR DEMs, National Wetlands Inventory (NWI) | Canada, United States |
Amani et al. (2019) [17] | classification | RF | Canadian DEM, Landsat 8, Sentinel-1 | Canada |
Zhang et al. (2019) [164] | classification | RF | Google Earth Pro, Landsat 8 OLI | China |
Mahdianpari et al. (2020) [165] | classification, segmentation | RF, SNIC | aerial photography, Google Earth, Sentinel-1, Sentinel-2 | Canada |
Hakdaoui et al. (2020) [166] | classification | RF | ASTER DEM, Landsat 5 TM, Sentinel-1 GRD, Sentinel-2 MSI | Morocco |
DeLancey et al. (2019) [167] | classification | U-Net, XGBoost | ALOS DEM, Sentinel-1, Sentinel-2 | Canada |
Mahdianpari et al. (2020) [168] | classification | RF | Canada’s Annual Crop Inventory, Google Earth, Pleiades, Sentinel-1, Sentinel-2, WorldView 2 | Canada |
Wang et al. (2020) [169] | classification | DT | Google Earth, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI | China |
Mahdianpari et al. (2020 [170] | classification | CART, MD, RF | Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI | Canada |
Sahour et al. (2021) [171] | classification | RF, SVM | aerial photography, Google Earth, JRC Global Surface Water, Sentinel-1, Sentinel-2 | United States |
Jia et al. (2021) [172] | segmentation | Otsu’s thresholding algorithm | DJI Phantom 4 pro, Gaofen-2, Google Earth, Sentinel 2 | China |
References | Method | Model Comparison | RS Data Type | Study Area |
---|---|---|---|---|
Goldblatt et al. (2016) [178] | classification | CART, RF, SVM | Google Earth, Landsat 7 ETM+, Landsat 8, WorldPop | India |
Huang et al. (2018) [179] | classification | BRT | Google Earth, Landsat 7 ETM+, Landsat 8 OLI | China |
Xu et al. (2019) [180] | classification, segmentation | LandTrendr, RF | FROM-GLC, GHSL, Google Earth, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI | China |
Zhong et al. (2019) [181] | regression | cubic regression | GPP, GOME-2, Google Earth Pro, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, MOD09A1 | China |
Lin et al. (2020) [182] | classification | RF | DMSP NTL, GHSL, GlobeLand30, Google Earth, Landsat 8, Sentinel-1, SRTM DEM, VIIRS NTL | China |
Liu et al. (2020) [183] | classification, segmentation | CART, Otsu’s thresholding algorithm, RF | Geo-Wiki, GHSL, GlobeLand30, Google Earth, Hansen Global Forest Change, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, OpenStreetMap, SRTM DEM | China |
Mugiraneza et al. (2020) [184] | classification, segmentation | LandTrendr, SVM | Google Earth, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI | Rwanda |
Lin et al. (2021) [185] * | classification | CART, gmoMaxEnt, NB, RF, SVM | Landsat 8 OLI | China |
Carneiro et al. (2021) [186] | classification | RF | Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, Sentinel-2, SRTM DEM | Brazil |
Zhang et al. (2021) [187] | classification | RF | Landsat 8 OLI | China |
Samat et al. (2022) [188] | classification | SVM | GCL-FCS30-2020, GHSL, Google Earth, Sentinel-2 | China |
References | Method | Model Comparison | RS Data Type | Study Area |
---|---|---|---|---|
Parks et al. (2019) [189] | regression | RF | Landsat 4 TM, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI | Canada, United States |
Quintero et al. (2019) [190] | segmentation | FormaTrend, LandTrendr | Landsat 5 TM, Landsat ETM+, Landsat OLI, MCD64A1, SRTM DEM | Spain |
Long et al. (2019) [191] * | classification | RF, SVM | CBERS-4 MUX, FireCCI51, Gaofen-1 WFV, GFED4, Google Earth, MCD12C1, MOD44B, MTBS, Landsat-8 | Global |
Bar et al. (2020) [192] | classification | CART, RF, SVM, Weka clustering | FireCCI51, IRS 1C, Landsat 5, Landsat 8 OLI, MODIS, ResourceSat 2, Sentinel-2, VIIRS | India |
Sulova and Jokar Arsanjani (2020) [193] | classification | CART, NB, RF | CGLS-LC100, FIRMS, MOD13Q1, Sentinel-2, SRTM DEM | Australia |
Zhang et al. (2020) [194] | classification | RF | Landsat 5 | Global |
Seydi et al. (2021) [195] | classification | KNN, RF, SVM | Landsat 8, MODIS, Sentinel 2 | Australia |
Arruda et al. (2021) [196] | classification | DNN | INPE, Landsat 8 OLI, MODIS | Brazil |
References | Method | Model Comparison | RS Data Type | Study Area |
---|---|---|---|---|
Waller et al. (2018) [197] | regression | RF | DART, Google Earth Pro, Landsat 5 TM, NLCD | United States |
Lobo et al. (2018) [198] | classification | CART | RapidEye, Sentinel 2 | Brazil |
Xiao et al. (2020) [199] | segmentation | LandTrendr | Google Earth, Landsat 5, Landsat 7, Landsat 8 | Mongolia |
Balaniuk et al. (2020) [200] | classification | CNN | Sentinel-2 | Brazil |
Fuentes et al. (2020) [201] | classification | RF | Landsat 5, Landsat 8, Natural Resource Canada DEM, Sentinel-1, Sentinel-2 | Canada |
He et al. (2020) [202] | segmentation | LandTrendr | Google Earth, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI | China |
Zhou et al. (2021) [203] | classification | CART, RF, SVM | Sentinel-2 | China |
References | Method | Model Comparison | RS Data Type | Study Area |
---|---|---|---|---|
Chrysoulakis et al. (2019) [204] | regression | polynomial regression | MCD43A1, MCD43A2, MOD09CMA | Global |
Chastain et al. (2019) [205] | regression | major axis regression | Landsat 7 ETM+, Landsat 8 OLI, Sentinel-2 MSI | France, Portugal, Spain, United States |
Demuzere et al. (2019) [206] | classification | RF | DMSP-OLS NTL, Global Forest Canopy Height, Landsat 8, Sentinel-1, Sentinel-2 | Australia, Brazil, Canada, China, France, Japan, Mexico, Poland, Singapore, Spain, Sudan, United Kingdom, United States |
Ranagalage et al. (2019) [207] | classification | SVM | Landsat 5, Landsat 8 | Sri Lanka |
Medina-Lopez and Ureña-Fuentes (2019) [208] | regression | DNN | Sentinel-2 | Global |
Besnard et al. (2019) [209] | regression | LSTM, RF | Landsat 4, Landsat 5, Landsat 7, Landsat 8, MCD43A4 | Global |
Elnashar et al. (2020) [210] | regression | ANN, GBR, SVR | MCD12Q1, MOD13A2, SRTM DEM | China, India, Myanmar, Thailand, Vietnam |
References | Method | Model Comparison | RS Data Type | Study Area |
---|---|---|---|---|
Yu et al. (2018) [211] | classification | RF | Landsat 5 TM, Landsat 7, Landsat 8, SRTM DEM | Nepal |
Cho et al. (2019) [212] | classification | RF | Landsat 7 ETM+, Landsat 8 OLI, MODIS Terra, Sentinel-1, SMOS | United States |
Uddin et al. (2019) [213] | segmentation | CART, GEOBIA | Google Earth, Landsat 8, Sentinel-1, SRTM DEM | Bangladesh |
Vanama et al. (2020) [214] | segmentation | Otsu’s thresholding algorithm | Global Precipitation Measurement satellite data, JRC Global Surface Water dataset, Landsat 8, Sentinel-1 GRD, Sentinel-2, WorldView 3 | India |
Ghaffarian et al. (2020) [215] | classification | RF | GeoEye 1, Google Earth Pro, Landsat 7 ETM+, Landsat 8 OLI, WorldView 1, WorldView 3 | Philippines |
Kakooei and Baleghi (2020) [216] | classification | CART, RF | NAIP, NOAA NGS Emergency Response | United States |
References | Method | Model Comparison | RS Data Type | Study Area |
---|---|---|---|---|
Padarian et al. (2015) [217] | classification, regression | CART, Serial Rifle Classifier | SRTM DEM | United States |
Ivushkin et al. (2019) [218] | classification | CART, RF, SVM | Landsat 5 SR, Landsat 8 SR, SoilGrids | Global |
Poppiel et al. (2019) [219] | regression | RF | ALOS DEM, Landsat 4 TM, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI | Brazil |
Cao et al. (2019) [220] | regression | KNN, QRF, RF | LANDFIRE, Landsat 7 | United States |
Greifeneder et al. (2021) [221] | regression | GBRT | ASTER DEM, CGLS-LC100, GLDAS, Landsat 8 OLI, Landsat 8 TIRS, MOD13Q1, Sentinel-1, SRTM DEM | Global |
Zhang et al. (2021) [222] | regression | ANN, RF, SVM | HydroSHEDS DEM, MODIS, Sentinel-2A | China |
References | Method | Model Comparison | RS Data Type | Study Area |
---|---|---|---|---|
Gómez-Chova et al. (2017) [223] * | regression | kernel ridge regression, linear regression | Landsat 8, RapidEye, SPOT 4 | Argentina, China, Jordan, Spain |
Mateo-García et al. (2018) [224] * | classification | ACCA, Fmask, k-means | Landsat 8 Biome Cloud Masks, Landsat 8 TOA | Global |
Yin et al. (2020) [225] * | classification | DeepGEE-CD, FMask, RS_Net | Landsat 8 OLI | NS 1 |
Li et al. (2022) [226] | classification | Cloud-Score, Fmask, SVM, QA60 | Sentinel-2 | Amazon tropical forest, China, Sri Lanka |
Zhang et al. (2022) [227] * | regression | DeepGEE-S2CR, DSen2-CR | SEN12MS-CR 2 | Global |
References | Method | Model Comparison | RS Data Type | Study Area |
---|---|---|---|---|
Carrasco-Escobar et al. (2019) [229] | classification | RF | DJI Phantom 4 Pro, 3DR Solo | Peru |
Ascensão et al. (2019) [230] | classification | binomial logistic regression | Hansen Global Forest Change, MCD12Q1, MOD13Q1 | Brazil |
Lyons et al. (2019) [231] | classification | RF | DJI Phantom 3 Professional | Australia |
Pérez-Romero et al. (2019) [232] | classification, regression | KNN, RF | Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI | Spain |
References | Method | Model Comparison | RS Data Type | Study Area |
---|---|---|---|---|
Liss et al. (2017) [233] * | classification | Canny edge detection, RF | WorldView 2 | Jordan |
Orengo and Garcia-Molsosa (2019) [234] * | classification | CART, RF, SVM | DJI Phantom 4 Pro | Greece |
Orengo et al. (2020) [235] * | classification | RF | Google Earth, Sentinel-1, Sentinel-2 MSI, WorldView 2, WorldView 3 | Pakistan |
References | Method | Model Comparison | RS Data Type | Study Area |
---|---|---|---|---|
Hagenaars et al. (2018) [236] | regression | linear regression, marching squares interpolation algorithm, region growing clustering algorithm | Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, Sentinel 2 | Netherlands |
Vos et al. (2019) [237] | regression | MLP | Landsat 4 TM, Landsat 5 TM, Landsat 7, Landsat 8, Sentinel-2, UAS | Australia, France, New Zealand, United States |
Cao et al. (2020) [238] | classification | hierarchical clustering | Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI | China |
References | Method | Model Comparison | RS Data Type | Study Area |
---|---|---|---|---|
Traganos et al. (2018) [239] | regression | multiple linear regression | Garmin Fishfinder 160C sonar, Lowrance HDS-5 sonar, Sentinel-2 | Greece |
Sagawa et al. (2019) [240] | regression | RF | CZMIL airborne LiDAR, HDS-5 sonar, HDS-7 sonar, Landsat 8, Riegl VO-880G airborne LiDAR | Japan, Puerto Rico, USA, Vanuatu |
References | Method | Model Comparison | RS Data Type | Study Area |
---|---|---|---|---|
Tedesche et al. (2019) [241] | classification | CART | ArcticDEM, Landsat 4 TM, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI | United States |
Qi et al. (2020) [242] | regression | linear regression | Landsat MSS, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, MOD09GQ, NOAA AVHRR | China |
References | Evaluation Metrics | Application Area | Model Comparison | RS Data Type |
---|---|---|---|---|
Pekel et al. (2016) [32] | CE, OE | water | expert system | Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI |
Liss et al. (2017) [233] | accuracy | archaeology | Canny edge detection, RF | WorldView 2 |
Lee et al. (2018) [84] | OA, PA, UA | LULC | BULC-U | GlobCover, Landsat 5 |
Mateo-García et al. (2018) [224] | CE, false positive rate, OA, OE, RMSE, ROC, true positive rate | cloud | ACCA, Fmask, k-means | Landsat 8 Biome Cloud Masks, Landsat 8 TOA |
Murray et al. (2018) [86] | CA, OA, PA | LULC | RF | Landsat 7 ETM+, Landsat 8 OLI, Landsat 8 SR, SRTM DEM |
Orengo and Garcia-Molsosa (2019) [234] | visual analysis | archaeology | CART, RF, SVM | DJI Phantom 4 Pro |
Long et al. (2019) [191] | OA, CE, OE, R2 | fire | RF, SVM | CBERS-4 MUX, FireCCI51, Gaofen-1 WFV, GFED4, Google Earth, MCD12C1, MOD44B, MTBS, Landsat-8 |
Alencar et al. (2020) [135] | CE, OA, OE, visual assessment | vegetation | DT, RF | Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI |
Orengo et al. (2020) [235] | visual analysis | archaeology | RF | Google Earth, Sentinel-1, Sentinel-2 MSI, WorldView 2, WorldView 3 |
Liang et al. (2020) [94] | Kappa, OA | LULC | CART, MD, RF | Google Earth, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, SRTM DEM |
Wang et al. (2020) [151] | accuracy, CE, F1-score, IoU, Kappa, OE | water | MNDWI, MSCNN, RF | Google Earth, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI |
Yin et al. (2020) [225] | CE, MIoU, OA, OE | cloud | DeepGEE-CD, FMask, RS_Net | Landsat 8 OLI |
Amani et al. (2020) [69] | CE, Kappa, OA, OE, PA, UA, visual assessment | crop | ANN, SNIC | Canada’s Annual Crop Inventory, MCD12Q1, Sentinel-1, Sentinel-2 |
Long et al. (2021) [138] | Kappa, OA, PA, UA | vegetation | CART, LandTrendr, MD, NB, RF, SVM | CGLS-LC100, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, Sentinel-1, Sentinel-2, SRTM DEM |
Adrian et al. (2021) [72] | IoU, Kappa, OA, PSNR, SSIM | crop | DnCNN, RF, SegNet, U-Net, 3D U-Net | Sentinel-1, Sentinel-2, WorldView 3 |
Lin et al. (2021) [185] | Kappa, OA, PA, UA | infrastructure | CART, gmoMaxEnt, NB, RF, SVM | Landsat 8 OLI |
References | Evaluation Metrics | Application Area | Model Comparison | RS Data Type |
---|---|---|---|---|
Isikdogan et al. (2019) [147] | F1-score, precision, recall | water | DeepWaterMapv2, DeepWaterMap, MNDWI, MLP | Landsat 8 |
Mayer et al. (2021) [156] | F1-score, Kappa, recall, precision | water | U-Net | JRC Global Surface Water datasets, PlanetScope, Sentinel-1 |
References | Evaluation Metrics | Application Area | Model Comparison | RS Data Type |
---|---|---|---|---|
Gómez-Chova et al. (2017) [223] | RMSE | cloud | kernel ridge regression, linear regression | Landsat 8, RapidEye, SPOT 4 |
Pipia et al. (2021) [141] | MAE, RMSE, RRMSE, R2 | vegetation | GPR | HyMap, Sentinel-2 |
Zhang et al. (2022) [227] | MAE, RMSE, PSNR, SSIM | cloud | DeepGEE-S2CR, DSen2-CR | SEN12 MS-CR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Driscol, J.; Sarigai, S.; Wu, Q.; Chen, H.; Lippitt, C.D. Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review. Remote Sens. 2022, 14, 3253. https://doi.org/10.3390/rs14143253
Yang L, Driscol J, Sarigai S, Wu Q, Chen H, Lippitt CD. Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review. Remote Sensing. 2022; 14(14):3253. https://doi.org/10.3390/rs14143253
Chicago/Turabian StyleYang, Liping, Joshua Driscol, Sarigai Sarigai, Qiusheng Wu, Haifei Chen, and Christopher D. Lippitt. 2022. "Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review" Remote Sensing 14, no. 14: 3253. https://doi.org/10.3390/rs14143253
APA StyleYang, L., Driscol, J., Sarigai, S., Wu, Q., Chen, H., & Lippitt, C. D. (2022). Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review. Remote Sensing, 14(14), 3253. https://doi.org/10.3390/rs14143253